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Spaces of generators for the 𝟐 × 𝟐 complex
matrix algebra

W. S. Gant and BenWilliams

Abstract. This paper studies the space of 𝑟-tuples of 2×2 complexmatrices
that generate the full matrix algebra, considered up to change-of-basis. We
show that when 𝑟 is 2, this space is homotopy equivalent to the quotient of
a product of a circle and a sphere by an involution. When 𝑟 is greater than
2, we determine the rational cohomology of the space in degrees less than
4𝑟 − 6. As an application, we use the machinery of [5] to prove that for all
natural numbers 𝑑, there exists a ring 𝑅 of Krull dimension 𝑑 and a degree-2
Azumaya algebra𝐴 over 𝑅 that cannot be generated by fewer than 2⌊𝑑∕4⌋+2
elements.
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1. Introduction
Throughout, 𝑟 ≥ 2 denotes a natural number. This paper is an investigation

of the topology of two families of spaces, denoted 𝑈(𝑟) and 𝐵(𝑟) below, related
to generating 𝑟-tuples for the 2 × 2matrix algebra.
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Let𝑈(𝑟) denote the space of 𝑟-tuples of 2×2matrices that generateMat2×2(ℂ)
as an algebra. By a theorem of Burnside ([11]) this is the set of all 𝑟-tuples
(𝐴1, … , 𝐴𝑟) that do not have an eigenvector in common.
The group PGL(2; ℂ) acts on Mat2×2(ℂ) by conjugation, in other words, by

change of basis. It acts on 𝑈(𝑟) by simultaneous conjugation. This action is
free, see Proposition 3.1, and the quotient 𝐵(𝑟) is a manifold, see Proposition
3.3.
The spaces 𝐵(𝑟) are approximations to the classifying space 𝐵 PGL(2), in the

pattern of [16] or [3]. Themap𝑈(𝑟) → 𝐵(𝑟) is a principalPGL(2; ℂ)-bundle and
is therefore classified by a map 𝐵(𝑟) → 𝐵 PGL(2; ℂ), unique up to homotopy.
The classifyingmap is topologically (2𝑟−3)-connected (Corollary 4.4), so that in
particular, the induced map on cohomologyH𝑖(𝐵 PGL(2; ℂ);ℚ) → H𝑖(𝐵(𝑟); ℚ)
is an isomorphism in the range 𝑖 ≤ 2𝑟 − 4. This paper examines the invariants
of 𝐵(𝑟) beyond this range.
Three of our four main results are Proposition 5.3, which determines the ho-

motopy type of 𝐵(2) completely, and Propositions 7.6 and 8.1, which calculate
the rational cohomology H𝑖(𝐵(𝑟); ℚ) when 𝑖 < 4𝑟 − 6.

Applications to generation of algebras. Our last main result is to answer a
question left open by [5], which we now explain.
Over a commutative ring 𝑅, an Azumaya algebra of degree 2 is a unital, as-

sociative but not commutative 𝑅-algebra 𝐴 so that there exists a faithfully flat
extension 𝜙 ∶ 𝑅 → 𝑆 such that 𝐴 ⊗𝑅 𝑆 is isomorphic to Mat2×2(𝑆) as an 𝑆-
algebra. Associated with such an algebra 𝐴 over a ring 𝑅, there is an algebraic
principal PGL(2)-bundle 𝑇 → Spec 𝑅 given locally on Spec 𝑅 as the bundle of
isomorphisms 𝐴|𝑈 → Mat2×2 ×𝑈. As a special case of [5, Proposition 4.1] ap-
plied toMat2×2, there is a natural bijective correspondence:

{PGL(2)-equivariant morphisms 𝑇 → 𝑈(𝑟)} ↔
{𝑟-tuples of elements of 𝐴 that generate 𝐴 as an algebra. } . (1)

If 𝐴 and 𝐴′ are two algebras over 𝑅 and (𝑎1, … , 𝑎𝑟) ∈ 𝐴𝑟 and (𝑎′1, … , 𝑎
′
𝑟) ∈

(𝐴′)𝑟 are 𝑟-tuples of elements, then we will say that an isomorphism

𝜙 ∶ (𝐴; 𝑎1, … , 𝑎𝑟) → (𝐴′; 𝑎′1, … , 𝑎
′
𝑟)

is an isomorphism 𝜙 ∶ 𝐴 → 𝐴′ so that 𝜙(𝑎𝑖) = 𝑎′𝑖 for all 𝑖 ∈ {1, … , 𝑟}.
By passing to quotients, we arrive at:

Proposition 1.1. With notation as above, there exists a bijective correspondence

{Morphisms Spec 𝑅 → 𝐵(𝑟)} ↔

⎧

⎨
⎩

Isomorphism classes of Azumaya algebras of degree 2,
equipped with 𝑟-tuples of elements of 𝐴 that generate 𝐴
as an algebra.

⎫

⎬
⎭

. (2)
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Proof. First we relate the left-hand side of (2) with that of (1). In brief, the
variety 𝐵(𝑟) is the stack quotient of 𝑈(𝑟) by PGL(2). More explicitly, given a
PGL(2)-equivariant morphism 𝑇 → 𝑈(𝑟), take the quotient to arrive at a mor-
phism Spec 𝑅 → 𝐵(𝑟). Conversely, given a morphism 𝑓 ∶ Spec 𝑅 → 𝐵(𝑟), one
can pull the torsor 𝑈(𝑟) → 𝐵(𝑟) back along 𝑓 to produce a torsor 𝑇 → Spec 𝑅,
defined up to isomorphism. These operations are inverse to each other, pro-
vided the torsor is always considered up to isomorphism, so we see that the
set of morphisms Spec 𝑅 → 𝐵(𝑟) is in bijective correspondence with the set of
isomorphism classes of spans

Spec 𝑅 ← 𝑇 → 𝑈(𝑟)

where the left map is a PGL(2)-torsor and the right map is PGL(2)-equivariant.
That is, the left-hand side of (2) is in bijective correspondence with isomor-

phism classes of PGL2-equivariant maps 𝑇 → 𝑈(𝑟), i.e., things that may appear
on the left of (1). Naturality of the correspondence (1) then implies that the
left-hand side of (2) is in bijective correspondence with isomorphism classes of
algebras 𝐴 equipped with 𝑟-tuples of generating elements, i.e., things that may
appear on the right of (1). This is what we wanted. □

If we specialize to the case where 𝑅 is a reduced finite-type ℂ-algebra, the
objects 𝑇 and Spec 𝑅 are complex varieties, and we may use topological meth-
ods to give computable obstructions to generating 𝐴 by 𝑟 elements. Write 𝑋
for Spec 𝑅 viewed as a complex analytic space. We may find a topological ob-
struction to the existence of PGL(2; ℂ)-equivariant maps 𝑇 → 𝑈(𝑟), by finding
obstructions to a lift in the diagram:

𝐵(𝑟)

