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Periodic points of algebraic functions related
to a continued fraction of Ramanujan

Sushmanth J. Akkarapakam and Patrick Morton

Abstract. A continued fraction 𝑣(𝜏) of Ramanujan is evaluated at certain
arguments in the field𝐾 = ℚ(

√
−𝑑), with−𝑑 ≡ 1 (mod 8), in which the ideal

(2) = ℘2℘
′
2
is a product of two prime ideals. These values of 𝑣(𝜏) are shown

to generate the inertia field of℘2 or℘′
2
in an extended ring class field over the

field𝐾. The conjugates overℚ of these same values, together with 0, −1±
√
2,

are shown to form the exact set of periodic points of a fixed algebraic function
𝐹̂(𝑥), independent of 𝑑. These are analogues of similar results for the Rogers-
Ramanujan continued fraction.
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1. Introduction
This paper is concerned with values of Ramanujan’s continued fraction

𝑣(𝜏) =
𝑞1∕2

1 + 𝑞+

𝑞2

1 + 𝑞3+

𝑞4

1 + 𝑞5+

𝑞6

1 + 𝑞7+
… , 𝑞 = 𝑒2𝜋𝑖𝜏,
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sometimes referred to as the Ramanujan-Göllnitz-Gordon continued fraction,
which is also given by the infinite product

𝑣(𝜏) = 𝑞1∕2
∞∏

𝑛=1

(
1 − 𝑞𝑛

)
(
2

𝑛

)

, 𝑞 = 𝑒2𝜋𝑖𝜏,

for 𝜏 in the upper half-plane. Here,
(
2

𝑛

)
is the Kronecker symbol. See [12],

[9, p. 153], [5], [6]. The continued fraction 𝑣(𝜏) is analogous to the Rogers-
Ramanujan continued fraction

𝑟(𝜏) = 𝑞1∕5
∞∏

𝑛=1

(
1 − 𝑞𝑛

)
(
5

𝑛

)

𝑞 = 𝑒2𝜋𝑖𝜏,

whose properties were considered in the papers [17], [18]. In [17] it was shown
that certain values of 𝑟(𝜏), for 𝜏 in the imaginary quadratic field 𝐾 = ℚ(

√
−𝑑)

with −𝑑 ≡ ±1 (mod 5), are periodic points of a fixed algebraic function, inde-
pendent of 𝑑, and generate certain class fields Σ𝔣Ω𝑓 over 𝐾. Here Σ𝔣 is the ray
class field of conductor 𝔣 = ℘5 or℘′

5
over 𝐾, where (5) = ℘5℘

′
5
in the ring of

integers 𝑅𝐾 of 𝐾; andΩ𝑓 is the ring class field of conductor 𝑓 corresponding to
the order R−𝑑 of discriminant −𝑑 = 𝔡𝐾𝑓

2 in 𝐾 (𝔡𝐾 is the discriminant of 𝐾).
Here we will show that a similar situation holds for certain values of the

continued fraction 𝑣(𝜏). We consider discriminants of the form −𝑑 ≡ 1 (mod
8) and arguments in the field 𝐾 = ℚ(

√
−𝑑). Let 𝑅𝐾 be the ring of integers in

this field and let the prime ideal factorization of (2) in 𝑅𝐾 be (2) = ℘2℘
′
2
. We

define the algebraic integer 𝑤 by

𝑤 =
𝑎 +

√
−𝑑

2
, 𝑎2 + 𝑑 ≡ 0 (mod 25), (𝑁(𝑤), 𝑓) = 1, (1.1)

where ℘2 = (2, 𝑤). Also, the positive (and odd) integer 𝑓 is defined by −𝑑 =

𝔡𝐾𝑓
2, where 𝔡𝐾 is the discriminant of 𝐾∕ℚ.

We will show that

𝑣(𝑤∕8) = ±
1 ±

√
1 + 𝜋2

𝜋
,

where 𝜋 is a generator in Ω𝑓 of the ideal℘2 (or rather, its extension℘2𝑅Ω𝑓
in

Ω𝑓). The algebraic integer 𝜋 and its conjugate 𝜉 inΩ𝑓 were studied in [14] and
shown to satisfy

𝜋4 + 𝜉4 = 1, (𝜋) = ℘2, (𝜉) = ℘′
2
, 𝜉 =

𝜋𝜏
2

+ 1

𝜋𝜏
2
− 1

, (1.2)

where 𝜏 = (
Ω𝑓∕𝐾

℘2

) is theArtin symbol (Frobenius automorphism) for the prime

ideal℘2 and the ring class fieldΩ𝑓 over𝐾whose conductor is𝑓. It follows from
results of [14] that

𝜋 = (−1)𝑐𝔭(𝑤),
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where 𝑐 is an integer satisfying the congruence

𝑐 ≡ 1 −
𝑎2 + 𝑑

32
(mod 2)

and 𝔭(𝜏) is the modular function 𝔭(𝜏) = 𝔣2
2
(𝜏∕2)

𝔣2(𝜏∕2)
, defined in terms of the Weber-

Schläfli functions 𝔣2(𝜏), 𝔣(𝜏). (See [20], [8], [19].) The above formula for 𝑣(𝑤∕8)
follows from the identity

2

𝔭(8𝜏)
=
1 − 𝑣2(𝜏)

𝑣(𝜏)
=

1

𝑣(𝜏)
− 𝑣(𝜏),

for 𝜏 in the upper half-plane, which we prove in Proposition 4.1. (Also see [7,
Thm. 8.6, p. 475].)
As in [17], we consider a diophantine equation, namely

𝒞2 ∶ 𝑋2 + 𝑌2 = 𝜎2(1 + 𝑋2𝑌2), 𝜎 = −1 +
√
2.

An identity for the continued fraction 𝑣(𝜏) implies that

(𝑋, 𝑌) = (𝑣(𝑤∕8), 𝑣(−1∕𝑤))

is a point on 𝒞2. We prove the following theorem relating the coordinates of
this point.

TheoremA. Let𝑤 be given by (1.1) with℘2 = (2, 𝑤) in 𝑅𝐾 and−𝑑 = 𝔡𝐾𝑓
2 ≡ 1

(mod 8).
(a) The field 𝐹1 = ℚ(𝑣(𝑤∕8)) = ℚ(𝑣2(𝑤∕8)) equals the field Σ℘′3

2
Ω𝑓 , where

Σ℘′3
2
is the ray class field of conductor 𝔣 = ℘′3

2
and Ω𝑓 is the ring class field

of conductor 𝑓 over the field 𝐾. The field 𝐹1 is the inertia field for ℘2 in the
extended ring class field 𝐿𝒪,8 = Σ8Ω𝑓 over 𝐾, where 𝒪 = R−𝑑 is the order of
discriminant −𝑑 in 𝐾.

(b) We have 𝐹2 = ℚ(𝑣(−1∕𝑤)) = Σ℘3
2
Ω𝑓 , the inertia field of℘′

2
in 𝐿𝒪,8∕𝐾.

(c) If 𝜏2 is the Frobenius automorphism 𝜏2 = (
𝐹1∕𝐾

℘2

), then

𝑣(−1∕𝑤) =
𝑣(𝑤∕8)𝜏2 + (−1)𝑐𝜎

𝜎𝑣(𝑤∕8)𝜏2 − (−1)𝑐
. (1.3)

See Theorems 6.1, 7.3 and 7.5 and their corollaries. From part (c) of this
theorem we deduce the following.

Theorem B.
(a) If𝑤 and 𝑐 are as above, then the generator (−1)1+𝑐𝑣(𝑤∕8) of the field Σ℘′3

2
Ω𝑓

overℚ is a periodic point of the multivalued algebraic function 𝐹̂(𝑥) given by

𝐹̂(𝑥) = −
𝑥2 − 1

2
±
1

2

√
𝑥4 − 6𝑥2 + 1;
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and 𝑣2(𝑤∕8) is a periodic point of the algebraic function 𝑇̂(𝑥) defined by

𝑇̂(𝑥) =
1

2
(𝑥2 − 4𝑥 + 1) ±

𝑥 − 1

2

√
𝑥2 − 6𝑥 + 1.

(b) The minimal period of (−1)1+𝑐𝑣(𝑤∕8) (and of 𝑣2(𝑤∕8)) is equal to the order
of the automorphism 𝜏2 in Gal(𝐹1∕𝐾).

(c) Together with the numbers 0, −1 ±
√
2, the values (−1)1+𝑐𝑣(𝑤∕8) and their

conjugates over ℚ are the only periodic points of the algebraic function 𝐹̂(𝑥)
inℚ or ℂ. The only periodic points of 𝑇̂(𝑥) inℚ or ℂ are 0, (−1 ±

√
2)2, and

the conjugates of the values 𝑣2(𝑤∕8) overℚ.

Weunderstand by a periodic point of themultivalued algebraic function 𝐹̂(𝑥)
the following. Let 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦 be the minimal polynomial of
𝐹̂(𝑥) over ℚ(𝑥). A periodic point of 𝐹̂(𝑥) is an algebraic number 𝑎 for which
there exist 𝑎1, 𝑎2, … , 𝑎𝑛−1 ∈ ℚ satisfying

𝑓(𝑎, 𝑎1) = 𝑓(𝑎1, 𝑎2) = ⋯ = 𝑓(𝑎𝑛−1, 𝑎) = 0.

A similar definition can be given over any ground field 𝑘. See [15], [16]. Thus,
if 𝑎 ∈ ℚ is a periodic point of 𝐹̂(𝑥), so are its conjugates overℚ, because 𝑓(𝑥, 𝑦)
has coefficients in ℚ. We show in Section 8 that 𝑣2(𝑤∕8) is actually a periodic
point in the usual sense of the single-valued 2-adic function

𝑇(𝑥) = 𝑥2 − 4𝑥 + 2 − (𝑥 − 1)(𝑥 − 3)

∞∑

𝑘=1

𝐶𝑘−1
2𝑘

(𝑥 − 3)2𝑘
,

defined on a subset of the maximal unramified, algebraic extension K2 of the
2-adic fieldℚ2. (𝐶𝑘 is the 𝑘-th Catalan number.) This follows from the fact that

𝑣(𝑤∕8)2𝜏2 = 𝑇(𝑣(𝑤∕8)2),

in the completion 𝐹1,𝔮 ⊂ K2 of 𝐹1 = Σ℘′3
2
Ω𝑓 with respect to a prime divisor 𝔮 of

℘2 in 𝐹1. This implies that the minimal period of 𝑣2(𝑤∕8) with respect to the
function 𝑇(𝑥) is 𝑛 = ord(𝜏2).
From Theorems A and B we conclude the following.

TheoremC. Let𝐾 = ℚ(
√
−𝑑), with−𝑑 ≡ 1mod 8 and (2) = ℘2℘

′
2
in𝑅𝐾 . Then

every class field over𝐾 of the formΣ℘3
2
Ω𝑓 orΣ℘′3

2
Ω𝑓 (with𝑓 odd) is generated over

ℚ by an individual periodic point of the function 𝐹̂(𝑥) (or of 𝑇̂(𝑥)). Furthermore,
all but three periodic points of 𝐹̂(𝑥) inℚ generate a class fieldΣ℘3

2
Ω𝑓 in this family

over some imaginary quadratic field 𝐾 = ℚ(
√
−𝑑), for which −𝑑 = 𝔡𝐾𝑓

2 ≡ 1

(mod 8).

These are all analogues of the corresponding facts for the Rogers-Ramanujan
continued fraction 𝑟(𝜏) which were proved in [17] and [18].
An important corollary of the fact that the conjugates of the values 𝑣(𝑤∕8)

in Theorem B are, together with the three fixed points, all the periodic points
of the algebraic function 𝐹̂(𝑥), is the following class number formula. In this
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formula, ℎ(−𝑑) denotes the class number of the order R−𝑑 of discriminant −𝑑
in the quadratic field𝐾 = 𝐾𝑑, and𝔇𝑛,2 is the finite set of negative discriminants
−𝑑 ≡ 1 (mod 8) for which the Frobenius automorphism 𝜏2 in Theorem A has
order 𝑛 in Gal(𝐹1∕𝐾𝑑), where 𝐹1 = 𝐹1,𝑑 also depends on 𝑑:

∑

−𝑑∈𝔇𝑛,2

ℎ(−𝑑) =
1

2

∑

𝑘∣𝑛

𝜇(𝑛∕𝑘)2𝑘, 𝑛 > 1. (1.4)

(𝜇(𝑛) is the Möbius function.) See Theorem 9.2. This fact is the analogue for
the prime 𝑝 = 2 of Theorem 1.3 in [18] for the prime 𝑝 = 5, or of Conjecture 1
of that paper for a prime 𝑝 > 5.
The layout of the paper is as follows. Section 2 contains a number of 𝑞-

identities (following Ramanujan) and theta function identities which we use
to prove identities for various modular functions in Sections 3-5. Most of these
identities are known; straightforward proofs – which use theta functions, but
not the theory of modular forms or functions – are included here for the sake of
completeness. In Sections 6 and 7 we prove TheoremA. The proofs of Theorem
B and (1.4) are given in Sections 8 and 9.
Sections 2-5 and portions of Sections 6-9 also appear in the Ph.D. dissertation

[1] of the first author.

