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Two strand twisting

L. A’Campo, S. Baader, L. Ferretti and L. Ryffel

Abstract. We prove that fibred knots cannot be untied with 𝑡2𝑘-moves, for
all 𝑘 ≥ 2. More generally, we give an upper bound on the number of two
strand twist operations that allow us to untie a knot with non-trivial HOM-
FLY polynomial, in terms of the minimal crossing number, and the braid in-
dex. As a by-product, we prove that the braid index of a two-bridge knot
cannot be lowered by applying 𝑡2𝑘-moves, for all but finitely many 𝑘 ∈ ℕ.
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1. Introduction
Twisting is a family of local operations on oriented links in 𝑆3, introduced by

Ralph Fox in the late fifties [4]. The special case of two strand twisting comes
in two families called 𝑡𝑚-moves and 𝑡𝑚-moves. The effect of a 𝑡𝑚-move (resp.
𝑡𝑚-move) is best described on oriented link diagrams, where it inserts 𝑚 con-
secutive right-handed half-twists into two parallel strands with equal orienta-
tions (resp. opposite orientations), as in the two strand braid 𝜎𝑚1 ∈ 𝐵2, see
Figure 1. We will restrict our attention to even numbers𝑚 ∈ ℕ, since we want
all moves to preserve the number of link components. The two simplest moves,
𝑡2 and 𝑡2, are also known as crossing changes, since they can be expressed as
a Reidemeister II move followed by a crossing change. While every knot can
be untied by a finite sequence of crossing changes, there exist obstructions for
knots to be unknotted by higher order 𝑡2𝑘- and 𝑡2𝑘-moves. In particular, the
Alexander–Conway polynomial of knots with coefficients reduced modulo 𝑘,
∇𝐾(𝑧) ∈ ℤ∕𝑘ℤ[𝑧], is invariant under 𝑡2𝑘-moves [4, 14]. This has a remark-
able consequence for fibred knots, since these have monic Alexander-Conway
polynomial [12].
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→ ... → ...

Figure 1. A 𝑡𝑘-move and a 𝑡𝑘-move. The right hand sides con-
tain 𝑘 many half-twists.

Figure 2. Closure of the braid 𝜎251 , which can be unknotted by
(𝑡2𝑘)−1-moves, for 𝑘 = 1, 2, 3, 4, 6, 12, 13.

Theorem 1.1. Let 𝐾 be a non-trivial fibred knot. For all 𝑘 ≥ 2, the knot 𝐾 is not
related to the trivial knot by a finite sequence of (𝑡2𝑘)±1-moves.
As far as the authors are aware, this statement never found its way into the

literature, most likely since Neuwirth’s theory of fibred knots was developed
after Fox’s note on congruence classes of knots.
In contrast with Theorem 1.1, the situation is very different with 𝑡2𝑘-moves.

For all 𝑛 ∈ ℕ, there exists a fibred knot which, for any 𝑘 ≤ 𝑛, can be unknotted
by (𝑡2𝑘)±1-moves, for example the closure of the braid

𝜎1+lcm(2,4,6…2𝑛)1 ∈ 𝐵2,
as shown in Figure 2 for 𝑛 = 4.
Nevertheless, the two families of two strand twisting operations share a com-

mon property: most knots can be unknotted by finitely many different types of
𝑡2𝑘-moves and 𝑡2𝑘-moves only. This was derived by Lackenby in one of his early
papers (Corollary 2.4 in [8]). Our main result provides independent quantita-
tive bounds, in terms ofwell-known link invariants. Let 𝑐(𝐾) ∈ ℕ and 𝑏(𝐾) ∈ ℕ
be the minimal crossing number and the braid index of a link 𝐾, respectively.
The latter is defined as the minimal number of strands among all braids whose
closure represents the link 𝐾. Furthermore, let 𝑃𝐾(𝑎, 𝑧) ∈ ℤ[𝑎±1, 𝑧±1] be the
HOMFLY polynomial of 𝐾, defined in the next section.
Theorem 1.2. Let 𝐾 be a knot with 𝑃𝐾(𝑎, 𝑧) ≠ 1.

(1) The set {𝑘 ≥ 3 ∣ 𝐾 can be unknotted by (𝑡2𝑘)±1-moves} has at most 𝑐(𝐾)−
1 elements.