𝑋 𝐵 PGL(2; ℂ)
𝑓

(3)

where themaps to𝐵 PGL(2; ℂ) are those classifying thePGL(2; ℂ)-bundles𝑇 →
𝑋 and 𝑈(𝑟) → 𝐵(𝑟). From this point of view, any cohomology class 𝛼 ∈
H∗(𝐵 PGL(2; ℂ); ℤ) that maps to 0 inH∗(𝐵(𝑟); ℤ) furnishes a potential obstruc-
tion for 𝐴 to be generated by 𝑟 elements, and the obstruction actually applies if
𝑓∗(𝛼) ≠ 0.
The final sections of [5] are concerned with using this idea to produce ex-

amples of algebras of various kinds that cannot be generated by 𝑟 elements. In
[5, Sections 13 and 14], the calculations for forms ofMat𝑠×𝑠(ℂ) are done when
𝑠 > 2, i.e., for Azumaya algebras of degree at least 3. The theorem of [5] is
essentially1 this:

Theorem1.2 (Theorem1.5(b) of [5]). For any 𝑠 > 2 and any integer𝑑 ≥ 0, there
exists a finite type ring 𝑅 overℂ of Krull dimension 𝑑 and an Azumaya 𝑅-algebra

1The cited theorem applies over all fields of characteristic 0.



SPACES OF GENERATORS FOR THE 2 × 2 COMPLEX MATRIX ALGEBRA 759

𝐵 such that 𝐵 cannot be generated by fewer than

⎢
⎢
⎣

𝑑
2(𝑠 − 1)

⎥
⎥
⎦
+ 2

elements.

The proof of [5] does not extend to the case of 𝑠 = 2. The spaces𝑈(𝑟) and𝐵(𝑟)
behave differently from their analogues for 𝑠 > 2. The techniques of [5] can-
not determine the smallest 𝑖 such that the natural map H𝑖(𝐵 PGL(2; ℂ);ℚ) →
H𝑖(𝐵(𝑟); ℚ) is not injective, in contrast to the case of higher 𝑖 which is handled
by [5, Lemma 14.5].
In this paper, we adopt differentmethods to study𝑈(𝑟), 𝐵(𝑟). Provided 𝑟 > 2,

we show that the natural map

H𝑖(𝐵 PGL(2; ℂ);ℚ) → H𝑖(𝐵(𝑟); ℚ)

is not injective when 𝑖 = 2𝑟−2 and 𝑟 is odd, or when 𝑖 = 2𝑟 and 𝑟 is even. These
statements follow fromPropositions 7.6 and 8.1, alongwith the observation that
H∗(𝐵 PGL(2; ℂ);ℚ) = ℚ[𝑝1] where |𝑝1| = 4.
The same argument used to prove [5, Theorem 1.5(b)] now establishes our

last main result:

Theorem 1.3. If 𝑑 ≥ 0, there exists a finitely generated ℂ-ring 𝑅 of Krull di-
mension 𝑑 and an Azumaya algebra 𝐴 of degree 2 over 𝑅 such that 𝐴 cannot be
generated by fewer than

2 ⎢
⎣
𝑑
4
⎥
⎦
+ 2

elements.

This theorem represents an improvement in our understanding of howmany
generators are required for a general degree-2 Azumaya algebra 𝐴 over a ring
𝑅 of Krull dimension 𝑑. In [4, Theorem 1.2], it is proved that all such 𝐴 can be
generated by 𝑑 + 2 elements.
An alternative argument in [5, Sec. 13], not involving the spaces 𝑈(𝑟) and

𝐵(𝑟), uses [14] to produce examples of finitely generated ℝ-rings 𝑅 of Krull di-
mension 𝑑 and quaternion algebras𝐴 over 𝑅 that require ⌊𝑑+1

2
⌋ generators. The

examples we produce in this paper represent an improvement on this in two re-
spects.
First,

2 ⎢
⎣
𝑑
4
⎥
⎦
+ 2 ≥ ⎢

⎣
𝑑 + 1
2

⎥
⎦

with equality only when 𝑑 ≡ 3 (mod 4), so that our result is a numerical im-
provement on that of [5, Sec. 13].
Second, the examples of [5, Sec. 13] rely implicitly on the fact that −1 is not

a square in 𝑅. The examples we give here can be constructed over any field of
characteristic 0, and the same bounds on the number of generators required
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can be obtained from the bounds over ℂ by use of the Lefschetz principle, see
[5, Sec. 10]. We give the arguments over ℂ to keep the paper short.

Beyond proving Theorem 1.3, the topology of 𝐵(𝑟) and its relation to the
classifying space 𝐵 PGL(2; ℂ) can answer other questions about whether or not
Azumaya algebras of degree 2 can be generated by 𝑟 elements, by virtue of the
lifting obstruction in (3).

Acknowledgements. Weare extremely grateful to ZinovyReichstein formany
helpful conversations and pointers to the literature in this area. The paper has
benefitted greatly from his generous advice.

2. Preliminaries
Algebras in this paper are unital, associativeℂ-algebras, not necessarily com-

mutative. Here are some conventions that hold in the rest of the paper.
∙ M denotesMat2×2(ℂ).
∙ Except where it would lead to confusion, we write PGL(2) for the com-
plex Lie group PGL(2; ℂ).

∙ 𝑟 is a positive integer, and to avoid vacuity, 𝑟 ≥ 2.
∙ An 𝑟-tuple of matrices (𝐴1, … , 𝐴𝑟) ∈ M𝑟 may be denoted 𝐀.
∙ 𝑍(𝑟) is the subset ofM𝑟 consisting of 𝑟-tuples (𝐴1, … , 𝐴𝑟) that generate
a proper subalgebra ofM.

∙ 𝑈(𝑟) is the complement of 𝑍(𝑟) inM𝑟.
∙ The term “variety” will mean “complex algebraic variety” and all vari-
eties we encounter are quasiprojective. By a “point” of a variety 𝑋, we
mean a complex point.

Proposition 2.1. The space𝑍(𝑟) of non-generating 𝑟-tuples is a closed subvariety
of codimension 𝑟 − 1 inM𝑟.

Proof. This is a special case of [5, Proposition 7.1]. Consider the incidence
variety 𝑌 in M𝑟 × ℂP1 consisting of pairs 𝐀 × 𝐿 where 𝐿 is an eigenspace for
each matrix in the 𝑟-tuple 𝐀:

𝑌

M𝑟 ℂP1.

proj2proj1

Since PGL(2; ℂ) acts on 𝑌 and transitively on ℂP1, the projection 𝑌 → ℂP1 is
flat. Each fibre of the projection𝑌 → ℂP1 is an affine space of dimension 3𝑟, so
that 𝑌 has dimension 3𝑟+1. Since 𝑌 is closed inM𝑟 ×ℂP1, andℂP1 is a proper
variety, the image of𝑌 inM𝑟 is a closed subvariety. This image is precisely 𝑍(𝑟).
It remains to show that dimℂ 𝑍(𝑟) = dimℂ 𝑌. There is a dense open sub-

set 𝑌0 ⊂ 𝑌 where the first matrix in 𝐀 has at most 2 different eigenspaces,
and therefore the map 𝑌0 → M𝑟 has finite fibres. It follows that the image of
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proj1 |𝑌0 is a locally closed subvariety ofM
𝑟 of dimension 3𝑟 − 1. This image is

dense in 𝑍(𝑟) and so the result follows. □

There is an action of PGL(2) onM𝑟 given by

𝐺 ⋅ (𝐴1, … , 𝐴𝑟) = (𝐺𝐴1𝐺−1, … , 𝐺𝐴𝑟𝐺−1).