2. Preliminaries.
As is customary, let us set

(𝑎; 𝑞)0 ∶= 1, (𝑎; 𝑞)𝑛 ∶=

𝑛−1∏

𝑘=0

(1 − 𝑎𝑞𝑘), 𝑛 ≥ 1

and

(𝑎; 𝑞)∞ ∶=

∞∏

𝑘=0

(1 − 𝑎𝑞𝑘), |𝑞| ≤ 1.

Ramanujan’s general theta function 𝑓(𝑎, 𝑏) is defined as

𝑓(𝑎, 𝑏) ∶=

∞∑

𝑛=−∞

𝑎𝑛(𝑛+1)∕2 𝑏𝑛(𝑛−1)∕2. (2.1)

Three special cases are defined, in Ramanujan’s notation, as

𝜑(𝑞) ∶= 𝑓(𝑞, 𝑞) =

∞∑

𝑛=−∞

𝑞𝑛
2

, (2.2)

𝜓(𝑞) ∶= 𝑓(𝑞, 𝑞3) =

∞∑

𝑛=0

𝑞𝑛(𝑛+1)∕2, (2.3)

𝑓(−𝑞) ∶= 𝑓(−𝑞,−𝑞2) =

∞∑

𝑛=−∞

(−1)𝑛 𝑞𝑛(3𝑛−1)∕2. (2.4)
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Jacobi’s triple product identity, in Ramanujan’s notation, takes the form

𝑓(𝑎, 𝑏) = (−𝑎; 𝑎𝑏)∞(−𝑏; 𝑎𝑏)∞(𝑎𝑏; 𝑎𝑏)∞. (2.5)

Using this, the above three functions can be written as

𝜑(𝑞) = (−𝑞; 𝑞2)2∞(𝑞
2; 𝑞2)∞, (2.6)

𝜓(𝑞) = (−𝑞; 𝑞)∞(𝑞
2; 𝑞2)∞ =

(𝑞2; 𝑞2)∞

(𝑞; 𝑞2)∞
, (2.7)

𝑓(−𝑞) = (𝑞; 𝑞)∞. (2.8)

The equality that relates the right hand sides of both the equations for 𝑓(−𝑞) in
(2.4) and (2.8) is Euler’s pentagonal number theorem.

Another important function that plays a prominent role is given by

𝜒(𝑞) ∶= (−𝑞; 𝑞2)∞. (2.9)

All the above four functions satisfy a myriad of relations, most of which are
listed and proved in Berndt’s books on Ramanujan’s notebooks, and we will
refer to them as needed.

Last but not least, the Dedekind-eta function is defined as

𝜂(𝜏) = 𝑞1∕24 𝑓(−𝑞), 𝑞 = 𝑒2𝜋𝑖𝜏, Im 𝜏 > 0. (2.10)

Most of the identities that we use later on are listed here in order, for the sake
of convenience.

𝜑2(𝑞) + 𝜑2(−𝑞) = 2𝜑2(𝑞2), (2.11)

𝜑4(𝑞) − 𝜑4(−𝑞) = 16𝑞𝜓4(𝑞2), (2.12)

𝜑(𝑞)𝜓(𝑞2) = 𝜓2(𝑞), (2.13)

𝜑(−𝑞) + 𝜑(𝑞2) = 2
𝑓2(𝑞3, 𝑞5)

𝜓(𝑞)
, (2.14)

𝜑(−𝑞) − 𝜑(𝑞2) = −2𝑞
𝑓2(𝑞, 𝑞7)

𝜓(𝑞)
, (2.15)

𝜑(𝑞)𝜑(−𝑞) = 𝜑2(−𝑞2), (2.16)

𝜑(𝑞) + 𝜑(−𝑞) = 2𝜑(𝑞4), (2.17)

𝜑2(𝑞) − 𝜑2(−𝑞) = 8𝑞𝜓2(𝑞4). (2.18)

All of the above identities and their proofs can be found in [2, p. 40, Entry 25]
and in [2, p. 51, Example (iv)].

For 𝜏 ∈ ℋ, the upper half plane, and 𝑞 = 𝑒(𝜏) = 𝑒2𝜋𝑖𝜏, the theta constant with
characteristic

[
𝜖

𝜖′

]
∈ ℝ is defined as

𝜃
[ 𝜖

𝜖′

]
(𝜏) =

∑

𝑛∈ℤ

𝑒
(1

2

(
𝑛 +

𝜖

2

)2
𝜏 +

𝜖′

2

(
𝑛 +

𝜖

2

) )
. (2.19)
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It satisfies the following basic properties for 𝑙, 𝑚, 𝑛 ∈ ℤ with 𝑁 positive:

𝜃
[ 𝜖

𝜖′

]
(𝜏) = 𝑒

(
∓
𝜖𝑚

2

)
𝜃 [

±𝜖 + 2𝑙

±𝜖′ + 2𝑚
] (𝜏), (2.20)

𝜃
[ 𝜖

𝜖′

]
(𝜏) =

𝑁−1∑

𝑘=0

𝜃
⎡
⎢

⎣

𝜖+2𝑘

𝑁

𝑁𝜖′

⎤
⎥

⎦

(
𝑁2𝜏

)
. (2.21)

We also have the transformation law, for
(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℤ):

𝜃
[ 𝜖

𝜖′

] (𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

)
= 𝜅

√
𝑐𝜏 + 𝑑 𝜃 [

𝑎𝜖 + 𝑐𝜖′ − 𝑎𝑐

𝑏𝜖 + 𝑑𝜖′ + 𝑏𝑑
] (𝜏), (2.22)

where
𝜅 = 𝑒

(
−

1

4
(𝑎𝜖 + 𝑐𝜖′)𝑏𝑑 −

1

8
(𝑎𝑏𝜖2 + 𝑐𝑑𝜖′2 + 2𝑏𝑐𝜖𝜖′)

)
𝜅0,

and 𝜅0 is an eighth root of unity depending only on the matrix
(
𝑎 𝑏
𝑐 𝑑

)
.

In particular, we have:

𝜃
[ 𝜖

𝜖′

]
(𝜏 + 1) = 𝑒

(
−

𝜖

4
(1 +

𝜖

2
)
)
𝜃 [

𝜖

𝜖 + 𝜖′ + 1
] (𝜏), (2.23)

𝜃
[ 𝜖

𝜖′

] (−1

𝜏

)
= 𝑒

(
−

1

8

) √
𝜏 𝑒
( 𝜖𝜖′

4

)
𝜃 [

𝜖′

−𝜖
] (𝜏). (2.24)

We also have the product formula:

𝜃
[ 𝜖

𝜖′

]
(𝜏) = 𝑒

(𝜖𝜖′

4

)
𝑞
𝜖2

8

∏

𝑛≥1

(
1 − 𝑞𝑛

)(
1 + 𝑒 (

𝜖′

2
) 𝑞

𝑛−
1+𝜖

2

)(
1 + 𝑒 (

−𝜖′

2
) 𝑞

𝑛−
1−𝜖

2

)
,

(2.25)
which follows from Jacobi’s triple product identity.

More information about these theta constants and the above formulas, as well
as their proofs, can all be found in [10, pp. 71-81]. Also see [9, pp. 143, 158-159].

3. Identities for 𝒖(𝝉) and 𝒗(𝝉)
Let us define the functions 𝑢(𝜏) and 𝑣(𝜏) as

𝑢(𝜏) =
√
2 𝑞1∕8

∞∏

𝑛=1

(
1 + 𝑞𝑛

)(−1)𝑛
,

𝑣(𝜏) = 𝑞1∕2
∞∏

𝑛=1

(
1 − 𝑞𝑛

)
(
2

𝑛

)

.

The functions 𝑢(𝜏) and 𝑣(𝜏) satisfy the following identities.
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Proposition 3.1. (a) If 𝑥 = 𝑢(𝜏) and 𝑦 = 𝑢(2𝜏), we have

𝑥4(𝑦4 + 1) = 2𝑦2.

(b) If 𝑥 = 𝑣(𝜏) and 𝑦 = 𝑣(2𝜏), we have

𝑥2𝑦 + 𝑥2 + 𝑦2 = 𝑦.

Remark. The curve 𝐸 ∶ 𝑓(𝑥, 𝑦) = 0 defined by

𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦

is an elliptic curve with 𝑗(𝐸) = 1728, so 𝐸 has complex multiplication by R =

ℤ[𝑖].

Proof. (a) From (2.11), we have

𝜑2(−𝑞) = 2𝜑2(𝑞2) − 𝜑2(𝑞),

where

𝜑(𝑞) = (−𝑞; 𝑞2)2∞(𝑞
2; 𝑞2)∞ and 𝜓(𝑞) =

(𝑞2; 𝑞2)∞

(𝑞; 𝑞2)∞

are as defined in (2.6) and (2.7). Squaring both sides gives us

𝜑4(−𝑞) = 4𝜑4(𝑞2) − 4𝜑2(𝑞)𝜑2(𝑞2) + 𝜑4(𝑞).

Using
𝜑4(𝑞) − 𝜑4(−𝑞) = 16𝑞𝜓4(𝑞2),

which is (2.12), we obtain

𝜑4(𝑞2) + 4𝑞 𝜓4(𝑞2) = 𝜑2(𝑞) 𝜑2(𝑞2).

Dividing both sides by 𝜑4(𝑞2) and using the relation 𝜓2(𝑞) = 𝜑(𝑞) 𝜓(𝑞2) from
(2.13) we get

1 + 4𝑞
𝜓4(𝑞2)

𝜑4(𝑞2)
=

𝜑2(𝑞)

𝜑2(𝑞2)
=
𝜓2(𝑞2)

𝜑2(𝑞2)
⋅
𝜑4(𝑞)

𝜓4(𝑞)
. (3.1)

Since

𝑢(𝜏) =
√
2𝑞1∕8

∞∏

𝑛=1

(1 + 𝑞𝑛)(−1)
𝑛

=
√
2𝑞1∕8

(−𝑞2; 𝑞2)∞

(−𝑞; 𝑞2)∞
=
√
2𝑞1∕8

𝜓(𝑞)

𝜑(𝑞)
,

the result follows by substituting the last equality for 𝑢(𝜏) into (3.1).

(b) From [9, p. 153, (9.7)] we have the following relation between 𝑢 = 𝑢(𝜏) and
𝑣 = 𝑣(𝜏):

𝑢4(𝑣2 + 1)2 + 4𝑣(𝑣2 − 1) = 0; (3.2)



PERIODIC POINTS OF ALGEBRAIC FUNCTIONS 791

which we rewrite as 𝑢4 =
4𝑣(1 − 𝑣2)

(𝑣2 + 1)2
. (See the proof of Proposition 10.1 in the

Appendix.) Substituting this expression for 𝑢4 into the relation 𝑢4(𝜏)
[
𝑢4(2𝜏) +

1
]
= 2𝑢2(2𝜏), after squaring, we obtain

16𝑥2(1 − 𝑥2)2

(𝑥2 + 1)4
⋅ [
4𝑦(1 − 𝑦2)

(𝑦2 + 1)2
+ 1]

2

= 4 ⋅
4𝑦(1 − 𝑦2)

(𝑦2 + 1)2
,

where 𝑥 = 𝑣(𝜏), 𝑦 = 𝑣(2𝜏). Clearing the denominators gives us

𝑥2(1 − 𝑥2)2(𝑦2 − 2𝑦 − 1)4 = 𝑦(1 − 𝑦2)(𝑦2 + 1)2(𝑥2 + 1)4.