(2) The set {𝑘 ≥ 2 ∣ 𝐾 can be unknotted by (𝑡2𝑘)±1-moves} has atmost 𝑏(𝐾)−
1 elements.

Aversion of the first statement for the Jones polynomialwas derived by Lack-
enby (Corollary 2.11 in [8]). The condition 𝑃𝐾(𝑎, 𝑧) ≠ 1 seems quite generic,
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and is possibly even satisfied by all non-trivial knots. Nevertheless, it would be
great to derive bounds of the above kind for all non-trivial knots, for example by
using Khovanov homology, which is known to detect the trivial knot [7]. The
mere existence of finite upper bounds in Theorem 1.2 was conjectured by Lack-
enby in the paper cited above. It might even admit a geometric proof, due to
its resemblance with Thurston’s hyperbolic Dehn surgery theorem [16]. How-
ever, the latter deals with fixed twist regions, which provides an a priori weaker
statement.
The technique used in our proof allows a precise determination of the set of

unknotting moves for certain classes of knots, such as two strand torus knots
and twist knots, see Proposition 4.2. More importantly, we obtain the following
refined result for two-bridge knots.

Proposition 1.3. Let𝐾 be a two-bridge knot. For all but finitely many 𝑘 ∈ ℕ, all
knots 𝐾′ that are related to 𝐾 by a finite sequence of (𝑡2𝑘)±1-moves satisfy

𝑏(𝐾′) ≥ 𝑏(𝐾).

Results providing a lower bound for the braid index within an equivalence
class of knots are not so common; an interesting one was recently derived by
Feller andHubbard: closures of quasipositive braids with sufficientlymany full
twists are not concordant to quasipositive knots with a strictly smaller braid
index [3].
The proofs of Theorem 1.2 and Proposition 1.3 are presented in Sections 3

and 4; the next section contains the necessary fundamentals about the HOM-
FLY polynomial. We would like to emphasise that most of the statements in-
cluded here are applications of Przytycki’s theory on two strand twisting [14].
We would like to thank Marc Lackenby for informing us about similar finite-
ness results on the Jones polynomial and Fox congruence in his early work [8].

2. HOMFLY polynomial and twisting
TheHOMFLY polynomial 𝑃𝐾(𝑎, 𝑧) ∈ ℤ[𝑎±1, 𝑧±1] of links𝐾 is defined by the

following skein relation, together with the normalisation 𝑃𝑂(𝑎, 𝑧) = 1 for the
trivial knot 𝑂 [6]:

𝑎−1𝑃𝐿+(𝑎, 𝑧) − 𝑎𝑃𝐿−(𝑎, 𝑧) = 𝑧𝑃𝐿∞(𝑎, 𝑧).

Here we use the standard notation 𝐿+, 𝐿−, 𝐿∞ for link diagrams that coincide
except in a disc that intersects these diagrams in a positive crossing, a negative
crossing, and two parallel strands, respectively. As observed by various authors,
the skein relation is well-suited to compute the effect of 𝑡𝑚-moves on links, see
for example [13, 14]. In fact, the following Proposition is basically a reformula-
tion of Corollaries 1.2 and 1.8 in [14], except for the case 𝑘 = 2.

Proposition 2.1. Let 𝐾 be a knot, and let 𝜁2𝑘 ∈ ℂ be a primitive 2𝑘-th root of
unity.
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(i) If 𝐾′ is a knot obtained from 𝐾 by a 𝑡2𝑘-move with 𝑘 ≥ 3, then
𝑃𝐾′(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 ) = 𝑎2𝑘𝑃𝐾(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 ).

(ii) If 𝐾′ is a knot obtained from 𝐾 by a 𝑡4-move, then
𝑃𝐾′(𝑎, 0) = 𝑎4𝑃𝐾(𝑎, 0) ∈ 𝔽2[𝑎±1].

(iii) If 𝐾′ is a knot obtained from 𝐾 by a 𝑡2𝑘-move with 𝑘 ≥ 2, then
𝑃𝐾′(𝜁2𝑘, 𝑧) = 𝑃𝐾(𝜁2𝑘, 𝑧).