This action restricts to an action of PGL(2) on 𝑈(𝑟).
Let 𝑀′(𝑟) denote the set of 𝑟-tuples of 2 × 2-matrices (𝐴1, … , 𝐴𝑟) such that

Tr(𝐴𝑖) = 0 for all 𝑖. There is a deformation retractionΦ ofM𝑟 onto𝑀′(𝑟), given
by

Φ ∶ M𝑟 × [0, 1] → 𝑀, Φ(𝐴1, … , 𝐴𝑟, 𝑡) = (𝐴1 − 𝑡 Tr(𝐴1), … , 𝐴𝑟 − 𝑡 Tr(𝐴𝑟)).
(4)

Write𝑈′(𝑟) for the intersection𝑈(𝑟)∩𝑀′(𝑟). The space𝑈′(𝑟) is invariant under
thePGL(2, ℂ)-action, and therefore there is a quotient𝐵′(𝑟) = 𝑈′(𝑟)∕ PGL(2, ℂ).

Proposition 2.2. The inclusions𝑈′(𝑟) → 𝑈(𝑟) and 𝐵′(𝑟) → 𝐵(𝑟) are homotopy
equivalences.

Proof. We observe that the deformation retraction in (4) restricts to a deforma-
tion retraction of𝑈(𝑟) onto𝑈′(𝑟), and induces a deformation retraction of 𝐵(𝑟)
onto 𝐵′(𝑟). □

3. Invariant theory
Wewish to understand the action of the reductive group PGL(2) on𝑈(𝑟) and

in particular the quotient 𝐵(𝑟) = 𝑈(𝑟)∕ PGL(2). What we present here is the
𝑛 = 2 case of a much more general theory, developed in [15], [1], [13], [9], and
elsewhere.
In this section, we encounter ℂ-schemes which we do not show to be vari-

eties. While we are happy to use “point of 𝑉” to mean “rational point of 𝑉”
when 𝑉 is a variety, whenever it is not obvious that 𝑋 is a variety, we use the
more precise term “rational point”.

Proposition 3.1. The action of PGL(2) on𝑈(𝑟) is free.

Proof. Let (𝐴1, 𝐴2, … , 𝐴𝑟) be a point of 𝑈(𝑟). Suppose some 𝐺 ∈ PGL(2) sat-
isfies 𝐺𝐴𝑖𝐺−1 = 𝐴𝑖 for all 𝑖. Then conjugation by 𝐺 fixes any matrix that can
be expressed as a polynomial in the 𝐴𝑖. Since this is the set of all matrices, we
see that 𝐺 must act trivially on M. It follows that 𝐺 is the identity element of
PGL(2). □

Consider the coordinate ring of 𝑟-tuples of matrices,M𝑟. This ring is a poly-
nomial ring in 4𝑟 variables, and PGL(2) acts on it by virtue of its action onM.
There is a subring, which wewill callℛ𝑟,2, consisting of those PGL(2)-invariant
polynomial functions onM𝑟.
The ringℛ𝑟,2 is the coordinate ring of a universal categorical quotient scheme

M𝑟∕ PGL(2) according to [12, Theorem 1.1]. A description of the rational points
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of Spec(ℛ𝑟,2) is given by [1, 12.6]. In order to explain that description, we intro-
duce some further terminology.
Let 𝐹𝑟 = ℂ{𝑥1, … , 𝑥𝑟} denote the free associative algebra generated by 𝑟 in-

determinates. Following [1], given an 𝑟-tuple 𝐀 = (𝐴1, … , 𝐴𝑟) ∈ M𝑟, we define
a matrix representation

𝜙𝐀 ∶ 𝐹𝑟 → M
by 𝑥𝑖 ↦ 𝐴𝑖. The set of representations is in obvious bijection withM𝑟.
Each representation 𝜙𝐀 endows ℂ2 with an 𝐹𝑟-module structure, and 𝜙𝐀 is

said to be semisimple if ℂ2 is totally reducible with this structure. That is, 𝜙𝐀 is
semisimple if either 𝐀 has no common invariant subspace, in which case ℂ2 is
irreducible as an 𝐹𝑟-module, or if ℂ2 decomposes as a direct sum of simultane-
ous eigenspaces of the 𝐴𝑖.
If 𝜙𝐀 is not semisimple, there is an associated semisimple representation in

the closure of the PGL(2)-orbit of 𝜙𝐀. This is a general fact proved in [1, 12.6].
In the 2 × 2 case, the associated semisimple representation is obtained from 𝐀
by bringing 𝐀 to simultaneous upper-triangular form

([𝜆1 ∗
0 𝜇1

] , [𝜆2 ∗
0 𝜇2

] , … , [𝜆𝑟 ∗
0 𝜇𝑟

])

(possible since the 𝐴𝑖 do not generate M and therefore they have a common
eigenvector), then replacing the 𝑟-tuple by

𝐀′ = ([𝜆1 0
0 𝜇1

] , [𝜆2 0
0 𝜇2

] , … , [𝜆𝑟 0
0 𝜇𝑟

]) .

We now can describe the points of Spec(ℛ𝑟,2), as promised earlier.

Theorem 3.2 (Artin). The rational points of Spec(ℛ𝑟,2) are in one-to-one corre-
spondence with the PGL(2)-orbits of semisimple representations 𝜙𝐀. The quotient
map 𝑞 ∶ M𝑟 → Spec(ℛ𝑟,2) takes a general 𝑟-tuple𝐀′ to the orbit of the associated
semisimple representation.

Proposition 3.3. The quotient map𝑈(𝑟) → 𝐵(𝑟) = 𝑈(𝑟)∕ PGL(2) is a principal
PGL(2)-bundle and 𝐵(𝑟) is a manifold.