Nowmoving everything to one side and factoring the polynomial using Maple,
we finally arrive at

(𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦)(𝑥2𝑦2 − 𝑥2𝑦 + 𝑦 + 1)(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑥2 − 4𝑥𝑦 + 𝑦2 − 2𝑥 + 1)

× (𝑥2𝑦2 − 2𝑥𝑦2 + 𝑥2 + 4𝑥𝑦 + 𝑦2 + 2𝑥 + 1) = 0.

From the definitions of 𝑥 and 𝑦, it is clear that 𝑥 = 𝑂(𝑞1∕2) and 𝑦 = 𝑂(𝑞) as 𝑞
tends to 0. Hence, the first factor above (and none of the others) vanishes for 𝑞
sufficiently small. By the identity theorem of complex analysis, the first factor
vanishes for |𝑞| < 1. This proves the result. □

Remark. The identity in part (b) of Proposition 3.1 can be written as

𝑣2(𝜏) = 𝑣(2𝜏)
1 − 𝑣(2𝜏)

1 + 𝑣(2𝜏)
.

See [5, Thm. 2.2]. This is analogous to the identity for the Rogers-Ramanujan
continued fraction 𝑟(𝜏):

𝑟5(𝜏) = 𝑟(5𝜏)
𝑟4(5𝜏) − 3𝑟3(5𝜏) + 4𝑟2(5𝜏) − 2𝑟(5𝜏) + 1

𝑟4(5𝜏) + 2𝑟3(5𝜏) + 4𝑟2(5𝜏) + 3𝑟(5𝜏) + 1
.

Also see [4, p. 167], [3, pp. 19-20].

Proposition 3.2. The functions 𝑥 = 𝑣2(𝜏) and 𝑦 = 𝑣2(2𝜏) satisfy the relation

𝑔(𝑥, 𝑦) = 𝑦2 − (𝑥2 − 4𝑥 + 1)𝑦 + 𝑥2 = 0.

Proof. For 𝑥 = 𝑣(𝜏) and 𝑦 = 𝑣(2𝜏), we have the relation

𝑥2 + 𝑦2 = 𝑦(1 − 𝑥2).

Squaring both sides and moving all the terms to the left side, we obtain

𝑥4 + 𝑦4 + 4𝑥2𝑦2 − 𝑥4𝑦2 − 𝑦2 = 0.

Hence, 𝑥 = 𝑣2(𝜏) and 𝑦 = 𝑣2(2𝜏) satisfy the relation

𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥𝑦 − 𝑥2𝑦 − 𝑦 = 0.

□
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Let 𝐴, 𝐴̄ denote the linear fractional mappings

𝐴(𝑥) =
𝜎𝑥 + 1

𝑥 − 𝜎
, 𝐴̄(𝑥) =

−𝑥 + 𝜎

𝜎𝑥 + 1
, 𝜎 = −1 +

√
2. (3.3)

Proposition 3.3. The following identity holds:

𝑣 (
−1

𝜏
) = 𝐴̄(𝑣(𝜏∕4)) =

𝜎̄𝑣(𝜏∕4) + 1

𝑣(𝜏∕4) − 𝜎̄
=
−𝑣(𝜏∕4) + 𝜎

𝜎𝑣(𝜏∕4) + 1
,

where 𝜎̄ = −1 −
√
2.

Proof. This follows from the formula

𝑣(𝜏) = 𝑒−2𝜋𝑖∕8
𝜃[

3∕4

1
](8𝜏)

𝜃[
1∕4

1
](8𝜏)

,

using the formulas (2.20), (2.21), (2.24). (Also see [10].) Namely, we have:

𝑣(
−1

𝜏
) = 𝑒−2𝜋𝑖∕8

𝜃
[
3∕4

1

](−8

𝜏

)

𝜃
[
1∕4

1

](−8

𝜏

) =

𝜃
[
1

3∕4

]( 𝜏

8

)

𝜃
[
1

1∕4

]( 𝜏

8

) =

3∑

𝑘=0

𝜃 [
1+2𝑘

4

3
]
(
2𝜏)

3∑

𝑘=0

𝜃 [
1+2𝑘

4

1
] (2𝜏)

,

which after some simplification yields

𝑣(
−1

𝜏
) =

[
− 1 + 𝑒3𝜋𝑖∕8

]
𝑣(𝜏∕4) +

[
𝑒2𝜋𝑖∕8 + 𝑒3𝜋𝑖∕2

]

[
𝑒2𝜋𝑖∕8 + 𝑒3𝜋𝑖∕2

]
𝑣(𝜏∕4) +

[
1 + 𝑒7𝜋𝑖∕8

] .

This yields that

𝑣(
−1

𝜏
) =

𝜎̄𝑣(𝜏∕4) + 1

𝑣(𝜏∕4) − 𝜎̄
=
−𝑣(𝜏∕4) + 𝜎

𝜎𝑣(𝜏∕4) + 1
.

□

The set of mappings

𝐻̃ = {𝑥, 𝐴(𝑥), 𝐴̄(𝑥), −1∕𝑥}

forms a group under composition. We also have the formula

(𝜎𝑥 + 1)2(𝜎𝑦 + 1)2𝑓(𝐴̄(𝑥), 𝐴̄(𝑦)) = 23𝜎2𝑓(𝑦, 𝑥).

Proposition 3.4. The function 𝑣(𝜏) satisfies the following:

𝑣2 (
−1

8𝜏
) =

𝑣2(𝜏) − 𝜎2

𝜎2𝑣2(𝜏) − 1
, 𝜎 = −1 +

√
2. (3.4)
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Proof. Replacing 𝜏 by 8𝜏 in Proposition 3.3 and squaring gives us

𝑣2 (
−1

8𝜏
) =

(−𝑣(2𝜏) + 𝜎)2

(𝜎𝑣(2𝜏) + 1)2

=
(−𝑦 + 𝜎)2

(𝜎𝑦 + 1)2

=
𝑦2 − 2𝜎𝑦 + 𝜎2

𝜎2𝑦2 + 2𝜎𝑦 + 1
,

where 𝑦 = 𝑣(2𝜏). Then, replace 2𝜎 by 1 − 𝜎2 to obtain

𝑣2 (
−1

8𝜏
) =

𝑦2 − 𝑦 + 𝜎2𝑦 + 𝜎2

𝜎2𝑦2 + 𝑦 − 𝜎2𝑦 + 1

=
𝜎2(𝑦 + 1) − (𝑦 − 𝑦2)

(𝑦 + 1) − 𝜎2(𝑦 − 𝑦2)
.

Now replace (𝑦 − 𝑦2) by 𝑥2(𝑦 + 1), using Proposition 3.1(b), to get the result:

𝑣2 (
−1

8𝜏
) =

𝜎2(𝑦 + 1) − 𝑥2(𝑦 + 1)

(𝑦 + 1) − 𝜎2𝑥2(𝑦 + 1)

=
(𝜎2 − 𝑥2)(𝑦 + 1)

(1 − 𝜎2𝑥2)(𝑦 + 1)

=
𝑥2 − 𝜎2

𝜎2𝑥2 − 1
,

where 𝑥 = 𝑣(𝜏). □

For later use we denote the linear fractional map which occurs in (3.4) by
𝑡(𝑥):

𝑡(𝑥) =
𝑥 − 𝜎2

𝜎2𝑥 − 1
. (3.5)

A straightforward calculation shows that

(𝜎2𝑥 − 1)2(𝜎2𝑦 − 1)2𝑔(𝑡(𝑥), 𝑡(𝑦)) = 25𝜎4𝑔(𝑦, 𝑥). (3.6)

4. The relation between 𝒗(𝝉) and 𝖕(𝝉).
In this section and the nextwe shall prove several identities between 𝑣(𝜏) and

the functions 𝔭(𝜏) and 𝔟(𝜏) defined as follows. Let 𝔣, 𝔣1, 𝔣2 denote the Weber-
Schläfli functions (see [8, p. 233], [19, p. 148]). Then the functions 𝔭(𝜏) and
𝔟(𝜏) are given by

𝔭(𝜏) =
𝔣2(𝜏∕2)

2

𝔣(𝜏∕2)2
= 2𝑞1∕16

∞∏

𝑛=1

(
1 + 𝑞𝑛∕2

1 + 𝑞𝑛∕2−1∕4
)

2

, (4.1)

𝔟(𝜏) = 2
𝔣1(𝜏∕2)

2

𝔣(𝜏∕2)2
= 2

∞∏

𝑛=1

(
1 − 𝑞𝑛∕2−1∕4

1 + 𝑞𝑛∕2−1∕4
)

2

. (4.2)
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Note that 𝔟(𝜏) occurs in [14, §10, (10.3)].

Proposition 4.1. We have the identity

2

𝔭(8𝜏)
=
1 − 𝑣2(𝜏)

𝑣(𝜏)
=

1

𝑣(𝜏)
− 𝑣(𝜏). (4.3)

Proof. (See [2, pp. 221-222].) The function 𝑣(𝜏) satisfies

𝑣(𝜏) = 𝑞1∕2
∏

𝑛≥1

(1 − 𝑞𝑛)

(
8

𝑛

)

= 𝑞1∕2
∏

𝑛≥1

(1 − 𝑞8𝑛−1)(1 − 𝑞8𝑛−7)

(1 − 𝑞8𝑛−3)(1 − 𝑞8𝑛−5)

= 𝑞1∕2
(𝑞; 𝑞8)∞(𝑞

7; 𝑞8)∞

(𝑞3; 𝑞8)∞(𝑞
5; 𝑞8)∞

.

This gives that

1

𝑣(𝜏)
− 𝑣(𝜏) = 𝑞−1∕2

(𝑞3; 𝑞8)∞(𝑞
5; 𝑞8)∞

(𝑞; 𝑞8)∞(𝑞
7; 𝑞8)∞

− 𝑞1∕2
(𝑞; 𝑞8)∞(𝑞

7; 𝑞8)∞

(𝑞3; 𝑞8)∞(𝑞
5; 𝑞8)∞

=
(𝑞3; 𝑞8)2∞(𝑞

5; 𝑞8)2∞ − 𝑞 (𝑞; 𝑞8)2∞(𝑞
7; 𝑞8)2∞

𝑞1∕2 (𝑞; 𝑞8)∞(𝑞
3; 𝑞8)∞(𝑞

5; 𝑞8)∞(𝑞
7; 𝑞8)∞

=
(𝑞3; 𝑞8)2∞(𝑞

5; 𝑞8)2∞ − 𝑞 (𝑞; 𝑞8)2∞(𝑞
7; 𝑞8)2∞

𝑞1∕2 (𝑞; 𝑞2)∞
.

Multiplying the numerator and the denominator by (𝑞8; 𝑞8)2∞ and applying Ja-
cobi’s triple product identity in the form

𝑓(𝑎, 𝑏) = (−𝑎; 𝑎𝑏)∞(−𝑏; 𝑎𝑏)∞(𝑎𝑏; 𝑎𝑏)∞,

with (𝑎, 𝑏) = (−𝑞3, −𝑞5) for thefirst term in thenumerator and (𝑎, 𝑏) = (−𝑞,−𝑞7)

for the second, we obtain

1

𝑣(𝜏)
− 𝑣(𝜏) =

(𝑞3; 𝑞8)2∞(𝑞
5; 𝑞8)2∞(𝑞

8; 𝑞8)2∞ − 𝑞 (𝑞; 𝑞8)2∞(𝑞
7; 𝑞8)2∞(𝑞

8; 𝑞8)2∞

𝑞1∕2 (𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

=
𝑓2(−𝑞3, −𝑞5) − 𝑞 𝑓2(−𝑞, −𝑞7)

𝑞1∕2 (𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

.

Now replace 𝑞 by −𝑞 in (2.14), (2.15) and apply this to the numerator to get

1

𝑣(𝜏)
− 𝑣(𝜏) =

𝜓(−𝑞)
[
𝜑(𝑞) + 𝜑(𝑞2)

]
− 𝜓(−𝑞)

[
𝜑(𝑞) − 𝜑(𝑞2)

]

2 𝑞1∕2 (𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

=
𝜓(−𝑞) × 𝜑(𝑞2)

𝑞1∕2 (𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

.

