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COMMUTATIVE SEMIGROUPS THAT ARE NIL OF INDEX 2 AND
HAVE NO IRREDUCIBLE ELEMENTS
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Abstract. Every commutative nil-semigroup of index 2 can be imbedded into such a
semigroup without irreducible elements.
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1. INTRODUCTION

(Congruence-)simple semimodules over semigroups (and/or semirings) are easily
divided into four pair-wise disjoint classes. That is, if M is a simple semimodule
then the additive semigroup M (+) is either

(1) cancellative, or

(2) idempotent, or

(3) constant (i.e. |M + M|=1), or

(4) nil of index 2 and without irreducible elements (i.e., 2z + y = 2z for all
x,y € M and M + M = M).

Now, the last class is the most enigmatic one and was scarcely studied so far
(cf. [1]). In fact, structural properties of commutative 2-nil semigroups without
irreducible elements (zs-semigroups in the sequel) are not yet well understood and
examples of these semigroups are rarely seen (see e.g. [2]). The aim of the present
short note is to show that every commutative 2-nil semigroups can be imbedded into
a commutative zs-semigroup. Consequently, there should exist many commutative
zs-semigroups and then many simple semimodules of type (4) as well.
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Throughout this note, the word semigroup will always mean a commutative semi-
group, the binary operation of which will be denoted additively.

1.1 An element w of a semigroup S is called absorbing if S+ w = w. There exists
at most one absorbing element in S and it will be denoted by the symbol o (= og)
in the sequel. The fact that S possesses the absorbing element will be denoted by
o€ S.

1.2 A non-empty subset I of S is an ideal if S+ 1 C I.

1.3 Lemma.
(i) A one-element subset {w} is an ideal iff w = og.
(ii) If I is an ideal then the relation r = (I x I) Uidg is a congruence of S and
I =or, where T = S/r.
(iii) If o € S and and s is a congruence of S then the set {a € S; (a,0) € s} is an
ideal.

1.4 Put (Qs(a) =) Q(a) = S+ a and (Ps(a) =) P(a) = Q(a) U {a} for every
achs.

1.5 Lemma.
(i) Q(a) C P(a) and both these sets are ideals of S.
(if) P(a) is just the (principal) ideal generated by the one-element set {a}.

1.6 Assume that o € S. An element a € S is said to be nilpotent (of index at
most m > 1) if ma = 0. We denote by N(S) (N, (S)) the set of nilpotent (of index
at most m) elements of S.

The semigroup S is said to be nil (of index at most m) if N(S) =S5 (N, (S) = 5)
and reduced if og is the only nilpotent element of S.

1.7 Lemma.
(i) o= N1(S) C N2(S) C N3(S) C ... and all these sets are ideals.
(it) N(S) =U Nm(S) is an ideal.
(iii) The factor-semigroup T'= S/N(S) is reduced.

1.8 Lemma. The following conditions are equivalent:

(i) o€ S and 2z = o for every x € S.

(i)

(i) 2z +y =2z for all z,y,z € S.
) 2¢+y =2z for all z,y € S.

S is nil of index at most 2.

(iv



1.9 A semigroup satisfying the equivalent conditions of 1.8 will be called zeropotent
(or, in a colourless manner, a zp-semigroup) in the sequel.

A zp-semigroup without irreducible elements (i.e., when S+ .5 = S) will be called
a 28-semigroup.

1.10 Define a relation |s on S by a |g b iff b = a +u for some u € S°, where SY is
the least monoid containing S and 0 denotes the neutral element of S°.

1.11 Lemma. The following conditions are equivalent:
(i) als .

(ii) b € P(a).

(iii) P(b) C P(a).

Moreover, if a # b then these conditions are equivalent to:

(iv) b€ Q(a).
(v) P(b) € Q(a).

1.12 Lemma. The relation |s is a fully invariant compatible quasiordering of
the semigroup S and the equivalence ||s = ker(|g) is a fully invariant congruence of
the semigroup S.

1.13 Lemma. The following conditions are equivalent:

(i) alls b
(i) P(a) = P(b).

Moreover, if a # b then these conditions are equivalent to:

(iii) Q(a) = Q(b) = P(a) = P(b).

1.14 Lemma. The following conditions are equivalent:

(i) S is a group.

(ii) [s=9xS.

(i) [|s =S x S.

(iv) P(a) = P(b) for all a,b € S.

(v) P(a) =S for every a € S.
Q

(vi) Q(a) =S for every a € S.



1.15 Lemma. The relation |g is a (fully invariant compatible) ordering (or,
equivalently, ||s = idg), provided that at least one of the following four conditions is
satisfied:

(1) S is not a group and idg, S x S are the only fully invariant congruences of S;
(2) S is cancellative and 0 ¢ S;
(3) S is nil;
(4)

4) S is idempotent.

Proof. (1) Combine 1.13 and 1.14.

(2)Ifa#b,b=a+uand a =b+wv, a,b,u,v € S, then a = a+w, where w = u+w,
and hence w = 0, a contradiction.

B)Ifa=a+w,aweS, then a =a+ muv for every m > 1, and hence a = o.

4 Ifb=a+wu,abuecS thena+b=a+a+u=a+u=>o O

1.16 Define a relation /g on S by a/gb ift Q(b) C Q(a).

1.17 Lemma. The relation /g is an invariant compatible quasiordering of the
semigroup S and the equivalence //s = ker(/g) is an invariant congruence of the
semigroup S.

1.18 Lemma. The following conditions are equivalent:
(i) /s=8xS.
(ii) //s=8xS.
(iii) S+a=S+bforalla,beS.
(iv) S+ S =1 is the smallest ideal of S and I is a subgroup of S.