Proof. We show that 𝑈(𝑟) → 𝐵(𝑟) is a geometric quotient in the sense of
[12]. We know that M𝑟 → Specℛ𝑟,2 is a universal categorical quotient. Since
M𝑟 admits only the trivial line bundle, and the trivial line bundle admits only
one PGL(2)-linearization, we know that every point ofM𝑟 is semistable for the
PGL(2) action.
We observe that for all points𝐀 of𝑈(𝑟), the hypotheses of [12, Amplification

1.11(2)] apply. The regularity hypothesis is satisfied here because the action of
PGL(2) on 𝑈(𝑟) is free. As for closure, if 𝐀 ∈ 𝑈(𝑟), then Theorem 3.2 assures
us that the closed set 𝑞−1(𝑞(𝐀)) is precisely the orbit of 𝐀.
We deduce that𝑈(𝑟) consists of stable points for the action of PGL(2), so that

[12, Converse 1.13] applies to say that the action of PGL(2) on 𝑈(𝑟) is proper
and the quotient 𝐵(𝑟) is a quasiprojective ℂ-variety.
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Since the action of PGL(2) on 𝑈(𝑟) is proper, standard results in manifold
theory (see e.g., [10]) tell us that𝐵(𝑟) is amanifold, in this case a smooth variety,
and the quotient map is a principal PGL(2)-bundle map. □

4. Connectivity
We make use of the following well-known result. The proof is an extended

exercise in transversality.

Proposition 4.1. Let 𝑍 ↪ 𝑀 be a closed embedding of smooth manifolds of real
codimension 𝑑 > 0. Then the inclusion𝑀 ⧵ 𝑍 ↪ 𝑀 is (𝑑 − 1)-connected.

Corollary 4.2. Let 𝑍 ↪ 𝑀 be a closed embedding of smooth manifolds of real
codimension 𝑑 > 0, and suppose𝑀 is (𝑑 − 2)-connected. Then𝑀 ⧵ 𝑍 is (𝑑 − 2)-
connected

Here are two immediate applications of this.

Proposition 4.3. The space𝑈(𝑟) is (2𝑟 − 4)-connected.

Proof. We know𝑈(𝑟) = M𝑟 ⧵𝑍(𝑟), where 𝑍(𝑟) is defined as in Proposition 2.1.
The variety 𝑍(𝑟) is singular, but it admits a stratification into smooth locally
closed subvarieties of complex dimension ≤ 3𝑟 − 1. The space M𝑟 ≈ ℂ4𝑟 is
contractible, so by repeated application of Corollary 4.2, we see that 𝑈(𝑟) is
(𝑑 − 2)-connected where 𝑑 is the real codimension of 𝑍(𝑟) inM𝑟, i.e., 𝑑 = 2𝑟 −
2. □

Corollary 4.4. Amap𝐵(𝑟) → 𝐵 PGL(2) classifying the principal PGL(2)-bundle
𝑈(𝑟) → 𝐵(𝑟) is (2𝑟 − 3)-connected.

Proof. The map fits in a homotopy fibre sequence 𝑈(𝑟) → 𝐵(𝑟) → 𝐵 PGL(2).
Since𝑈(𝑟) is (2𝑟−4)-connected, themap𝐵(𝑟) → 𝐵 PGL(2) is (2𝑟−3)-connected.

□

5. The case of 𝒓 = 𝟐

When 𝑟 = 2, we are able to determine the homotopy type of the variety 𝐵(𝑟)
completely. In Section 3, we observed that 𝐵(𝑟) is an open subvariety of an
affine scheme Specℛ𝑟,2.

Theorem 5.1 ([15, Theorem 5]). The ringℛ𝑟,2 of PGL(2)-invariant polynomials
on the space of 𝑟-tuples (𝐴1, … , 𝐴𝑟) of 2 × 2matrices is generated by the elements

Tr(𝐴𝑖) where 𝑖 ∈ {1, … , 𝑟},

Tr(𝐴2
𝑖 ) where 𝑖 ∈ {1, … , 𝑟},

Tr(𝐴𝑖𝐴𝑗) where 𝑖, 𝑗 ∈ {1, … , 𝑟} and 𝑖 < 𝑗,
Tr(𝐴𝑖𝐴𝑗𝐴𝑙) where 𝑖, 𝑗, 𝑙 ∈ {1, … , 𝑟} and 𝑖 < 𝑗 < 𝑙.
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In fact, we will use this result only when 𝑟 = 2. Here, there are no triple
products and so every element of the ring ℛ2,2 is a polynomial in the functions

Tr(𝐴1), Tr(𝐴2), Tr(𝐴2
1), Tr(𝐴

2
2), Tr(𝐴1𝐴2). (5)

Explicitly, this implies that Specℛ2,2 is a closed subscheme of the variety ℂ5,
and therefore that 𝐵(2) is a locally closed subscheme. We know that the di-
mension of 𝐵(2) as a ℂ-variety is dim𝑈(𝑟) − dimPGL(2) = 8 − 3 = 5, so that
𝐵(2)must actually be dense in ℂ5 and Specℛ2,2 = ℂ5. That is, the functions in
(5) are algebraically independent.

Proposition 5.2. Let 𝐴1 and 𝐴2 be two 2 × 2-matrices. Then 𝐴1 and 𝐴2 do not
generate the matrix algebraM if and only if Tr(𝐴1𝐴2) is a root of the equation

[2𝑥 − Tr(𝐴1) Tr(𝐴2)]2 = [2Tr(𝐴2
1) − Tr(𝐴1)2][2 Tr(𝐴2

2) − Tr(𝐴2)2]. (6)

This is a corollary of the results of [6, Section 2]. Specifically, [6, Theorem
2.9] says that 𝐴1, 𝐴2 generate M, i.e., they are not simultaneously similar to
upper triangular matrices, if and only if they lie in the complement in M2 of
the closed affine variety defined by (6). This variety is called 𝑈 in [6, Theorem
2.2].
As a consequence of this result, the space 𝐵(2) is an open affine subvariety of

ℂ5 determined by the non-vanishing of a single polynomial. In light of Proposi-
tion 2.2, the space 𝐵(2) admits a deformation retraction onto the space of trace-
less pairs, 𝐵′(2). When Tr(𝐴1) = 0 = Tr(𝐴2), the equation (6) simplifies, and
so 𝐵′(2) is the affine open subvariety of ℂ3 determined by the non-vanishing of
the polynomial:

𝑥2 − 𝑧1𝑧2, (7)
where 𝑧1 = Tr(𝐴2

1) and 𝑧2 = Tr(𝐴2
2).

Proposition 5.3. The space𝐵(2) is homotopy equivalent to the balanced product
𝑆1 ×ℤ∕2ℤ 𝑆2, where ℤ∕2ℤ has the antipodal action on each factor.

Proof. The inclusion 𝐵′(2) ↪ 𝐵(2) is a homotopy equivalence, and 𝐵′(2) is
given by the non-vanishing of (7). After a change of coordinates, we can write
𝐵′(2) as the affine complement of the subvariety ofℂ3 determined by 𝑥21 +𝑥

2
2 +

𝑥23 = 0.
Consider the variety 𝑌 consisting of quadruples (𝜆, 𝑦1, 𝑦2, 𝑦3) ∈ ℂ4 where

𝜆 ∈ ℂ× and 𝑦21 + 𝑦22 + 𝑦23 = 1. This variety carries a free action by ℤ∕2ℤ given
by

(𝜆, 𝑦1, 𝑦2, 𝑦3) ↦ (−𝜆,−𝑦1, −𝑦2, −𝑦3).
There is a continuous map 𝑓 ∶ ℂ× × 𝑇𝑆2 → 𝐵′(2) given by 𝑓(𝜆, 𝑦1, 𝑦2, 𝑦3) =
(𝜆𝑦1, 𝜆𝑦2, 𝜆𝑦3). This map is surjective and satisfies

𝑓(𝜆, 𝑦1, 𝑦2, 𝑦3) = 𝑓(−𝜆,−𝑦1, −𝑦2, −𝑦3).