This yields that

1

𝑣(𝜏)
− 𝑣(𝜏) = 𝑞−1∕2

(𝑞2; 𝑞2)∞

(−𝑞; 𝑞2)∞
×
(−𝑞2; 𝑞4)2∞(𝑞

4; 𝑞4)∞

(𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞



PERIODIC POINTS OF ALGEBRAIC FUNCTIONS 795

= 𝑞−1∕2
(−𝑞2; 𝑞4)2∞(𝑞

2; 𝑞2)∞(𝑞
4; 𝑞4)∞

(𝑞2; 𝑞4)∞(𝑞
8; 𝑞8)2∞

= 𝑞−1∕2
(−𝑞2; 𝑞4)2∞(𝑞

4; 𝑞4)2∞

(𝑞8; 𝑞8)2∞

= 𝑞−1∕2 (−𝑞2; 𝑞4)2∞(𝑞
4; 𝑞8)2∞

= 𝑞−1∕2
(−𝑞2; 𝑞4)2∞

(−𝑞4; 𝑞4)2∞
.

Since

𝔭(8𝜏) = 2 𝑞1∕2
∏

𝑛≥1

(
1 + 𝑞4𝑛

1 + 𝑞4𝑛−2
)

2

= 2𝑞1∕2
(−𝑞4; 𝑞4)2∞

(−𝑞2; 𝑞4)2∞
,

we get the result by substituting into the last equality. □

Proposition 4.2. The function 𝔭(𝜏) satisfies the identity
𝔭2(𝜏)𝔭2(2𝜏) + 𝔭2(𝜏) − 2𝔭(2𝜏) = 0.

Proof. We use the relation between 𝑥 = 𝑣(𝜏) and 𝑦 = 𝑣(2𝜏) from Proposition
3.1(b): 𝑥2 = 𝑦(1−𝑦)

(1+𝑦)
. This gives

(
2𝑥

1 − 𝑥2
)

2

=
4𝑥2

(1 − 𝑥2)2
=

4 ⋅
𝑦(1−𝑦)

(1+𝑦)

(
1 −

𝑦(1−𝑦)

(1+𝑦)

)2

=
4𝑦(1 − 𝑦)(1 + 𝑦)

(
(1 + 𝑦) − 𝑦(1 − 𝑦)

)2

=
4𝑦(1 − 𝑦2)

(1 + 𝑦2)2

=
4𝑦(1 − 𝑦2)

4𝑦2 + (1 − 𝑦2)2
.

Now divide both the numerator and the denominator by (1 − 𝑦2)2 to obtain

(
2𝑥

1 − 𝑥2
)

2

=

4𝑦

1−𝑦2

4𝑦2

(1−𝑦2)2
+ 1

=

2 ⋅
( 2𝑦

1−𝑦2

)

( 2𝑦

1−𝑦2

)2
+ 1

. (4.4)

From Proposition 4.1, we know that

𝔭(8𝜏) =
2𝑣(𝜏)

1 − 𝑣2(𝜏)
=

2𝑥

1 − 𝑥2
,

and
𝔭(16𝜏) =

2𝑣(2𝜏)

1 − 𝑣2(2𝜏)
=

2𝑦

1 − 𝑦2
.
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Thus, (4.4) becomes

𝔭2(8𝜏) =
2𝔭(16𝜏)

𝔭2(16𝜏) + 1
.

Replacing 𝜏 by 𝜏∕8 and rearranging gives us the result. □

Proposition 4.3. a) The functions 𝑥 = 𝔟(𝜏) and 𝑦 = 𝔟(2𝜏) satisfy the relation

𝑥2𝑦2 + 4𝑦2 − 16𝑥 = 0.

b) The following identity holds between 𝑥 = 𝔟(𝜏) and 𝑧 = 𝔟(4𝜏):

(𝔟(𝜏) + 2)4𝔟4(4𝜏) = 28(𝔟3(𝜏) + 4𝔟(𝜏)).

Proof. a) On putting 4𝜏 for 𝜏 in 𝑥, we have

𝔟(4𝜏) = 2

∞∏

𝑛=1

(
1 − 𝑞2𝑛−1

1 + 𝑞2𝑛−1
)

2

= 2
(𝑞; 𝑞2)2∞

(−𝑞; 𝑞2)2∞
= 2

𝜑(−𝑞)

𝜑(𝑞)
⋅

From (2.11), we have
𝜑2(−𝑞) + 𝜑2(𝑞) = 2𝜑2(𝑞2).

Multiplying both sides by 𝜑2(−𝑞2) = 𝜑(𝑞)𝜑(−𝑞) from (2.16), we obtain

𝜑2(−𝑞)𝜑2(−𝑞2) + 𝜑2(𝑞)𝜑2(−𝑞2) = 2𝜑(𝑞)𝜑(−𝑞)𝜑2(𝑞2).

Now dividing both sides by 𝜑2(𝑞)𝜑2(𝑞2) gives us
𝜑2(−𝑞)

𝜑2(𝑞)
⋅
𝜑2(−𝑞2)

𝜑2(𝑞2)
+
𝜑2(−𝑞2)

𝜑2(𝑞2)
= 2

𝜑(−𝑞)

𝜑(𝑞)
.

Hence, we see that 𝑥 = 𝔟(4𝜏) and 𝑦 = 𝔟(8𝜏) satisfy the relation

𝑥2𝑦2 + 4𝑦2 − 16𝑥 = 0.

Now replace 𝜏 by 𝜏∕4.

b) From (2.17), upon taking fourth powers, we get
[
𝜑(−𝑞) + 𝜑(𝑞)

]4
= 16𝜑4(𝑞4).

Multiplying both sides by 𝜑4(−𝑞4)∕
[
𝜑4(𝑞)𝜑4(𝑞4)

]
gives us

[
𝜑(−𝑞) + 𝜑(𝑞)

]4

𝜑4(𝑞)
⋅
𝜑4(−𝑞4)

𝜑4(𝑞4)
= 16

𝜑4(−𝑞4)

𝜑4(𝑞)
.

Then using (2.16) twice for the right side, we obtain
[
𝜑(−𝑞) + 𝜑(𝑞)

]4

𝜑4(𝑞)
⋅
𝜑4(−𝑞4)

𝜑4(𝑞4)
= 16

𝜑(−𝑞)𝜑(𝑞)

𝜑4(𝑞)
⋅ 𝜑2(𝑞2).

Now use (2.11) for the last factor on the right side to get
[
𝜑(−𝑞) + 𝜑(𝑞)

]4

𝜑4(𝑞)
⋅
𝜑4(−𝑞4)

𝜑4(𝑞4)
= 8

𝜑(−𝑞)

𝜑3(𝑞)
⋅
[
𝜑2(−𝑞) + 𝜑2(𝑞)

]
.
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This implies that

[
𝜑(−𝑞)

𝜑(𝑞)
+ 1]

4

⋅ [
𝜑(−𝑞4)

𝜑(𝑞4)
]

4

= 8 ⋅
𝜑(−𝑞)

𝜑(𝑞)
⋅ [(

𝜑(−𝑞)

𝜑(𝑞)
)

2

+ 1].

The result follows on multiplying through by 28 and substituting

𝔟(4𝜏) = 2
𝜑(−𝑞)

𝜑(𝑞)
and 𝔟(16𝜏) = 2

𝜑(−𝑞4)

𝜑(𝑞4)

into the above equation, and then replacing 𝜏 by 𝜏∕4. □

5. The relation between 𝒗(𝝉) and 𝖇(𝝉).
We begin this section by proving the following identity.

Proposition 5.1.
(𝑣2(𝜏) + 1)2

𝑣4(𝜏) − 6𝑣2(𝜏) + 1
=

4

𝔟2(4𝜏)
. (5.1)

Proof. We prove (5.1) using the identity relating the Weber-Schläfli functions
from [20, p. 86, (12)] (see also [8, p. 234, (12.18)]):

𝔣8
1
(𝜏) + 𝔣8

2
(𝜏) = 𝔣8(𝜏).

From the definitions (4.1) and (4.2) of 𝔭(𝜏) and 𝔟(𝜏), this identity translates to
𝔟4(4𝜏)

16
= 1 − 𝔭4(4𝜏).

Using the result of Proposition 4.1, we write this equation as

𝔟4(4𝜏)

16
= 1 − (

2 𝑣(𝜏∕2)

1 − 𝑣2(𝜏∕2)
)

4

= 1 −
16 𝑣4(𝜏∕2)

(
1 − 𝑣2(𝜏∕2)

)4
.

Setting 𝑥 = 𝑣(𝜏∕2) and 𝑦 = 𝑣(𝜏) and using the relation between 𝑥 and 𝑦 from
Proposition 3.1(b) in the form 𝑥2 =

𝑦(1−𝑦)

(1+𝑦)
gives that

𝔟4(4𝜏)

16
= 1 −

16 𝑥4

(1 − 𝑥2)4
= 1 −

16 (
𝑦(1−𝑦)

(1+𝑦)
)

2

(1 −
𝑦(1−𝑦)

(1+𝑦)
)

4

= 1 −
16 𝑦2(1 − 𝑦2)2

(1 + 𝑦2)4
=
(𝑦2 + 1)4 − 16 𝑦2(𝑦2 − 1)2

(𝑦2 + 1)4

=

(
(𝑦2 − 1)2 + 4𝑦2

)2
− 16 𝑦2(𝑦2 − 1)2

(𝑦2 + 1)4

=

(
(𝑦2 − 1)2 − 4𝑦2

)2

(𝑦2 + 1)4
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=
(𝑦4 − 6𝑦2 + 1)2

(𝑦2 + 1)4
,

which is equivalent to (5.1). (The plus sign holds on taking the square-root
because 𝔟(𝑖∞) = 2, 𝑣2(𝑖∞) = 0.) □

Proposition 5.1 will now be used to prove the following formula for the func-
tion 𝑗(𝜏) in terms of 𝑣(𝜏).

Proposition 5.2. If 𝑣 = 𝑣(𝜏) and 𝜏 lies in the upper half-plane, we have

𝑗(𝜏) =
(𝑣16 + 232𝑣14 + 732𝑣12 − 1192𝑣10 + 710𝑣8 − 1192𝑣6 + 732𝑣4 + 232𝑣2 + 1)3

𝑣2(𝑣2 − 1)2(𝑣2 + 1)4(𝑣4 − 6𝑣2 + 1)8
.

Proof. Let

𝐺(𝑥) =
(𝑥2 − 16𝑥 + 16)3

𝑥(𝑥 − 16)
.

Then from [14, p. 1967, (2.8)] the function

𝛼(𝜏) = 𝜁−1
8

𝜂(𝜏∕4)2

𝜂(𝜏)2
, 𝜁8 = 𝑒2𝜋𝑖∕8, (5.2)

satisfies the relation

𝑗(𝜏) =
(𝛼8 − 16𝛼4 + 16)3

𝛼4(𝛼4 − 16)
= 𝐺(𝛼4(𝜏)). (5.3)

Moreover, 𝛼(𝜏) and 𝔟(𝜏) satisfy

16𝛼4(𝜏) + 16𝔟4(𝜏) = 𝛼4(𝜏)𝔟4(𝜏),

so that

𝛼4(𝜏) =
16𝔟4(𝜏)

𝔟4(𝜏) − 16
. (5.4)

Setting 𝑏 = 𝔟(𝜏), we substitute for 𝛼 = 𝛼(𝜏) in (5.3) and find that

𝑗(𝜏) = 𝐺 (
16𝑏4

𝑏4 − 16
) =

(𝑏8 + 224𝑏4 + 256)3

𝑏4(𝑏4 − 16)4
, 𝑏 = 𝔟(𝜏).

Now replace 𝜏 by 4𝜏 and use (5.1) to replace 𝔟4(4𝜏) by

𝔟4(4𝜏) =
16(𝑣4 − 6𝑣2 + 1)2

(𝑣2 + 1)4
,

giving

𝑗(4𝜏) =
(𝑣16 − 8𝑣14 + 12𝑣12 + 8𝑣10 + 230𝑣8 + 8𝑣6 + 12𝑣4 − 8𝑣2 + 1)3

𝑣8(𝑣2 + 1)4(𝑣2 − 1)8(𝑣4 − 6𝑣2 + 1)2
, (5.5)

with 𝑣 = 𝑣(𝜏). Replacing 𝑣(𝜏) by 𝐴̄(𝑣(−1∕4𝜏)) from Proposition 3.3 gives that

𝑗(4𝜏) = 𝑗2(𝑥
2),
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where 𝑥 = 𝑣(−1∕4𝜏) and 𝑗2(𝑥) is the rational function

𝑗2(𝑥) =
(𝑥8 + 232𝑥7 + 732𝑥6 − 1192𝑥5 + 710𝑥4 − 1192𝑥3 + 732𝑥2 + 232𝑥 + 1)3

𝑥(𝑥 − 1)2(𝑥 + 1)4(𝑥2 − 6𝑥 + 1)8
.