2. THE DISTRACTIBILITY ORDERING OF ZP-SEMIGROUPS

2.1 In this section, let S be a zp-semigroup. Put Ann(S) = {a € S; S+ a = o}.

2.2 Lemma.
(i) The relation |g is a fully invariant compatible ordering of the semigroup S.
(if) o is the greatest element.

(iii) Ann(S)\ {o} is the set of maximal elements of T = S\ {o}.
(iv) If |S| > 2 then S\ (S + S) is the set of minimal elements of S.
)

(v) If|S| > 3 then S has no smallest element.



2.3 Lemma. IfS is a non-trivial zs-semigroup then S has no minimal elements,
S is infinite and not finitely generated.

Proof. Being nil, S is finitely generated iff it is finite. The rest is clear from
2.2(iv). O

2.4 Lemma. If0 € S then S is trivial.

3. EVERY ZP-SEMIGROUP IS A SUBSEMIGROUP OF A ZS-SEMIGROUP
Now, we are in position to show the main result of this note.

3.1 Proposition. Every zp-semigroup is a subsemigroup of a zs-semigroup.

Proof. Let S be a non-trivial zp-semigroup and @ = S\ (S + S). For every
a € Q, put R, =S\ P(a); then o ¢ R, and R, # ), provided that |S| > 3. Further,
0 ¢ S by 2.4 and we put R, o = R, U {0,}, where the elements 0,, a € Q, are all
distinct, Vo1 = Ra0 X {1} and V, 2 = R4 0 x {2}. Now, consider the disjoint union

T=SUJVaru | Vo
acEQ acqQ

and define an addition on 7" in the following way:

(1) z + y coincides in S(+) and T(+) for all z,y € S;

(2) z+ (y,i) = (x +y,9) = (y, i) +axforall z € 9, (y,7) € Vs, a € Q, i =1,2,
x+y€R, (le,z+y¢ Pla));

(3) (x,i)+ (y,j)=x+y+aforall z,y € Ryo, a € Q, i # j;

(4) a+ 0 =o0if a,8 € T and the sum a4 3 is not defined by (1), (2) or (3).

Clearly, a+ 8 =04+a,a+a =0, a+0=o0and o+ a = o for every o € T. Next,
we check that o+ (8 +7v) = (a+ 5) + v for all o, B,y € T

Put § =a+ (8+7), ¢ = (a+ ) + v and consider the following cases:

(a) a, 8,7 € S. Then § =€ by (1).

(b) a,8 € S and v = (x,i) € V,,;. Assume first that « + 3 + = € R,. Then
e = (a+p+ i) by (2). Moreover, 8+ = € R,, and hence §+ v = (8 + z,4) and
S=a+ (B+z,i) =(a+B+mzi)=c¢c.

Assume next that a4+ 0+x ¢ R,. Then e = o by (4). Moreover, either 5+x ¢ R,,
b+v=o0oand d =a+o0o=0=¢,0r f+x € Ry, B+~ = (8 + x,i) and
d=a+ (B+x,i)=0=c¢.

(c)a,ye S, B eV, (or B,y€ S, ae€V,;). These cases are similar and/or dual
to (b).



(d) o = (2,4) € Vo, 8= (y,i) € Vg and vy € S. Then a+ 5 = o by (4)
€ =04y = o. Assume first that y +~v € R,. Then 8+ v = (y + ,¢) by (2) and
§ = (x,4) + (y+,%) = o by (4). Thus ¢ = 4.

Assume next that y +v ¢ R,. Then 5+ =o0by (4) and § = (z,i) +o=0=c¢.

(e) a,y € Vgy, BES (or B,y € Vg, a €5). These cases are similar to (d).

(f) a = (x,i) € Vo, 8= (y,4) € Vajs i # 4, v€S. Thena+f=z+y+a
by (3), and hence ¢ = z + y 4+ a+y by (1). Assume first that y + v € R,. Then
B+v=W+7J)by(2)andé=(z,0)+(y+v,j)=z+y+y+a=c.

Assume next that y++ ¢ R,. Then B8+~ = o by (4), and hence § = (z,i)+0 = o.
However, y + v ¢ R, means y + v € P(a) and then a + y + v = o, since S is nil of

4), and so

index at most 2. Thuse =z4+a4+y+y=x4+0=0=29.
(g)aeVii,veVa;, Be€S (orBeVa v € Vyj, a€S). These cases are similar
to (f).
(h) a,8,y € V,i. Then f+~v=0=a+fF,and hence  =a+o=0=0+7y=c¢.
(i) a=(x,i) € Vo, B=(y,0) €V and y=(2,5) € Vo5, 1# j. Thena+ =0
by (4), and hence ¢ = 0 + (2,j) = o. Further, 8+ =y + z + a by (3). Now,
r+y+z+a€Pla)and § = (v,i) +y+2+a=o0by (4). Thus § =e.
() a,y € Vi, B € Vay (or 8,7 € Vi, o € Vg j). These cases are similar to ().

(k) In all the remaining cases we get 6 = 0 = & due to (4).

a,
(0%

We have shown that T'= T'(+) is a zp-semigroup and S is a subsemigroup of 7.
Clearly,

T+T=5U|]J®R.x{1})U | Rax{2}).

a€Q acqQ
Thus S CT + T and

\(T+T) = [ J{(0a,1),(0a,2)}.
acQ

Finally, put Ty = S, T3 = T and consider a sequence
ThCT1 CTr C

of zp-semigroups such that 7; is a subsemigroup of T; 1 and T; C T;41 +T;+1. Then
JT; is a zs-semigroup. O
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