It is elementary to check that the induced map

𝑓 ∶ 𝑌∕(ℤ∕2ℤ) → 𝐵′(2)
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is a continuous bijection between 5-manifolds, and therefore a homeomorphism.
If 𝑇𝑆2 denotes the tangent bundle of the real 2-manifold 𝑆2, consisting of

pairs of vectors 𝐮, 𝐯 ∈ ℝ3 satisfying 𝐮 ⋅ 𝐯 = 0 and 𝐮 ⋅ 𝐮 = 1, then the function

(𝜆, 𝐮, 𝐯) ↦ (𝜆,
√
1 + ‖𝐯‖2𝐮 + 𝑖𝐯)

is a homeomorphismℂ××𝑇𝑆2 → 𝑌 (we learned this fact from [8]). This home-
omorphism is ℤ∕2ℤ-equivariant where ℤ∕2ℤ acts by multiplication by −1 on
each factor. We may write ℂ× × 𝑇𝑆2 instead of 𝑌.
The embedding 𝑆1 × 𝑆2 ⊂ ℂ× × 𝑇𝑆2, which sends (𝜆, 𝐮) to (𝜆, 𝐮, 𝟎), is a

ℤ∕2ℤ-equivariant weak equivalence. There is an induced homotopy equiva-
lence 𝑆1 ×ℤ∕2ℤ 𝑆2 ↪ 𝐵′(2). □

6. Cohomology of𝑼(𝒓)
In this section, H∗(𝑋) will denote the cohomology of 𝑋 with rational coeffi-

cients.
In the cases of 𝑟 > 2, we are unable to find an elegant description of the

homotopy type of 𝐵(𝑟). We can, however, calculate a good deal of its rational
cohomology. The overall method is as follows. We first calculate some of the
rational cohomology of 𝑈(𝑟) by analyzing a stratification of 𝑍(𝑟) = M𝑟 ⧵ 𝑈(𝑟)
into smooth subvarieties. This is achieved in this section. In principle, the
calculation can be pushed further, but we do not need any more for the rest of
this paper.
In Section 7, we calculate some of the rational cohomology ofH𝑖(𝐵(𝑟))when

𝑟 is odd by using the Serre spectral sequence of the homotopy fibre sequence
𝑈(𝑟) → 𝐵(𝑟) → 𝐵 PGL(2). The difficulty is in determining the differentials,
andwe employ several comparison arguments to show that the first differential
that has nonzero domain and codomain is in fact not zero. In Section 8, we
determine H𝑖(𝐵(𝑟)) for even 𝑟 in a range similar to that of the odd case, which
we do by comparison to the odd case. This is enough to establish Theorem 1.3.
We begin our calculation of the cohomology of 𝑈(𝑟) with some definitions:

∙ 𝑇(𝑟): those 𝑟-tuples (𝐴1, … , 𝐴𝑟) ∈ M𝑟 that pairwise commute, i.e., such
that [𝐴𝑖, 𝐴𝑗] = 𝟎 for all 𝑖, 𝑗 ∈ {1, … , 𝑟}.

∙ 𝑊(𝑟) = 𝑍(𝑟)⧵𝑇(𝑟): those 𝑟-tuples (𝐴1, … , 𝐴𝑟) that share an eigenvector
and have the property that [𝐴𝑖, 𝐴𝑗] ≠ 𝟎 for some 𝑖, 𝑗 ∈ {1, … , 𝑟}.

Note that 𝑇(𝑟) ⊂ 𝑍(𝑟), since the algebra generated by a pairwise commuting
𝑟-tuple is commutative. Moreover, 𝑇(𝑟) is a closed subvariety ofM𝑟.

Proposition 6.1. The complex dimension of 𝑇(𝑟) is 2𝑟 + 2.

Proof. Let𝐿 denote the subalgebra ofM consisting of scalarmatrices. Consider
the subset of 𝑇(𝑟) consisting of 𝑟-tuples of scalar matrices, 𝐿𝑟. This has complex
dimension 𝑟.
Nowwework with the variety 𝑇(𝑟)⧵𝐿𝑟 of 𝑟-tuples of matrices that commute,

but at least one of which is not scalar. Let 𝑌𝑖 ⊂ 𝑇(𝑟) ⧵ 𝐿𝑟 denote the open
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subvariety where the 𝑖-thmatrix,𝐴𝑖, is not scalar. The sets𝑌𝑖 furnish a (Zariski)
open cover of 𝑇(𝑟) ⧵ 𝐿𝑟.
Since 𝐴𝑖 is a 2 × 2 matrix, its eigenvalues have geometric multiplicity 1. Its

characteristic polynomial agrees with its minimal polynomial, i.e., it is non-
derogatory in the terminology of [7, 3.2.4], and therefore a matrix commutes
with 𝐴𝑖 if and only if it is of the form 𝑎𝐴𝑖 + 𝑏𝐼2.
There is an isomorphism of varieties

(M ⧵ 𝐿) × (ℂ2)𝑟−1 ≈ 𝑌𝑖
given by

(𝐴𝑖, (𝑎1, 𝑏1, … , 𝑎𝑖, 𝑏𝑖, … , 𝑎𝑟, 𝑏𝑟)) ↦ (𝑎1𝐴𝑖 + 𝑏1𝐼2, … , 𝐴𝑖, … , 𝑎𝑟𝐴𝑖 + 𝑏𝑟𝐼2),
where the hat denotes omission. It follows that the complex dimension of 𝑌𝑖,
and therefore of 𝑇(𝑟) ⧵ 𝐿𝑟, is 4 + (2𝑟 − 2), which is 2𝑟 + 2, as claimed. □

Next we consider the variety𝑊(𝑟), which is dense in 𝑍(𝑟) and therefore of
complex dimension 3𝑟+1. If an 𝑟-tuple (𝐴1, … , 𝐴𝑟) is in𝑊(𝑟), then the𝐴𝑖 have
a unique shared 1-dimensional eigenspace. Consider the map

𝑝 ∶ 𝑊(𝑟) → ℂP1 (8)
that sends an 𝑟-tuple in 𝑊(𝑟) to its common 1-dimensional eigenspace. This
map is PGL(2)-equivariant, where PGL(2) acts on ℂP1 in the usual way. Since
the action on the target is transitive, the fibres are all isomorphic to the fibre
𝑝−1([1 ∶ 0]) consisting of 𝑟-tuples (𝐴1, … , 𝐴𝑟) of upper triangularmatrices such
that [𝐴𝑖, 𝐴𝑗] ≠ 0 for some 𝑖, 𝑗. With this in hand, we can construct algebraic
local trivializations over the standard open cover of ℂP1 to see that 𝑝 is a fibre
bundle.