(5.6)
Finally, replace 𝜏 by 𝜏∕4 to give that

𝑗(𝜏) = 𝑗2(𝑣
2(−1∕𝜏)),

which implies that 𝑗2(𝑣2(𝜏)) = 𝑗(−1∕𝜏) = 𝑗(𝜏), completing the proof. □

We highlight the relation

𝑗(𝜏) = 𝑗2(𝑣
2(𝜏)), (5.7)

which we will make use of in Section 7. Using the linear fractional map 𝑡(𝑥)
from (3.5) and the identity 𝑣2(−1∕8𝜏) = 𝑡(𝑣2(𝜏)) in (3.4) yields

𝑗 (
−1

8𝜏
) = 𝑗2 (𝑣

2 (
−1

8𝜏
)) = 𝑗2(𝑡(𝑣

2(𝜏))).

A calculation on Maple shows that

𝑗22(𝑥) = 𝑗2(𝑡(𝑥)) =
(𝑥8 − 8𝑥7 + 12𝑥6 + 8𝑥5 − 10𝑥4 + 8𝑥3 + 12𝑥2 − 8𝑥 + 1)3

𝑥8(𝑥 − 1)4(𝑥 + 1)2(𝑥2 − 6𝑥 + 1)
.

Therefore,

𝑗 (
−1

8𝜏
) = 𝑗22(𝑣

2(𝜏)). (5.8)

We take this opportunity to prove the following known identity (see [9, p.
154]) from the results we have established so far.

Proposition 5.3.

𝑣−2(𝜏) + 𝑣2(𝜏) − 6 =
𝜂4(𝜏)𝜂2(4𝜏)

𝜂2(2𝜏)𝜂4(8𝜏)
. (5.9)

Proof. We will show that (5.9) follows from (5.1). We first have that

𝑣−2(𝜏) + 𝑣2(𝜏) − 6 =
𝑣4(𝜏) − 6𝑣2(𝜏) + 1

𝑣2(𝜏)

=
8

(
(𝑣2(𝜏)+1)2

𝑣4(𝜏)−6𝑣2(𝜏)+1
) − 1

=
8

(
4

𝔟2(4𝜏)
) − 1

=
8𝔟2(4𝜏)

4 − 𝔟2(4𝜏)
,
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by (5.1). Using the expression 𝔟(4𝜏) = 2𝜑(−𝑞)∕𝜑(𝑞) from the proof of Proposi-
tion 4.3a) and (2.18) gives

𝑣−2(𝜏) + 𝑣2(𝜏) − 6 =

8 (
4𝜑2(−𝑞)

𝜑2(𝑞)
)

4 − (
4𝜑2(−𝑞)

𝜑2(𝑞)
)

=
8𝜑2(−𝑞)

𝜑2(𝑞) − 𝜑2(−𝑞)
=

8𝜑2(−𝑞)

8𝑞𝜓2(𝑞4)
.

Nowputting𝜑(−𝑞) = (𝑞; 𝑞2)2∞(𝑞
2; 𝑞2)∞ =

(𝑞;𝑞)2∞

(𝑞2;𝑞2)∞
and𝜓(𝑞) = (𝑞2;𝑞2)∞

(𝑞;𝑞2)∞
=

(𝑞2;𝑞2)2∞

(𝑞;𝑞)∞

yields

𝑣−2(𝜏) + 𝑣2(𝜏) − 6 = 𝜑2(−𝑞) ⋅ (
1

𝑞𝜓2(𝑞4)
)

= (𝑞; 𝑞2)4∞(𝑞
2; 𝑞2)2∞ ⋅ (

(𝑞4; 𝑞8)2∞

𝑞(𝑞8; 𝑞8)2∞
)

= (
(𝑞; 𝑞)4∞

(𝑞2; 𝑞2)2∞
) ⋅ (

(𝑞4; 𝑞4)2∞

𝑞(𝑞8; 𝑞8)4∞
)

=
𝑞1∕6(𝑞; 𝑞)4∞ ⋅ 𝑞1∕3(𝑞4; 𝑞4)2∞

𝑞1∕6(𝑞2; 𝑞2)2∞ ⋅ 𝑞4∕3(𝑞8; 𝑞8)4∞

=
𝜂4(𝜏)𝜂2(4𝜏)

𝜂2(2𝜏)𝜂4(8𝜏)
,

using that 𝜂(𝜏) = 𝑞1∕24(𝑞; 𝑞)∞. □

6. The field generated by 𝒗(𝒘∕𝟖).
As in the Introduction, let −𝑑 ≡ 1 (mod 8) and set −𝑑 = 𝔡𝐾𝑓

2, where 𝔡𝐾 is
the discriminant of the field 𝐾 = ℚ(

√
−𝑑). Further, let 2 ≅ ℘2℘

′
2
in the ring of

integers 𝑅𝐾 of 𝐾. We denote by Σ𝔣 the ray class field of conductor 𝔣 over 𝐾 and
Ω𝑓 the ring class field of conductor 𝑓 over 𝐾.

In this section we take 𝜏 = 𝑤∕8, where

𝑤 =
𝑎 +

√
−𝑑

2
, with 𝑎2 + 𝑑 ≡ 0 (mod 25), (𝑁(𝑤), 𝑓) = 1. (6.1)

For this value of 𝑤,
𝔟4(8𝜏) = 𝔟4(𝑤)

is the fourth power of the number

𝛽 = 𝑖−𝑎𝔟(𝑤) (6.2)

from [14, (10.3), Thms. 10.6, 10.7]. We also need the number 𝜋 from [14,
(10.2),(10.9)], which is given by

𝜋 = 𝑖𝑐
𝔣2(𝑤∕2)

2

𝔣(𝑤∕2)2
= 𝑖𝑐𝔭(𝑤),
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𝑐 ≡ 𝑎 (2 −
𝑎2 + 𝑑

16
) (mod 4).

(We have replaced 𝑣 in the formulas of [14] by 𝑎 and 𝑎 by 𝑐.) But here the
integer 𝑎2+𝑑 is divisible by 32, by (6.1), so 𝑐 is even. Replacing 𝑐 by the integer
𝑐 = 𝑐∕2, satisfying

𝑐 ≡ 1 −
𝑎2 + 𝑑

32
(mod 2)

yields

𝜋 = (−1)𝑐𝔭(𝑤), 𝑤 =
𝑎 +

√
−𝑑

2
. (6.3)

It follows from the results of [14] that 𝜉 = 𝛽∕2 and 𝜋 lie in the ring class field
Ω𝑓 of the quadratic field 𝐾 = ℚ(

√
−𝑑) (where −𝑑 = 𝔡𝐾𝑓

2 and 𝔡𝐾 is the dis-
criminant of 𝐾∕ℚ) and 𝜉4 + 𝜋4 = 1. Furthermore, ℚ(𝜋) = ℚ(𝜋4) = Ω𝑓. We
also note that (𝜉) = ℘′

2
and (𝜋) = ℘2 in Ω𝑓, so that (𝜉𝜋) = (2).

From (4.3) and (6.3) we have that

(−1)𝑐
2

𝜋
=

1

𝑣(𝑤∕8)
− 𝑣(𝑤∕8) =

1 − 𝑣2(𝑤∕8)

𝑣(𝑤∕8)
. (6.4)

In particular, 𝑣(𝑤∕8) satisfies a quadratic equation over Ω𝑓 and the map 𝜌 ∶

𝑣(𝑤∕8) →
−1

𝑣(𝑤∕8)
leaves the right side of (6.4) invariant. On squaring (6.4), we

see that 𝑋 = 𝑣2(𝑤∕8) satisfies the equation

𝑋2 − (2 +
4

𝜋2
)𝑋 + 1 = 0, (6.5)

and therefore

𝑣2(𝑤∕8) =
𝜋2 + 2 ± 2

√
𝜋2 + 1

𝜋2
= (

1 ±
√
1 + 𝜋2

𝜋
)

2

.

Hence

𝑣(𝑤∕8) = ±
1 ±

√
1 + 𝜋2

𝜋
. (6.6)

It follows from these expressions that

Ω𝑓(𝑣(𝑤∕8)) = Ω𝑓(𝑣
2(𝑤∕8)) = Ω𝑓(

√
1 + 𝜋2).

We now prove the following.

Theorem 6.1. If

𝑤 =
𝑎 +

√
−𝑑

2
, with 𝑎2 + 𝑑 ≡ 0 (mod 25),

and ℘2 = (2, 𝑤) in 𝑅𝐾 , then the field ℚ(𝑣(𝑤∕8)) = ℚ(
√
1 + 𝜋2) coincides with

the class field Σ℘′3
2
Ω𝑓 over 𝐾 = ℚ(

√
−𝑑). The units 𝑣(𝑤∕8) and 𝑣2(𝑤∕8) have

degree 4ℎ(−𝑑) overℚ.
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Proof. Let Λ = ℚ(
√
1 + 𝜋2). It is clear that Λ contains the ring class field Ω𝑓,

since ℚ(𝜋4) = Ω𝑓. We use the fact that 1 + 𝜋2 ≅ ℘′
2
from [16, Lemma 5].

From this fact it is clear that 1+𝜋2 is not a square inΩ𝑓, since℘′
2
is unramified

in Ω𝑓∕𝐾. Hence, [Λ ∶ Ω𝑓] = 2. Further, the prime divisors 𝔮 of ℘′
2
in Ω𝑓

are certainly ramified in Λ. Equation (6.5) implies that 𝑥 = 𝑣2(𝑤∕8) satisfies
(𝑥 − 1)2∕(4𝑥) = 1∕𝜋2, and therefore ℚ(𝑣2(𝑤∕8)) = ℚ(

√
1 + 𝜋2). This implies

that [ℚ(𝑣2(𝑤∕8)) ∶ ℚ] = 4ℎ(−𝑑), since

[Λ ∶ ℚ] = [Λ ∶ Ω𝑓][Ω𝑓 ∶ 𝐾][𝐾 ∶ ℚ] = 4ℎ(−𝑑).

Since 𝑣2(𝜏) is a modular function for Γ1(8) ([9, p.154]), it follows from Schertz
[19, Thm. 5.1.2] that 𝑣2(𝑤∕8) ∈ Σ8𝑓, the ray class field of conductor 8𝑓 over
𝐾. More precisely, 𝑣2(𝑤∕8) ∈ 𝐿𝒪,8, where 𝐿𝒪,8 = Σ8Ω𝑓 is an extended ring class
field corresponding to the order 𝒪 = R−𝑑. See [8, p. 315]. Thus, Λ ⊂ 𝐿𝒪,8 is an
abelian extension of 𝐾, whose conductor 𝔣 divides 8𝑓 in 𝐾. The discriminant
of the polynomial 𝑋2 − (1 + 𝜋2) is of course 4(1 + 𝜋2) ≅ ℘2

2
℘′3
2
. Since the

ramification index of each 𝔮 ∣ ℘′
2
is 𝑒𝔮 = 2 in Λ∕Ω𝑓, Dedekind’s discriminant

theorem says that at least℘′2
2
divides the discriminant 𝔡 = 𝔡Λ∕Ω𝑓

, and since the
power of 𝔮 in 𝔡 is odd and at most 3 (Ω𝑓∕𝐾 is unramified over 2), it follows that
℘′3
2
exactly divides 𝔡. We claim now that℘2 is unramified in Λ.

From above 𝑥 = 𝑣2(𝑤∕8) satisfies (𝑥 − 1)2 −
4

𝜋2
𝑥 = 0. Thus 𝑥1 = 𝑥 − 1

satisfies ℎ(𝑥1) = 0, with

ℎ(𝑋) = 𝑋2 −
4

𝜋2
(𝑋 + 1), disc(ℎ(𝑋)) = 16

𝜋4
+ 4

4

𝜋2
,

where the ideal ( 16
𝜋4
) =

(
2

𝜋

)4
= (𝜉)4 = ℘′4

2
is not divisible by ℘2. This shows

that disc(ℎ(𝑋)) is not divisible by ℘2 and therefore that ℘2 is unramified in
ℚ(𝑣2(𝑤∕8)). Thus 𝔡 = ℘′3

2
.