Proof. For the first two statements, let 𝐿0, 𝐿1, 𝐿2,… be a family of oriented link
diagrams, which coincide except in a single twist region consisting of two paral-
lel oriented strands with a certain number of positive crossings – 𝑛 for the link
diagram 𝐿𝑛 – again as in the two strand braid 𝜎𝑛1 ∈ 𝐵2. The skein relation for
the HOMFLY polynomial translates into the recursion

𝑃𝐿𝑛+1(𝑎, 𝑧) = 𝑎2𝑃𝐿𝑛−1(𝑎, 𝑧) + 𝑎𝑧𝑃𝐿𝑛(𝑎, 𝑧),
which admits the following matrix representation:

( 𝑃𝐿𝑛𝑃𝐿𝑛+1
) = ( 0 1

𝑎2 𝑎𝑧) (
𝑃𝐿𝑛−1
𝑃𝐿𝑛

) .

Let 𝜁2𝑘 ∈ ℂ be a primitive 2𝑘-th root of unity with 𝑘 ≥ 3. The specialisation
𝑧 = 𝜁2𝑘 − 𝜁−12𝑘 ≠ 0 gives rise to a recursion matrix

𝑀 = ( 0 1
𝑎2 𝑎(𝜁2𝑘 − 𝜁−12𝑘 )

)

with tr(𝑀) = 𝑎(𝜁2𝑘 − 𝜁−12𝑘 ) and det(𝑀) = −𝑎2, hence

𝑀2𝑘 = (𝑎
2𝑘 0
0 𝑎2𝑘) .

The last step requires 𝑀 to have two distinct eigenvalues 𝑎𝜁2𝑘, −𝑎𝜁−12𝑘 , which
is the case for 𝑘 ≥ 3, but not for 𝑘 = 2. This implies the first statement of the
proposition.
In the case 𝑘 = 2, i.e. for 𝑧 = 2𝑖, the recursion matrix 𝑀 has a double

eigenvalue 𝑖𝑎 and is not diagonalisable. However, we still have

𝑀4 = (−3𝑎
4 −4𝑖𝑎3

−4𝑖𝑎5 5𝑎4 ) ≡ (𝑎
4 0
0 𝑎4) (mod 4ℤ[𝑖, 𝑎±1]).

Now suppose that 𝐿1 is a knot. Then 𝐿0 is a two-component link, thus 𝑃𝐿0(𝑎, 𝑧)
contains a simple pole in 𝑧. Indeed, the lowest degree in 𝑧 of the HOMFLY
polynomial of a link with 𝑐 components is 1− 𝑐, see [9]. Consequently, we find
that that

𝑃𝐿0(𝑎, 2𝑖) ∈
1
2𝑖ℤ[𝑖, 𝑎

±1].

Multiplyingwith−4𝑖𝑎5, we see that−4𝑖𝑎5𝑃𝐿0(𝑎, 2𝑖) lies in 2ℤ[𝑖, 𝑎
±1]. Reducing

𝑃𝐿5(𝑎, 2𝑖) = −4𝑖𝑎5𝑃𝐿0(𝑎, 2𝑖) + 5𝑎4𝑃𝐿1(𝑎, 2𝑖)
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modulo 2 leaves us with the congruence

𝑃𝐿5(𝑎, 0) ≡ 𝑎4𝑃𝐿1(𝑎, 0) (mod 2ℤ[𝑖, 𝑎±1]),

i.e. with the second statement of the proposition.
The proof of the third statement is a recursion similar to the above one. Tak-

ing 𝐾′ a knot obtained from 𝐾 by a 𝑡2𝑘-move with 𝑘 ≥ 2, and denoting by 𝐿∞
the link obtained by smoothing one crossing in the twist region, we obtain

𝑃𝐾′(𝑎, 𝑧) = 𝑎−2𝑘𝑃𝐾(𝑎, 𝑧) − (𝑎−1 + 𝑎−3 +⋯ + 𝑎−2𝑘+1)𝑧𝑃𝐿∞(𝑎, 𝑧),

and the result immediately follows. For the details, we refer the reader to Przy-
tycki’s proof of Theorem 1.7 in [14], with the caveat that the sign convention
for the skein relation of the HOMFLY polynomial is different in [14], leading
to an overall sign (−1)𝑘 in the formula there.