Proposition 6.2. If 𝑟 > 2, then

H̃𝑖(𝑊(𝑟); ℤ) ≅ {
ℤ if 𝑖 = 2;
0 if 𝑖 < 2𝑟 − 3 and 𝑖 ≠ 2.

Proof. Identify the variety of 𝑟-tuples of upper triangular matrices with ℂ3𝑟.
In the map of (8), the fibre 𝐹 = 𝑝−1([1 ∶ 0]) is an open subvariety of ℂ3𝑟 and
is therefore smooth. The space𝑊(𝑟) is the total space of a fibre bundle in the
category of ℂ-varieties with smooth base and fibre.
We calculate the connectivity of 𝐹 as follows. The space 𝐹 consists of 𝑟-

tuples of upper-triangular matrices (𝐴1, … , 𝐴𝑟) such that at least one commu-
tator [𝐴𝑖, 𝐴𝑗] is not 0. Write ℂ3𝑟 for the space of all 𝑟-tuples of upper triangular
matrices, and let 𝑄 denote the complement of 𝐹 in ℂ3𝑟, i.e., the closed subvari-
ety determined by the vanishing of the commutators. An argument very similar
to that of Proposition 6.1 shows that dimℂ 𝑄 = 2𝑟 + 1, so that the codimension
of 𝑄 in ℂ3𝑟 is 𝑟 − 1. Since 𝐹 is the complement in ℂ3𝑟 of a closed subvariety of
complex codimension 𝑟 − 1, the variety 𝐹 is 2𝑟 − 4-connected by Corollary 4.2.
The statement of the proposition now follows from the Serre spectral se-

quence in rational cohomology for the fibration 𝐹 → 𝑊(𝑟) → ℂP1. □
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Proposition 6.3. If 𝑟 > 2, then

H̃𝑖(𝑈(𝑟); ℤ) ≅ {
ℤ if 𝑖 = 2𝑟 − 3 or 𝑖 = 2𝑟 − 1;
0 if 𝑖 < 4𝑟 − 6 and 𝑖 ≠ 2𝑟 − 3, 2𝑟 − 1.

Proof. Corollary 4.2 and Proposition 6.1 combine to showM𝑟 ⧵𝑇(𝑟) is (4𝑟−6)-
connected. It is 4𝑟-dimensional and𝑊(𝑟) is therefore of complex codimension
𝑟 − 1 in it. Now applying the Thom–Gysin sequence

⋯→ H̃𝑖−1(𝑈(𝑟)) → H𝑖−2(𝑟−1)(𝑊(𝑟)) → H̃𝑖(M𝑟 ⧵ 𝑇(𝑟)) → H̃𝑖(𝑈(𝑟)) → ⋯

toM𝑟 ⧵ 𝑇(𝑟),𝑊(𝑟) and 𝑈(𝑟) = (M𝑟 ⧵ 𝑇(𝑟)) ⧵ 𝑊(𝑟) gives the result. □

For convenience of later reference, let us name generators 𝛼𝑖 ∈ H̃𝑖(𝑈(𝑟); ℤ)
for 𝑖 ∈ {2𝑟 − 3, 2𝑟 − 1}.

7. The case of odd 𝒓
Again, in this section H∗(𝑋) denotes the cohomology of 𝑋 with rational co-

efficients.
We computeH𝑖(𝐵(𝑟)) in degrees 𝑖 < 4𝑟 −6 by means of the Serre spectral se-

quence associatedwith the homotopy fibre sequence𝑈(𝑟) → 𝐵(𝑟) → 𝐵 PGL(2):

E𝑝,𝑞2 = H𝑝(𝐵 PGL(2);H𝑞(𝑈(𝑟))) ⇒ H𝑝+𝑞(𝐵(𝑟)).

We restrict our attention to terms E𝑝,𝑞𝑘 with 𝑝 + 𝑞 < 4𝑟 − 6. We may identify

H∗(𝐵 PGL(2; ℂ)) = H∗(𝐵 SO3)

since SO3 ≃ SO(3; ℂ) ≅ PGL(2; ℂ). The rational cohomology ringH∗(𝐵 SO3) is
ℚ[𝑝1], where 𝑝1 is the Pontryagin class and has degree 4, [2, Theorem 1.4]. The
E2-page of the spectral sequence can be determined in the range 𝑝+𝑞 < 4𝑟−6
by reference to Proposition 6.3.
Suppose now that 𝑟 is odd. The first differential that is not obviously 0 is the

transgressive differential 𝑑2𝑟−2 ∶ H2𝑟−3(𝑈(𝑟)) → H2𝑟−2(𝐵 PGL(2)), indicated in
Figure 1.
Once we establish that this differential is not 0, then the computation of

H𝑖(𝐵(𝑟)) in the range 𝑖 < 4𝑟 − 6 (Proposition 7.6) follows. The differentials
with source and target in the range 𝑝 + 𝑞 < 4𝑟 − 6 on succeeding pages all
vanish for trivial reasons.

The first comparison. Embed 𝑆1 in PGL(2) via the map

𝜆 ↦ [1 0
0 𝜆] .

Then 𝜆 ∈ 𝑆1 acts on 𝑈(𝑟) by

([𝑎1 𝑏1
𝑐1 𝑑1

] , … , [𝑎𝑟 𝑏𝑟
𝑐𝑟 𝑑𝑟

]) ↦ ([ 𝑎1 𝜆̄𝑏1
𝜆𝑐1 𝑑1

] , … , [ 𝑎𝑟 𝜆̄𝑏𝑟
𝜆𝑐𝑟 𝑑𝑟

]) . (9)
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Figure 1. The E2𝑟−2-page of the Serre spectral sequence con-
verging to H∗(𝐵(𝑟)) when 𝑟 is odd. All indicated classes gener-
ate a term isomorphic to ℚ. The empty terms are all 0.

We obtain a map of homotopy fibre sequences

𝑈(𝑟) 𝐵(𝑟) 𝐵 PGL(2)

𝑈(𝑟) 𝑈(𝑟)∕𝑆1 𝐵𝑆1.