Now [Σ8 ∶ Σ1] =
1

2
𝜙𝐾(℘

3
2
℘′3
2
) = 8, where 𝜙𝐾 is the Euler function for the

quadratic field 𝐾, and ℚ(𝜁8) ⊂ Σ8. Since the prime divisors of 2 do not ramify
in Ω𝑓, we have that Ω𝑓 ∩ Σ8 = Σ1 and therefore

[𝐿𝒪,8 ∶ Ω𝑓] = [Σ8Ω𝑓 ∶ Ω𝑓] = [Σ8 ∶ Σ1] = 8,

from which we obtain

Gal(Σ8Ω𝑓∕Ω𝑓) ≅ Gal(Σ8∕Σ1).

By this isomorphism the intermediate fields 𝐿Ω𝑓 of Σ8Ω𝑓∕Ω𝑓 are in 1 − 1 cor-
respondence with the intermediate fields 𝐿 of Σ8∕Σ1.

The ray class field Σ℘2
2
℘′3
2
has degree 4 over the Hilbert class field Σ1, and

two of its quadratic subfields are Σ℘′3
2
and Σ℘2

2
℘′2
2
= Σ4 = Σ1(𝑖). It follows

that Gal(Σ℘2
2
℘′3
2
∕Σ1) ≅ ℤ2 × ℤ2 and the third quadratic subfield has conduc-

tor equal to 𝔣′ = ℘2
2
℘′3
2
over 𝐾. The other quadratic intermediate fields of
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Σ8∕Σ1 are Σ1(
√
2) and Σ1(

√
−2), both of which have conductor (8) = ℘3

2
℘′3
2

over 𝐾, the field Σ℘3
2
, and a field whose conductor over 𝐾 is ℘′2

2
℘3
2
. Hence,

𝐿 = Σ℘′3
2
is the only quadratic intermediate field whose conductor is not di-

visible by ℘2. This proves that ℚ(𝑣2(𝑤∕8)) = Σ℘′3
2
Ω𝑓 and (6.6) shows that

ℚ(𝑣(𝑤∕8)) = ℚ(𝑣2(𝑤∕8)) = Σ℘′3
2
Ω𝑓. □

Corollary 6.2. The field ℚ(𝑣(𝑤∕8)) = Σ℘′3
2
Ω𝑓 is the inertia field for the prime

ideal℘2 in the extension 𝐿𝒪,8∕𝐾 = Σ8Ω𝑓∕𝐾.

Proof. The above proof implies that Gal(Σ8Ω𝑓∕Ω𝑓) ≅ ℤ2×ℤ2×ℤ2, since there
are 7 quadratic intermediate fields. Any subfield containingΩ𝑓 which properly
contains Σ℘′3

2
must also contain another quadratic subfield, in which℘2 must

ramify. □

Corollary 6.3. If −𝑑 ≡ 1 (mod 8) and 𝑤 is given by (6.1), then the quantity

A =
𝜂2(𝑤∕8)𝜂(𝑤∕2)

𝜂(𝑤∕4)𝜂2(𝑤)

generates the class field Σ℘′3
2
Ω𝑓 for 𝐾 = ℚ(

√
−𝑑) overℚ.

Proof. We appeal to equation (5.9). Setting 𝜂 = 𝑣(𝑤∕8), first use the equation
preceding (6.6) to see that

A2
= 𝜂−2 + 𝜂2 − 6 =

𝜋2 + 2 ∓ 2
√
1 + 𝜋2

𝜋2
+
𝜋2 + 2 ± 2

√
1 + 𝜋2

𝜋2
− 6

= 4
1 − 𝜋2

𝜋2
.

This gives that A = ±
2

𝜋

√
1 − 𝜋2. Since

√
1 − 𝜋2

√
1 + 𝜋2 =

√
1 − 𝜋4 = ±𝜉2 ∈

Ω𝑓 and ℚ(A
2
) = Ω𝑓, we get that ℚ(A) = ℚ(

√
1 + 𝜋2) = Σ℘′3

2
Ω𝑓, by the result

of Theorem 6.1. □

The fact that 𝑣2(𝑤∕8) ∈ 𝐿𝒪,8 in the above proof is derived in [8, p. 317] using
Shimura’s Reciprocity Law. We can give a more elementary proof of this fact by
showing that

√
1 + 𝜋2 ∈ 𝐿𝒪,8, as follows. We focus on the elliptic curve

𝐸1(𝛼) ∶ 𝑌2 + 𝑋𝑌 +
1

𝛼4
𝑌 = 𝑋3 +

1

𝛼4
𝑋2,

which is the Tate normal form for a point of order 4, with

𝛼4 = 𝛼(𝑤)4 = −(
𝜂(𝑤∕4)

𝜂(𝑤)
)

8

,

as in (5.2). From [14, (2.10), Prop. 3.2, p. 1970], the curve 𝐸1 = 𝐸1(𝛼) has
complex multiplication by the order 𝒪 = R−𝑑 of discriminant −𝑑 in 𝐾. Now,
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with 𝛽 = 𝑖−𝑎𝔟(𝑤) as in (6.2),

1

𝛼4
=
𝛽4 − 16

16𝛽4
=

1

16
−

1

𝛽4
,

and Lynch [13] has given explicit expressions for the points of order 8 on 𝐸1 in
terms of 𝛽. Lynch [13, Prop. 3.3.1, p. 38] defines the following expressions:

𝑏1 =
𝛽
√
2 + (𝛽2 + 4)1∕2 + (𝛽2 − 4)1∕2

2𝛽
√
2

,

𝑏2 =
𝛽
√
2 + (𝛽2 + 4)1∕2 − (𝛽2 − 4)1∕2

2𝛽
√
2

,

𝑏3 =
𝛽
√
2 − (𝛽2 + 4)1∕2 + (𝛽2 − 4)1∕2

2𝛽
√
2

,

𝑏4 =
𝛽
√
2 − (𝛽2 + 4)1∕2 − (𝛽2 − 4)1∕2

2𝛽
√
2

.

With these expressions, Lynch shows [13, Thm. 3.3.1, p. 41] that the points

(𝑋, 𝑌) = 𝑃1 = (𝑏1𝑏3𝑏4, −𝑏1𝑏
3
3
𝑏4) and 𝑃2 = (𝑏2𝑏3𝑏4, −𝑏2𝑏3𝑏

3
4
)

are points of order 8 on 𝐸1(𝛼). By [11, Satz 2] or [14, Prop. 6.4] the correspond-
ing Weber functions satisfy

𝑔2𝑔3

∆
(𝑋(𝑃𝑖) +

4𝑏 + 1

12
) ∈ Σ8Ω𝑓, 𝑏 =

1

𝛼4
.

(See [14, (6.1)]. The expression inside the parentheses arises from putting the
curve𝐸1(𝛼) in standardWeierstrass form.) As in [14, p. 1976], 𝑏, 𝑔2, 𝑔3, ∆ ∈ Ω𝑓,
so that 𝑋(𝑃𝑖) = 𝑏𝑖𝑏3𝑏4 ∈ 𝐿𝒪,8 for 𝑖 = 1, 2. This implies that

(𝑏1 + 𝑏2)𝑏3𝑏4 = (

√
2𝛽 + (𝛽2 + 4)1∕2

√
2𝛽

)(
𝛽2 + 4 −

√
2𝛽(𝛽2 + 4)1∕2

4𝛽2
)

=
4 − 𝛽2

4
√
2𝛽3

(𝛽2 + 4)1∕2

lies in 𝐿𝒪,8. But we know that 4 − 𝛽2 ≠ 0. In addition,
√
2 ∈ ℚ(𝜁8) ⊂ Σ8 and

𝛽 ∈ Ω𝑓, so that (𝛽2 + 4)1∕2 = 2
√
𝜉2 + 1 ∈ 𝐿𝒪,8, with 𝜉 = 𝛽∕2. Now 𝜋 and 𝜉 are

conjugate overℚ, hence ±
√
1 + 𝜋2 is conjugate to

√
1 + 𝜉2 overℚ. Since Σ8Ω𝑓

is normal overℚ, this implies that
√
1 + 𝜋2 ∈ 𝐿𝒪,8, which proves the assertion.

Proposition 6.4. Assume 𝑐 in (6.3) is odd. Themap𝐴(𝑥) = 𝜎𝑥+1

𝑥−𝜎
(see (3.3)) fixes

the set of conjugates of 𝑣(𝑤∕8). If 𝑓𝑑(𝑥) is theminimal polynomial of 𝑣(𝑤∕8) over
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ℚ, then
(𝑥 − 𝜎)4ℎ(−𝑑)𝑓𝑑(𝐴(𝑥)) = 23ℎ(−𝑑)𝜎2ℎ(−𝑑)𝑓𝑑(𝑥).

Proof. Note that (6.4) implies that the minimal polynomial of 𝑣(𝑤∕8) is

𝑓𝑑(𝑥) = 2−ℎ(−𝑑)(𝑥2 − 1)2ℎ(−𝑑)𝑏𝑑 ((−1)
𝑐 2𝑥

1 − 𝑥2
) , (6.7)

where 𝑏𝑑(𝑥) is the minimal polynomial of 𝜋. Note that the degree of 𝑏𝑑(𝑥) is
2ℎ(−𝑑) and the constant term of 𝑏𝑑(𝑥) is

𝑁Ω𝑓∕ℚ
(𝜋) = 𝑁Ω𝑓∕ℚ

(℘2) = 𝑁𝐾∕ℚ(℘
ℎ(−𝑑)

2
) = 2ℎ(−𝑑)

from [14]. Thus, deg(𝑓𝑑(𝑥)) = 4ℎ(−𝑑), which implies by Theorem 6.1 that
𝑓𝑑(𝑥) is irreducible.

We use (6.7) to prove the proposition, as follows. Setting ℎ = ℎ(−𝑑) and
assuming 𝑐 is odd, we have that

(𝑥 − 𝜎)4ℎ𝑓𝑑(𝐴(𝑥)) = 2−ℎ(𝑥 − 𝜎)4ℎ(𝐴(𝑥)2 − 1)2ℎ𝑏𝑑 (
2𝐴(𝑥)

𝐴(𝑥)2 − 1
)

= 2−ℎ(𝑥 − 𝜎)4ℎ (
−2𝜎(𝑥2 − 2𝑥 − 1)

(𝑥 − 𝜎)2
)

2ℎ

𝑏𝑑 (−
𝑥2 + 2𝑥 − 1

𝑥2 − 2𝑥 − 1
)

= 2ℎ𝜎2ℎ(𝑥2 − 2𝑥 − 1)2ℎ𝑏𝑑 (
𝑃(𝑥) + 1

𝑃(𝑥) − 1
) ,

where

𝑃(𝑥) =
2𝑥

𝑥2 − 1
and

𝑃(𝑥) + 1

𝑃(𝑥) − 1
= −

𝑥2 + 2𝑥 − 1

𝑥2 − 2𝑥 − 1
= 𝑅(𝑥).

We also know from [14] that the map 𝑥 → 𝑥+1

𝑥−1
permutes the roots of 𝑏𝑑(𝑥) and

(𝑥 − 1)2ℎ𝑏𝑑 (
𝑥 + 1

𝑥 − 1
) = 2ℎ𝑏𝑑(𝑥).

This gives that 𝑏𝑑 (
𝑃(𝑥)+1

𝑃(𝑥)−1
) = (𝑃(𝑥) − 1)−2ℎ2ℎ𝑏𝑑(𝑃(𝑥)) and therefore that

(𝑥 − 𝜎)4ℎ𝑓𝑑(𝐴(𝑥)) = 2ℎ𝜎2ℎ(𝑥2 − 2𝑥 − 1)2ℎ(𝑃(𝑥) − 1)−2ℎ2ℎ𝑏𝑑(𝑃(𝑥))

= 22ℎ𝜎2ℎ(𝑥2 − 2𝑥 − 1)2ℎ (
𝑥2 − 1

𝑥2 − 2𝑥 − 1
)

2ℎ

𝑏𝑑(𝑃(𝑥))

= 23ℎ𝜎2ℎ2−ℎ(𝑥2 − 1)2ℎ𝑏𝑑(𝑃(𝑥))

= 23ℎ𝜎2ℎ𝑓𝑑(𝑥).