□

Remark. Reductions of the form 𝑃𝐾(𝑎,𝑁) ∈ 𝔽𝑝[𝑎±1] have been studied in [1].
Proposition 2.1 provides infinitely many reductions of the HOMFLY polyno-
mial, invariant under 𝑡2𝑘-moves, up to multiplication with powers of 𝑎2𝑘. In-
deed, let 𝑘 ≥ 3, and let 𝑝 ∈ 2𝑘ℕ+1 be a prime number. Then the finite field 𝔽𝑝
has a primitive 2𝑘-th root of unity 𝜁2𝑘, since the multiplicative group of 𝔽𝑝 is
cyclic of order 𝑝−1. Let𝑁 = 𝜁2𝑘 − 𝜁−12𝑘 ∈ 𝔽𝑝. The statement of Proposition 2.1
carries over to the reduction 𝑃𝐾(𝑎,𝑁) ∈ 𝔽𝑝[𝑎±1]: let𝐾′ be a link obtained from
a link𝐾 by a positive 𝑡2𝑘-movewith 𝑘 ≥ 3. For every primenumber𝑝 ∈ 2𝑘ℕ+1,
and 𝑁 = 𝜁2𝑘 − 𝜁−12𝑘 ∈ 𝔽𝑝, the equality

𝑃𝐾′(𝑎,𝑁) = 𝑎2𝑘𝑃𝐾(𝑎,𝑁)

holds in 𝔽𝑝[𝑎±1]. Thanks to Dirichlet’s theorem on arithmetic progressions [2],
the number of primes 𝑝 in 2𝑘ℕ + 1 is infinite, for each fixed 𝑘 ≥ 2. As a con-
sequence, we obtain infinitely many invariant reductions 𝑃𝐾(𝑎,𝑁) ∈ 𝔽𝑝[𝑎±1]
under 𝑡2𝑘-moves, provided 𝑘 ≥ 3. Similarly, there exist infinitely many reduc-
tions of the form 𝑃𝐾(𝑀, 𝑧) ∈ 𝔽𝑝[𝑧±1] invariant under 𝑡2𝑘-moves, for all 𝑘 ≥ 2.

3. Bounding the order of untwisting
The skein relation of the HOMFLY polynomial implies that the speciali-

sation 𝑃𝐾(𝑎, 𝑎−1 − 𝑎) is constantly one. As a consequence, the polynomial
𝑃𝐾(𝑎, 𝑧) cannot be of the form 𝑎𝑚𝑓(𝑧), unless 𝑃𝐾(𝑎, 𝑧) = 1. Moreover, recall
that 𝑃𝐾(𝑎, 𝑧) ∈ ℤ[𝑎±1, 𝑧] ⊂ ℤ[𝑎±1, 𝑧±1] if 𝐾 is a knot.

Proof of Theorem 1.2. For the first statement, let𝐾 be a knot with 𝑃𝐾(𝑎, 𝑧) ≠
1 and let 𝑑 = deg𝑧(𝑃𝐾). Write the terms of lowest and highest 𝑎-degree in
𝑃𝐾(𝑎, 𝑧) as 𝑎𝑚𝑓(𝑧) and 𝑎𝑛𝑔(𝑧), respectively, with 𝑚, 𝑛 ∈ ℤ, 𝑚 < 𝑛, and
𝑓(𝑧), 𝑔(𝑧) ∈ ℤ[𝑧]. Suppose that 𝐾 is related to the trivial knot by a finite se-
quence of (𝑡2𝑘)±1-moves, for some 𝑘 ≥ 3. Then, by Proposition 2.1, either
𝑓(𝜁2𝑘 − 𝜁−12𝑘 ) or 𝑔(𝜁2𝑘 − 𝜁−12𝑘 ) must be zero, since the trivial knot 𝑂 satisfies



TWO STRAND TWISTING 779

𝑃𝑂(𝑎, 𝑧) = 1. Therefore, the product 𝑓(𝑧)𝑔(𝑧) vanishes at 𝑧 = 𝜁2𝑘 − 𝜁−12𝑘 . The
degree bound deg(𝑓(𝑧)𝑔(𝑧)) ≤ 2𝑑 implies that the set