(10)

The second comparison. Consider the inclusion 𝑖 ∶ 𝑆2𝑟−3 × 𝑆2𝑟−3 → 𝑈(𝑟)
given by

((𝑏1, … , 𝑏𝑟−1), (𝑐1, … , 𝑐𝑟−1)) ↦ ([ 0 𝑏1
𝑐1 0 ] , … , [

0 𝑏𝑟−1
𝑐𝑟−1 0 ] , [1 0

0 −1]) ,

where 𝑆2𝑟−3 is embedded in ℂ𝑟−1 in the usual way. To see that the target of
𝑖 is in fact 𝑈(𝑟), observe that the eigenspaces of the last matrix of an 𝑟-tuple
(𝐴1, … , 𝐴𝑟) in the image of 𝑖 are span{𝑒1} and span{𝑒2}. Since 𝑏𝑖, 𝑐𝑗 ≠ 0 for some
𝑖, 𝑗 ∈ {1, … , 𝑟 − 1}, the 𝑟-tuple (𝐴1, … , 𝐴𝑟) does not have a common eigenvector
and hence generates the matrix algebra.
Endow 𝑆2𝑟−3×𝑆2𝑟−3with the 𝑆1-action 𝜆⋅(𝑏, 𝑐) = (𝜆̄𝑏, 𝜆𝑐). Then 𝑖 is equivari-

ant with respect to this action, so we obtain a homotopy commutative diagram
of homotopy fibre sequences:

𝑈(𝑟) 𝑈(𝑟)∕𝑆1 𝐵𝑆1

𝑆2𝑟−3 × 𝑆2𝑟−3 𝑆2𝑟−3 ×𝑆1 𝑆2𝑟−3 𝐵𝑆1.

𝑖 (11)
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Notation 7.1. Let ′E𝑝,𝑞𝑘 , ′𝑑𝑘 (respectively ′′E
𝑝,𝑞
𝑘 , ′′𝑑𝑘) denote the terms and dif-

ferentials of the Serre spectral sequence associated with the top (bottom, re-
spectively) homotopy fibre sequence in (11). We also make the identification

H2𝑟−3(𝑆2𝑟−3 × 𝑆2𝑟−3) ≅ H2𝑟−3(𝑆2𝑟−3) ⊕ H2𝑟−3(𝑆2𝑟−3)

via the Künneth formula.

Lemma 7.2. The transgressive differential ′′𝑑2𝑟−2 ∶ H2𝑟−3(𝑆2𝑟−3 × 𝑆2𝑟−3) →
H2𝑟−2(𝐵𝑆1) is surjective and the kernel is span{(𝜌2𝑟−3, −𝜌2𝑟−3)}, where 𝜌2𝑟−3 is a
generator ofH2𝑟−3(𝑆2𝑟−3).

Proof. Comparison to the Serre spectral sequence associated with

𝑆2𝑟−3 → ℂP𝑟−2 → 𝐵𝑆1

via either projection shows that the differential in question is surjective. For the
second part, it suffices to show that ′′𝑑2𝑟−2(𝛽, 𝛾) = ′′𝑑2𝑟−2(𝛾, 𝛽) for classes 𝛽, 𝛾 ∈
H2𝑟−3(𝑆2𝑟−3). The product 𝑆2𝑟−3 × 𝑆2𝑟−3 is equipped with an 𝑆1-equivariant
involution 𝜎 ∶ (𝑏, 𝑐) ↦ (𝑐, 𝑏̄), where 𝑎̄ denotes the (𝑟 − 1)-tuple (𝑎̄1, … , 𝑎̄𝑟−1).
The map 𝜎 induces a self-map of spectral sequences 𝜎𝑝,𝑞𝑘 ∶ ′′E𝑝,𝑞𝑘 → ′′E𝑝,𝑞𝑘 . In
particular, the differential ′′𝑑2𝑟−2 is invariant under the action of 𝜎. Note that
the homeomorphism 𝑆2𝑟−3 → 𝑆2𝑟−3 defined by 𝑎 ↦ 𝑎̄ has degree 1, being the
composition of an even number of reflections. Hence, 𝜎 is homotopic to the
self-homeomorphism of 𝑆2𝑟−3 × 𝑆2𝑟−3 that switches factors. The induced map
𝜎∗ on rational cohomology in degree 2𝑟 − 3 also switches factors. The result
follows. □

Next, we discuss the induced map 𝑖∗ ∶ H∗(𝑈(𝑟)) → H∗(𝑆2𝑟−3 × 𝑆2𝑟−3).

Lemma 7.3. The class 𝑖∗(𝛼2𝑟−3) is nonzero.

Proof. Consider the inclusion 𝑗 ∶ ℂ𝑟−1 ↦ M𝑟 ⧵ 𝑇(𝑟) given by

(𝑏1, … , 𝑏𝑟−1) ↦ ([0 𝑏1
1 0 ] , … , [

0 𝑏𝑟−1
1 0 ] , [1 0

0 −1]) .

There is a pullback square

{𝟎} ℂ𝑟−1

𝑊(𝑟) M𝑟 ⧵ 𝑇(𝑟)

⌟
𝑗

where the twohorizontalmaps are closed inclusions of smoothℂ-varieties. The
map 𝑗 induces a map of Thom–Gysin sequences provided𝑊(𝑟) is transverse to
𝑗.
To see that the intersection is transverse, let 𝜖 > 0 and 𝛼 ∶ (−𝜖, 𝜖) → 𝑊(𝑟)

be a smooth path such that 𝛼(0) = 𝑗(𝟎). We may write

𝛼(𝑡) = ([ 𝑎1(𝑡) 𝑏1(𝑡)
1 + 𝑐1(𝑡) 𝑑1(𝑡)

] , … , [ 𝑎𝑟−1(𝑡) 𝑏𝑟−1(𝑡)
1 + 𝑐𝑟−1(𝑡) 𝑑𝑟−1(𝑡)

] , [𝑎𝑟(𝑡) + 1 𝑏𝑟(𝑡)
𝑐𝑟(𝑡) 𝑑𝑟(𝑡) − 1])
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for some smooth paths 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘 ∶ (−𝜖, 𝜖) → ℂ that evaluate to 0 at 𝑡 = 0.
We wish to show that 𝑏′𝑘(0) = 0 for each 𝑘 = 1,… , 𝑟 − 1. Recall there is a
map 𝑝 ∶ 𝑊(𝑟) → ℂP1 that sends an 𝑟-tuple to its common eigenspace. Since
𝑝𝛼(0) = [0 ∶ 1], we may assume that the image of 𝛼 lies in 𝑝−1(𝑈1) where
𝑈1 = {[𝑧 ∶ 1] ∶ 𝑧 ∈ ℂ} ≈ ℂ. Write 𝑝𝛼(𝑡) = [𝑧(𝑡) ∶ 1], and let 𝑘 ∈ {1, … , 𝑟 − 1}.
If the 𝑘th matrix of 𝛼(𝑡) has the eigenspace [𝑧(𝑡) ∶ 1], then

𝑎𝑘(𝑡)𝑧(𝑡) + 𝑏𝑘(𝑡) = (1 + 𝑐𝑘(𝑡))𝑧(𝑡)2 + 𝑑𝑘(𝑡)𝑧(𝑡).

Taking derivatives with respect to 𝑡 and evaluating at 𝑡 = 0, we get 𝑏′𝑘(0) = 0.
A portion of the induced map of Thom–Gysin sequences takes the form:

⋯ 0 H̃2𝑟−3(ℂ𝑟−1 ⧵ 𝟎) H0({𝟎}) 0 ⋯

⋯ H̃2𝑟−3(M𝑟 ⧵ 𝑇(𝑟)) H̃2𝑟−3(𝑈(𝑟)) H0(𝑊(𝑟)) H̃2𝑟−2(M𝑟 ⧵ 𝑇(𝑟)) ⋯ .