□
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We also check that

𝑥4ℎ𝑓𝑑 (
−1

𝑥
) = 2−ℎ𝑥4ℎ (

1

𝑥2
− 1)

2ℎ(−𝑑)

𝑏𝑑(𝑃(−1∕𝑥))

= 2−ℎ(𝑥2 − 1)2ℎ𝑏𝑑(𝑃(𝑥)) = 𝑓𝑑(𝑥).

We conclude the following. Recall the definition of 𝐴̄(𝑥) from (3.3).

Proposition 6.5. If 𝑐 is odd, the mappings in the group
𝐻̃1 = {𝑥,𝐴(𝑥), 𝐴̄(𝑥), −1∕𝑥}

permute the roots of 𝑓𝑑(𝑥).

Now let 𝑐 be even, 𝛿 = 1 +
√
2, and 𝐵(𝑥) = 𝛿𝑥 + 1

𝑥 − 𝛿
=

𝑥 + 𝜎

𝜎𝑥 − 1
= −𝐴̄(−𝑥).

Then we have

(𝑥 − 𝛿)4ℎ𝑓𝑑(𝐵(𝑥)) = 2−ℎ(𝑥 − 𝛿)4ℎ(𝐵2(𝑥) − 1)2ℎ𝑏𝑑 (
2𝐵(𝑥)

1 − 𝐵2(𝑥)
)

= 2−ℎ(𝑥 − 𝛿)4ℎ (
2𝛿(𝑥2 + 2𝑥 − 1)

(𝑥 − 𝛿)2
)

2ℎ

𝑏𝑑 (−
𝑥2 − 2𝑥 − 1

𝑥2 + 2𝑥 − 1
)

= 2ℎ𝛿2ℎ(𝑥2 + 2𝑥 − 1)2ℎ 𝑏𝑑

⎛

⎜

⎝

2𝑥

1−𝑥2
+ 1

2𝑥

1−𝑥2
− 1

⎞

⎟

⎠

= 2ℎ𝛿2ℎ(𝑥2 + 2𝑥 − 1)2ℎ ⋅ 2ℎ(
2𝑥

1 − 𝑥2
− 1)

−2ℎ

𝑏𝑑 (
2𝑥

1 − 𝑥2
)

= 22ℎ𝛿2ℎ(𝑥2 + 2𝑥 − 1)2ℎ ⋅ (
1 − 𝑥2

𝑥2 + 2𝑥 − 1
)

2ℎ

𝑏𝑑 (
2𝑥

1 − 𝑥2
)

= 22ℎ𝛿2ℎ ⋅ (𝑥2 − 1)2ℎ𝑏𝑑 (
2𝑥

1 − 𝑥2
)

= 22ℎ𝛿2ℎ ⋅ 2ℎ𝑓𝑑(𝑥)

= 23ℎ𝛿2ℎ𝑓𝑑(𝑥).

Setting 𝐵̄(𝑥) = 𝐵(−1∕𝑥) =
−𝜎𝑥 + 1

𝑥 + 𝜎
= −𝐴(−𝑥), we have the following.

Proposition 6.6. If 𝑐 is even, the mappings in the group
𝐻̃0 = {𝑥, 𝐵(𝑥), 𝐵̄(𝑥), −1∕𝑥}

permute the roots of 𝑓𝑑(𝑥).

7. The diophantine equation.
From (3.4) we know that (𝑋, 𝑌) = (𝑣(𝑤∕8), 𝑣(−1∕𝑤)) is a solution of the

diophantine equation

𝒞2 ∶ 𝑋2 + 𝑌2 = 𝜎2(1 + 𝑋2𝑌2), 𝜎 = −1 +
√
2.
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This seems to be an analogue of the equation 𝒞5 in [17]. Set

𝐹2(𝑋, 𝑌) = 𝑋2 + 𝑌2 − 𝜎2(1 + 𝑋2𝑌2).

Then

(𝜎𝑌 + 1)2𝐹2(𝑋, 𝐴̄(𝑌)) = 4
√
2𝜎2(𝑋2𝑌 + 𝑋2 + 𝑌2 − 𝑌) = 4

√
2𝜎2𝑓(𝑋, 𝑌).

Since
𝐴̄(𝑥) =

−𝑥 + 𝜎

𝜎𝑥 + 1
=
−𝛿𝑥 + 1

𝑥 + 𝛿
, 𝛿 =

1

𝜎
= 1 +

√
2,

the linear fractional map 𝐴̄(𝑥) is the analogue of the map 𝑇(𝑥) in [17, p. 1199].
Considering Thm. 5.1 in [17, p. 1205] suggests the following conjecture.

Conjecture 7.1. Assume 𝑐 is odd. If 𝜏2 = (
Σ℘′3

2
Ω𝑓∕𝐾

℘2

), then

−𝑣(−1∕𝑤) = 𝐴̄(𝑣(𝑤∕8)𝜏2) =
−𝑣(𝑤∕8)𝜏2 + 𝜎

𝜎𝑣(𝑤∕8)𝜏2 + 1
,

where 𝑤 is given by (6.1).

To prove this conjecture, we first appeal to Proposition 4.2, which implies
that

𝔭(2𝜏) =
1 ±

√
1 − 𝔭4(𝜏)

𝔭2(𝜏)
.

Setting 𝜏 = 𝑤, (6.3) gives that

𝔭(2𝑤) =
1 ±

√
1 − 𝜋4

𝜋2
=
1 ± 𝜉2

𝜋2
.

Note that
1 + 𝜉2

𝜋2

1 − 𝜉2

𝜋2
=
1 − 𝜉4

𝜋4
= 1

and
1 − 𝜉2

𝜋2
= −𝜋𝜏2 from [16, p. 333]. Thus,

1 + 𝜉2

𝜋2
= −𝜋−𝜏2 .

Theorem 7.2. If 𝑤 is given by (6.1) we have

𝔭(2𝑤) =
1 + 𝜉2

𝜋2
=
−1

𝜋𝜏2
.

Proof. We use an argument from [14, Section 10]. With the number 𝛽 =

𝑖−𝑎𝔟(𝑤) from (6.2) we have [14, eq. (8.0), p. 1980]

𝑗(𝑤) =
(𝛽8 + 224𝛽4 + 256)3

𝛽4(𝛽4 − 16)4
.

(See the proof of Proposition 5.2.) Furthermore, the roots of the equation

0 = (𝑋 − 16)3 − 𝑗(𝑤)𝑋 = (𝑋 − 16)3 −
(𝛽8 + 224𝛽4 + 256)3

𝛽4(𝛽4 − 16)4
𝑋
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are, on the one hand, given by the values

𝑋 = 𝔣24(𝑤), −𝔣24
1
(𝑤), −𝔣24

2
(𝑤);

(see [8, p. 233, Th. 12.17]) and on the other, are equal to the expressions

𝑋 = −
(𝛽2 − 4)4

𝛽2(𝛽2 + 4)2
,

(𝛽2 + 4)4

𝛽2(𝛽2 − 4)2
, −

212𝛽4

(𝛽4 − 16)2
.

See [14, p. 2000]. From [14, p. 2000] we also have (since our value 𝑤 satisfies
the conditions for 𝑤 in [14, Prop. 3.1])

𝔣24
2
(𝑤) = −

(𝛽2 + 4)4

𝛽2(𝛽2 − 4)2
, (7.1)

since 𝔣24
2
(𝑤) must be a unit (from the results of [21]). There are two cases to

consider.

Case 1. First assume that

𝔣24(𝑤) = −
(𝛽2 − 4)4

𝛽2(𝛽2 + 4)2
, (7.2)

𝔣24
1
(𝑤) =

212𝛽4

(𝛽4 − 16)2
.

In this case, (7.1) and (7.2) give the following formula:

𝔭12(2𝑤) =
𝔣2(𝑤)

24

𝔣(𝑤)24
=

(𝛽2 + 4)6

(𝛽 − 2)6(𝛽 + 2)6
.

Now we use the following ideal factorizations in the ring class field Ω𝑓:

(𝛽2 + 4) = ℘3
2
℘′2
2
, (𝛽 − 2) = ℘2

2
℘′
2
, (𝛽 + 2) = ℘3

2
℘′
2
. (7.3)

See [16, Lemma 4]. These factorizations imply that

𝔭12(2𝑤) ≅ (
℘3
2
℘′2
2

℘5
2
℘′2
2

)

6

=
1

℘12
2

in Ω𝑓,

which implies that

𝔭(2𝑤) ≅
1

℘2

. (7.4)

By the remarks preceding the statement of the theorem, this shows that 𝔭(2𝑤)

is not an algebraic integer, giving that 𝔭(2𝑤) =
1 + 𝜉2

𝜋2
= −𝜋−𝜏2 .

Case 2. The alternative to (7.2) is

𝔣24(𝑤) = −
212𝛽4

(𝛽4 − 16)2
, (7.5)

𝔣24
1
(𝑤) =

(𝛽2 − 4)4

𝛽2(𝛽2 + 4)2
.
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In this case we have

𝔭12(2𝑤) =
𝔣2(𝑤)

24

𝔣(𝑤)24
= (

𝛽2 + 4

22𝛽
)

6

≅ (
℘3
2
℘′2
2

℘2
2
℘′2
2
℘2℘

′2
2

)

6

=
1

℘′12
2

,

giving that 𝔭(2𝑤) ≅ 1

℘′
2

. However, this is impossible, since the above remarks

show that the only prime divisors occuring in the factorization of 𝔭(2𝑤) are
prime divisors of ℘2. This shows that Case 2 is impossible, and Case 1 proves
the formula of the theorem. □

Now we set

𝜂 = 𝑣(𝑤∕8), 𝜆 = −𝑣(−1∕𝑤), 𝜈 = 𝑣(𝑤∕4). (7.6)

We first show 𝜆 is a root of the minimal polynomial 𝑓𝑑(𝑥) of 𝑣(𝑤∕8) (𝑐 odd).
We have from Proposition 3.3 that

2𝜆

𝜆2 − 1
=

−2𝐴̄(𝜈)

𝐴̄2(𝜈) − 1
=
𝜈2 + 2𝜈 − 1

𝜈2 − 2𝜈 − 1
.

Proposition 4.1 and Theorem 7.2 give further that

2𝜆

𝜆2 − 1
=

𝜈 −
1

𝜈
+ 2

𝜈 −
1

𝜈
− 2

=

−2

𝔭(2𝑤)
+ 2

−2

𝔭(2𝑤)
− 2

=
𝜋𝜏2 + 1

𝜋𝜏2 − 1
. (7.7)

Since 𝜋𝜏2+1

𝜋𝜏2−1
is a root of 𝑏𝑑(𝑥), we have from (6.7) that

𝑓𝑑(𝜆) = 2−ℎ(−𝑑)(𝜆2 − 1)2ℎ(−𝑑)𝑏𝑑 (
2𝜆

𝜆2 − 1
) = 0.

Hence, 𝜆 = −𝑣(−1∕𝑤) is a conjugate of 𝑣(𝑤∕8).

Theorem 7.3. If 𝑐 is odd, we have the formula

𝜆 = −𝑣(−1∕𝑤) = 𝐴̄(𝑣(𝑤∕8)𝜏2) =
−𝑣(𝑤∕8)𝜏2 + 𝜎

𝜎𝑣(𝑤∕8)𝜏2 + 1
, 𝜎 = −1 +

√
2,

where 𝑤 is given by (6.1).

Proof. We will prove that 𝐴̄(𝜆) = 𝑣(𝑤∕8)𝜏2 = 𝜂𝜏2 by showing that

𝐴̄(𝜆) − 𝜂2 ≡ 0 (mod℘2).