{𝑘 ≥ 3 ∣ 𝐾 can be unknotted by (𝑡2𝑘)±1-moves}

has at most 𝑑 elements, since the minimal polynomial of the purely imaginary
number 𝜁2𝑘−𝜁−12𝑘 has degree at least two. This yields the first statement, thanks
to Franks–Williams andMorton’s upper bound for the 𝑧-degree of theHOMFLY
polynomial [5, 10]:

deg𝑧(𝑃𝐾) ≤ 𝑐(𝐾) − 1.
For the second statement, write

𝑃𝐾(𝑎, 𝑧) = ℎ0(𝑎) + ℎ1(𝑎)𝑧2 + ℎ2(𝑎)𝑧4 + … + ℎ𝑙(𝑎)𝑧2𝑙

with 𝑙 ≥ 1 andℎ𝑙(𝑎) ≠ 0, since𝑃𝐾(𝑎, 𝑧) ≠ 1. This is possible since theHOMFLY
polynomial of a link with an odd (resp. even) number of components has only
even (resp. odd) powers in 𝑧, see again [9]. Suppose that 𝐾 is related to the
trivial knot by a finite sequence of (𝑡2𝑘)±1-moves, for some 𝑘 ≥ 2. Then, by
Proposition 2.1, ℎ𝑙(𝜁2𝑘) = 0. Therefore, the set

{𝑘 ≥ 2 ∣ 𝐾 can be unknotted by (𝑡2𝑘)±1-moves}

has atmost asmany elements as half the number of roots of the Laurent polyno-
mial ℎ𝑙(𝑎), again since the minimal polynomial of the number 𝜁2𝑘 has degree
at least two. As a consequence, the above set has at most 1

2
𝑎-span(𝑃𝐾(𝑎, 𝑧))

elements, where 𝑎-span(𝑃𝐾(𝑎, 𝑧)) is the difference of the highest and lowest
𝑎-degree in 𝑃𝐾(𝑎, 𝑧). This yields the second statement, thanks to another in-
equality by Franks–Williams and Morton [5, 10]:

2𝑏(𝐾) ≥ 𝑎-span(𝑃𝐾(𝑎, 𝑧)) + 2.

□

4. Parallel twisting and braid index
The inequality of Franks–Williams andMorton [5, 10], used at the end of the

last section, remains true under the specialisation 𝑧 = 𝜁2𝑘 − 𝜁−12𝑘 . We observe
that for all but finitely many 𝑘 ∈ ℕ,

𝑎-span(𝑃𝐾(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 )) = 𝑎-span(𝑃𝐾(𝑎, 𝑧)).

Furthermore, the 𝑎-span of 𝑃𝐾(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 ) is certainly invariant under multi-
plicationwith powers of 𝑎2𝑘. Therefore, the first item of Proposition 2.1 implies
the following statement.

Proposition 4.1. Let 𝐾 be a knot and 𝑘 ≥ 3. Then every knot 𝐾′ that is related
to 𝐾 by a finite sequence of (𝑡2𝑘)±1-moves satisfies

2𝑏(𝐾′) ≥ 𝑎-span(𝑃𝐾(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 )) + 2.
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In the case of two-bridge knots 𝐾, Murasugi [11] showed that there is even
an equality 2𝑏(𝐾) = 𝑎-span(𝑃𝐾(𝑎, 𝑧)) + 2. This implies Proposition 1.3.
For two special families of two-bridge knots, we obtain even better results:

let 𝐾𝑛 be the family of twist knots with 2 negative crossings, and 2𝑛 positive
crossings. In Rolfsen’s notation [15], the first four knots of this sequence are
41, 61, 81, 101, see Figure 3 for 𝑛 = 2. For convenience, we add the trivial knot
𝐾0 = 𝑂. Furthermore, let 𝑇(2, 2𝑛+ 1) be the two strand torus knot with 2𝑛+ 1
positive crossings.

Proposition 4.2.
(i) For all 𝑛 ≥ 1, the set

{𝑘 ≥ 1 ∣ 𝐾𝑛 can be unknotted by (𝑡2𝑘)±1-moves}
coincides with the set of divisors of 𝑛. Moreover, every knot 𝐾′ that is re-
lated to 𝐾𝑛 by a finite sequence of (𝑡2𝑘)±-moves with 𝑘 ≥ 2 satisfies

𝑏(𝐾′) ≥ 𝑏(𝐾𝑛).
In particular, the knot 𝐾𝑛 cannot be unknotted by (𝑡2𝑘)±1-moves, except
for 𝑘 = 1.