≅

𝑗∗

𝜕

𝑗∗ 𝑗∗ 𝑗∗

SinceM𝑟 ⧵ 𝑇(𝑟) is (4𝑟 − 6)-connected by Corollary 4.2 and Proposition 6.1, the
map 𝜕 is an isomorphism. It follows that

𝑗∗ ∶ H2𝑟−3(𝑈(𝑟)) → H2𝑟−3(ℂ𝑟−1 ⧵ 𝟎)

is an isomorphism. The map 𝑗 restricted to ℂ𝑟−1 ⧵ 𝟎 is, up to homotopy, the
restriction of the map 𝑖 to one of the spherical factors. It follows that 𝑖∗ is non-
trivial in degree 2𝑟 − 3. □

Lemma 7.4. There exists a nonzero element 𝛽 ofH2𝑟−3(𝑆2𝑟−3) such that 𝑖∗(𝛼2𝑟−3)
= (𝛽, 𝛽).

Proof. Set 𝑖∗(𝛼2𝑟−3) = (𝛽, 𝛾). In light of Lemma 7.3, it suffices to show 𝛽 = 𝛾.
The space 𝑈(𝑟) admits an action by the connected Lie group ℂ× × PGL(2),

given by
(𝜆, 𝑃) ⋅ (𝐴1, … , 𝐴𝑟) = (𝜆𝑃𝐴1𝑃−1, … , 𝜆𝑃𝐴𝑟𝑃−1).

Let 𝜏 ∶ 𝑈(𝑟) → 𝑈(𝑟) denote the action by (−1, [0 −1
1 0 ]). Connectivity implies

that 𝜏 ≃ id𝑈(𝑟).
Explicitly 𝜏 acts in the following way on each entry of 𝐀:

[𝑎 𝑏
𝑐 𝑑] ↦ [−𝑑 𝑐

𝑏 −𝑎] ,

and we observe that the diagram

𝑆2𝑟−3 × 𝑆2𝑟−3 𝑆2𝑟−3 × 𝑆2𝑟−3

𝑈(𝑟) 𝑈(𝑟)

𝑖

swap

𝑖

𝜏

commutes. The result follows. □

Proposition 7.5. When 𝑟 > 2 is odd, the class 𝑑2𝑟−2(𝛼2𝑟−3) is a generator of
H2𝑟−2(𝐵 PGL(2)).
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Proof. Naturality of the Serre spectral sequence for the second comparison
says that ′𝑑2𝑟−2 = ′′𝑑2𝑟−2𝑖∗. The latter map is an isomorphism by Lemmas
7.2 and 7.4. The first comparison then shows that 𝑑2𝑟−2 is an isomorphism. □

Proposition 7.6. If 𝑟 > 2 is odd,

H𝑖(𝐵(𝑟)) ≅
⎧

⎨
⎩

ℚ if 𝑖 ≤ 2𝑟 − 6 and 𝑖 ≡ 0 (mod 4);
ℚ if 2𝑟 − 1 ≤ 𝑖 < 4𝑟 − 6 and 𝑖 ≡ 1 (mod 4);
0 otherwise when 𝑖 < 4𝑟 − 6.

Proof. In the range 𝑝 + 𝑞 < 4𝑟 − 6, one has E𝑝,𝑞2𝑟−1 ≅ E𝑝,𝑞∞ . The result follows
immediately. □

8. The case of even 𝒓 and the proof of Theorem 1.3
Proposition 8.1. If 𝑟 ≥ 2 is even,

H𝑖(𝐵(𝑟)) ≅
⎧

⎨
⎩

ℚ if 𝑖 ≤ 2𝑟 − 4 and 𝑖 ≡ 0 (mod 4);
ℚ if 2𝑟 − 3 ≤ 𝑖 < 4𝑟 − 6 and 𝑖 ≡ 1 (mod 4);
0 otherwise when 𝑖 < 4𝑟 − 6.

Proof. The first possibly supported differential in this case is the transgressive
differential

𝑑2𝑟 ∶ H2𝑟−1(𝑈(𝑟)) → H2𝑟(𝐵 PGL(2)).
There is a PGL(2)-equivariant inclusion 𝑈(𝑟) → 𝑈(𝑟 + 1) given by

(𝐴1, … , 𝐴𝑟) ↦ (𝐴1, … , 𝐴𝑟, 0).
Comparison to the Serre spectral sequence associated with 𝑈(𝑟 + 1) → 𝐵(𝑟 +
1) → 𝐵 PGL(2) together with Proposition 7.5 shows that 𝑑2𝑟(𝛼2𝑟−1) is generator
of H2𝑟(𝐵 PGL(2)). Similar to the odd case, one has E𝑝,𝑞2𝑟+1 ≅ E𝑝,𝑞∞ in the range
𝑝 + 𝑞 < 4𝑟 − 6. □

Proof of Theorem 1.3. Set 𝑖 to be the largest integer such that 𝑖 ≡ 0 (mod 4)
and 𝑖 ≤ 𝑑, which is to say 𝑖 = 4⌊𝑑∕4⌋. Set 𝑟 = 𝑖∕2 + 1 so that

𝑟 = 2⎢
⎣
𝑑
4
⎥
⎦
+ 1.

We observe that

H𝑖(𝐵(𝑟); ℤ) H𝑖(𝐵 PGL(2); ℤ)

is not injective, by noting that 𝑖∕2 is even and so 𝑟 is odd, then using Proposition
7.6 with 𝑖 = 2𝑟 − 2. Therefore [5, Theorem 11.4] applies withM = Mat2×2(ℂ)
as the underlying algebra (note that our H𝑖(𝐵(𝑟); ℤ) is H𝑖

𝐺(𝑈𝑟) in [5, Theorem
11.4]). This assures us that there exists a finite type ℂ-ring 𝑅′ having Krull
dimension 𝑖 and a degree-2Azumaya algebra𝐴′ over 𝑅′ such that𝐴′ cannot be
generated by 𝑟 elements.
By construction, 𝑖 ≤ 𝑑 < 𝑖 + 4. If we replace 𝑅′ by a polynomial ring 𝑅 in

𝑑 − 𝑖 variables {𝑥𝑗}𝑑−𝑖𝑗=1 over 𝑅
′, we obtain a ring having Krull dimension 𝑑 and
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themodified algebra𝐴 = 𝐴′⊗𝑅′ 𝑅 similarly cannot be generated by 𝑟 elements,
or else the specialization of those generators at 𝑥𝑗 = 0would serve as generators
for 𝐴′.
Therefore, we have produced a degree-2 Azumaya algebra 𝐴 over a ring 𝑅 of

Krull dimension 𝑑 such that 𝐴 cannot be generated by fewer than

2 ⎢
⎣
𝑑
4
⎥
⎦
+ 2

elements. □
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