(ii) For all 𝑛 ≥ 1, the set
{𝑘 ≥ 1 ∣ 𝑇(2, 2𝑛 + 1) can be unknotted by (𝑡2𝑘)±1-moves}

coincideswith the set of divisors of𝑛 and𝑛+1. Moreover, the knot𝑇(2, 2𝑛+
1) cannot be unknotted by (𝑡2𝑘)±1-moves, except for 𝑘 = 1.

Figure 3. Twist knot 𝐾2 = 61.

Proof. For the first statement, suppose that 𝑘 is a divisor of 𝑛. Then there are
𝑛∕𝑘 consecutive 𝑡2𝑘-moves which transform𝐾𝑛 into the trivial knot. Next, sup-
pose that 𝐾𝑛 can be unknotted by a finite sequence of (𝑡2𝑘)±1-moves, for 𝑘 ≥ 2.
By Fox’s congruence statement mentioned in the introduction, the Alexander–
Conway polynomial of𝐾𝑛 must be equal to 1modulo 𝑘. A computation reveals
∇𝐾𝑛 = 1− 𝑛𝑧2, thus 𝑘 has to be a divisor of 𝑛. For the last part of the first item,
we compute the HOMFLY polynomial of 𝐾𝑛, via the skein relation:

𝑃𝐾𝑛+1(𝑎, 𝑧) = 𝑎2𝑃𝐾𝑛(𝑎, 𝑧) + 𝑎𝑧𝑃𝐻−(𝑎, 𝑧),
for all 𝑛 ∈ ℕ, where 𝐻− denotes the Hopf link with two negative crossings.
Using 𝑃𝐾0(𝑎, 𝑧) = 𝑃𝑂(𝑎, 𝑧) = 1 and 𝑎𝑧𝑃𝐻−(𝑎, 𝑧) = 𝑎−2−1−𝑧2, we find that the
terms of lowest and highest 𝑎-degree of 𝑃𝐾𝑛(𝑎, 𝑧) are 𝑎

−2 and 𝑎2𝑛, respectively.
As a consequence, for all 𝑘 ≥ 3,

𝑎-span(𝑃𝐾𝑛(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 )) = 𝑎-span(𝑃𝐾𝑛(𝑎, 𝑧)),
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and the reduction𝑃𝐾𝑛(𝑎, 0) ∈ 𝔽2[𝑎±1] also shares the same 𝑎-span. NowPropo-
sition 2.1 and Proposition 4.1 imply that for all 𝑘 ≥ 2, all knots 𝐾′ related to 𝐾𝑛
by a finite sequence of 𝑡2𝑘-moves satisfy

2𝑏(𝐾′) ≥ 𝑎-span(𝑃𝐾′(𝑎, 𝑧)) + 2 ≥ 𝑎-span(𝑃𝐾𝑛(𝑎, 𝑧)) + 2 = 2𝑏(𝐾𝑛).
The last equality is again a consequence of Murasugi’s result on two-bridge
knots.
For the second statement, suppose that 𝑘 is a divisor of 𝑛 or 𝑛 + 1. Then a

sequence of (𝑡2𝑘)−1-moves transforms 𝑇(2, 2𝑛 + 1) into the trivial knot, in the
guise of 𝑇(2, 1) or 𝑇(2,−1), respectively. This always works for 𝑘 = 1, 2. Next,
suppose that𝑇(2, 2𝑛+1) can be unknotted by a finite sequence of (𝑡2𝑘)±1-moves,
for 𝑘 ≥ 3. Then, by Proposition 2.1, the polynomial 𝑃𝑇(2,2𝑛+1)(𝑎, 𝜁2𝑘 − 𝜁−12𝑘 )
must be a power of 𝑎2𝑘. An induction shows that 𝑃𝑇(2,2𝑛+1)(𝑎, 𝑧) takes the form
𝑎2𝑛𝑓(𝑧) + 𝑎2𝑛+2𝑔(𝑧). We conclude that 𝑘 divides 𝑛 or 𝑛 + 1. The very last
statement is an immediate consequence of Theorem 1.1. □
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