We have 𝜂2 + 𝜆2 = 𝜎2(1 + 𝜂2𝜆2), which implies that

𝐴̄(𝜆) − 𝜂2 =
−𝜆 + 𝜎

𝜎𝜆 + 1
−
−𝜆2 + 𝜎2

1 − 𝜎2𝜆2
=
−𝜆 + 𝜎

𝜎𝜆 + 1
+

𝜎2 − 𝜆2

𝜎2𝜆2 − 1

=
(−𝜆 + 𝜎)(𝜎𝜆 − 1) + 𝜎2 − 𝜆2

𝜎2𝜆2 − 1

=
−(𝜎 + 1)𝜆2 + (𝜎2 + 1)𝜆 + 𝜎2 − 𝜎

𝜎2𝜆2 − 1
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=
−
√
2𝜆2 + (4 − 2

√
2)𝜆 + 4 − 3

√
2

(𝜎𝜆 + 1)(𝜎𝜆 − 1)

=
−
√
2(𝜆 − 𝜎)2

𝜎2(𝜆 − 𝜎̄)(𝜆 + 𝜎̄)
.

We multiply the last expression by

𝐴(𝜆) −
1

𝜂2
=
(−4 + 3

√
2)(𝜆 − 𝜎̄)2

𝜆2 − 𝜎2
=

√
2𝜎2(𝜆 − 𝜎̄)2

𝜆2 − 𝜎2
,

which is obtained from the last calculation by fixing 𝜆 andmapping
√
2 to−

√
2.

This yields the formula
(
𝐴̄(𝜆) − 𝜂2

)
(𝐴(𝜆) −

1

𝜂2
) =

−2(𝜆 − 𝜎)(𝜆 − 𝜎̄)

(𝜆 + 𝜎)(𝜆 + 𝜎̄)
= −2

𝜆2 + 2𝜆 − 1

𝜆2 − 2𝜆 − 1
. (7.8)

Now

𝜆2 + 2𝜆 − 1

𝜆2 − 2𝜆 − 1
=

1 +
2𝜆

𝜆2−1

1 −
2𝜆

𝜆2−1

, (7.9)

where
2𝜆

𝜆2 − 1
=
𝜋𝜏2 + 1

𝜋𝜏2 − 1

from (7.7). It follows from (7.9) that

𝜆2 + 2𝜆 − 1

𝜆2 − 2𝜆 − 1
=

1 +
𝜋𝜏2+1

𝜋𝜏2−1

1 −
𝜋𝜏2+1

𝜋𝜏2−1

= −𝜋𝜏2 .

Thus, (7.8) becomes
(
𝐴̄(𝜆) − 𝜂2

)
(𝐴(𝜆) −

1

𝜂2
) = 2𝜋𝜏2

and therefore (𝜋𝜏2) = (𝜋) = ℘2 yields that
(
𝐴̄(𝜆) − 𝜂2

)
(𝐴(𝜆) −

1

𝜂2
) ≡ 0 (mod℘2

2
).

It follows that
𝐴̄(𝜆) ≡ 𝜂2 or 𝐴(𝜆) ≡ 1

𝜂2
(mod 𝔮), (7.10)

for each prime divisor 𝔮 of ℘2 in 𝐹1 = ℚ(𝜂). But 𝐴(𝜆) = −1∕𝐴̄(𝜆) and 𝜂 are
units, so the second congruence in (7.10) implies the first. This proves that

𝐴̄(𝜆) ≡ 𝜂2 (mod℘2) (7.11)

in 𝐹1. Note that 𝐴̄(𝜆) and 𝜆 = −𝑣(−1∕𝑤) are roots of 𝑓𝑑(𝑥) (Proposition 6.5),
so 𝐹2 = ℚ(𝜆) is isomorphic to 𝐹1 = ℚ(𝜂) = ℚ(𝑣(𝑤∕8)). However, by (3.4),

𝜆2 = 𝑣2(−1∕𝑤) =
−𝑣(𝑤∕8)2 + 𝜎2

1 − 𝜎2𝑣(𝑤∕8)2
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does not lie in 𝐹1, since
√
2 ∉ 𝐹1 (otherwise ℘2 would be ramified in 𝐹1; note

that 𝑣(𝑤∕8) is not a fourth root of unity, so the determinant of the linear frac-
tional transformation in 𝜎2 is nonzero). It follows that from Theorem 6.1 that

𝐹2 = ℚ(𝜆) = Σ℘3
2
Ω𝑓.

The same argument now shows that 𝐴̄(𝜆) = −𝜆+𝜎

𝜎𝜆+1
∉ 𝐹2, so 𝐴̄(𝜆) ∈ 𝐹1. There-

fore, 𝜓 ∶ 𝜂 → 𝐴̄(𝜆) is an automorphism of 𝐹1, and since ℘2 is not ramified in
𝐹1 but℘′

2
is, it follows that 𝜓 fixes℘2, implying that it fixes the field 𝐾.

Recalling the rational function 𝑗2(𝑥) from (5.6), a computation on Maple
shows that

𝑗2 ((
1 − 𝜈

1 + 𝜈
)

2

) = 𝑗2(𝜈
2) = 𝑗2(𝑣

2(𝑤∕4)) = 𝑗(𝑤∕4),

by (5.7). Now Proposition 3.3 and the fact that 𝐴̄(𝑥) has order 2 imply that
𝑣(𝑤∕4) = 𝐴̄(𝑣(−1∕𝑤)) and

1 − 𝑣(𝑤∕4)

1 + 𝑣(𝑤∕4)
=
1 − 𝐴̄(𝑣(−1∕𝑤))

1 + 𝐴̄(𝑣(−1∕𝑤))

=
𝑣(−1∕𝑤) + 𝜎

−𝜎𝑣(−1∕𝑤) + 1

= 𝐴̄(−𝑣(−1∕𝑤)) = 𝐴̄(𝜆). (7.12)

This implies that

𝑗2(𝐴̄(𝜆)
2) = 𝑗2 ((

1 − 𝜈

1 + 𝜈
)

2

) = 𝑗(𝑤∕4).

On the other hand, equation (5.7) gives

𝑗(𝑤∕8)𝜓 = 𝑗2(𝜂
2𝜓) = 𝑗2(𝐴̄(𝜆)

2) = 𝑗(𝑤∕4) = 𝑗(𝑤∕8)𝜏2 .

Hence 𝜓|Ω𝑓
= 𝜏2|Ω𝑓

. It follows that 𝜓 = 𝜏2 or 𝜓 = 𝜌𝜏2, where 𝜌 ∶ 𝜂 → −1∕𝜂 is
the nontrivial automorphism of 𝐹1∕Ω𝑓. If 𝜓 = 𝜌𝜏2, then by (7.11)

𝜂𝜓 = 𝐴̄(𝜆) ≡ 𝜂2 (mod℘2)

and 𝜂𝜏2 ≡ 𝜂2 (mod℘2) imply that

𝜂2 ≡ 𝜂𝜌𝜏2 =
−1

𝜂𝜏2
≡

1

𝜂2
(mod℘2).

It follows from this congruence that 𝜂4 + 1 ≡ (𝜂 + 1)4 ≡ 0mod℘2 and hence
𝜂 ≡ 1 (mod ℘2), since ℘2 is unramified in 𝐹1∕𝐾. This implies in turn that
𝑧 = 𝜂 − 𝜂−1 ≡ 0 (mod℘2). But this contradicts (4.3) (with 𝜏 = 𝑤∕8) and (6.3),
according to which 𝑧 = 2∕𝜋 is relatively prime to ℘2. Hence, 𝜓 = 𝜏2 must be
the Artin symbol for℘2 in 𝐹1∕𝐾. This completes the proof. □
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Corollary 7.4. Assume 𝑐 is odd. If 𝜏2 = (
Σ℘′3

2
Ω𝑓∕𝐾

℘2

), then

𝑣(𝑤∕8)𝜏2 =
1 − 𝑣(𝑤∕4)

1 + 𝑣(𝑤∕4)

and
𝑓(𝑣(𝑤∕8), 𝑣(𝑤∕8)𝜏2) = 0.

Proof. The first formula is immediate from 𝜂𝜓 = 𝜂𝜏2 = 𝐴̄(𝜆) and (7.12). The
second follows from Proposition 3.1 and

𝑓(𝑣(𝑤∕8), 𝑣(𝑤∕4)) = 0 = 𝑓 (𝑣(𝑤∕8),
1 − 𝑣(𝑤∕4)

1 + 𝑣(𝑤∕4)
) ,

since
𝑓 (𝑥,

1 − 𝑦

1 + 𝑦
) =

2𝑓(𝑥, 𝑦)

(1 + 𝑦)2
.

□

Theorem 7.5. If 𝑐 is even, then

𝑣(𝑤∕8)𝜏2 =
𝑣(𝑤∕4) − 1

𝑣(𝑤∕4) + 1

and
𝑣(−1∕𝑤) = 𝐵(𝑣(𝑤∕8)𝜏2) =

𝑣(𝑤∕8)𝜏2 + 𝜎

𝜎𝑣(𝑤∕8)𝜏2 − 1
.

Proof. From Proposition 3.3, we have that
𝑣(−1∕𝑤) = 𝐴̄(𝑣(𝑤∕4)) = −𝐵(−𝑣(𝑤∕4)),

where
𝐵(𝑥) =

𝑥 + 𝜎

𝜎𝑥 − 1
= −

−(−𝑥) + 𝜎

𝜎(−𝑥) + 1
= −𝐴̄(−𝑥).

Hence, according to (7.12), we obtain

𝑣(𝑤∕8)𝜏2 =
𝑣(𝑤∕4) − 1

𝑣(𝑤∕4) + 1
= 𝐵(𝑣(−1∕𝑤)) ⟺ 𝑣(−1∕𝑤) = 𝐵(𝑣(𝑤∕8)𝜏2),

showing that both the statements in the theorem are equivalent. We now show
that Proposition 6.6 implies that 𝑣(𝑤∕8) and 𝑣(−1∕𝑤) are conjugate algebraic
integers.
In similar fashion to (7.6), we set

𝜂 = 𝑣(𝑤∕8), 𝜆̃ = 𝑣(−1∕𝑤) = −𝜆, 𝜈 = 𝑣(𝑤∕4).

Then, according to (7.7), we get

2𝜆̃

1 − 𝜆̃2
= −

2 − (
1

𝜈
− 𝜈)

2 + (
1

𝜈
− 𝜈)

= −

2 −
2

𝔭(2𝑤)

2 +
2

𝔭(2𝑤)

= −
1 + 𝜋𝜏2

1 − 𝜋𝜏2
=
𝜋𝜏2 + 1

𝜋𝜏2 − 1
.
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Since 𝜋𝜏2+1

𝜋𝜏2−1
is a root of 𝑏𝑑(𝑥), we have that

𝑓𝑑(𝜆̃) = 2−ℎ(𝜆̃2 − 1)2ℎ𝑏𝑑 (
2𝜆̃

1 − 𝜆̃2
) = 0,

showing that 𝜆̃ = 𝑣(−1∕𝑤) is a conjugate of 𝜂 = 𝑣(𝑤∕8).

Now,

𝐵(𝜆̃) − 𝜂2 =
𝜆̃ + 𝜎

𝜎𝜆̃ − 1
−

𝜎2 − 𝜆̃2

1 − 𝜎2𝜆̃2
=

𝜆 − 𝜎

𝜎𝜆 + 1
−

𝜎2 − 𝜆2

1 − 𝜎2𝜆2

=
(𝜆 − 𝜎)(𝜎𝜆 − 1) + (𝜎2 − 𝜆2)

𝜎2𝜆2 − 1

=
(𝜎 − 1)𝜆2 − (𝜎2 + 1)𝜆 + (𝜎2 + 𝜎)

(𝜎𝜆 + 1)(𝜎𝜆 − 1)

=
−
√
2𝜎(𝜆2 + 2𝜆 − 1)

𝜎2(𝜆 − 𝜎̄)(𝜆 + 𝜎̄)

=
−
√
2𝜎(𝜆 − 𝜎)(𝜆 − 𝜎̄)

𝜎2(𝜆 − 𝜎̄)(𝜆 + 𝜎̄)

=

√
2 𝜎̄(𝜆̃ + 𝜎)

(𝜆̃ − 𝜎̄)
.

In the above calculation, mapping
√
2 to −

√
2, while fixing 𝜆̃, gives us

𝐵̄(𝜆̃) −
1

𝜂2
= −

√
2𝜎(𝜆̃ + 𝜎̄)

(𝜆̃ − 𝜎)
.

Multiplying the above two expressions gives us

(
𝐵(𝜆̃) − 𝜂2

)
(𝐵̄(𝜆̃) −

1

𝜂2
) = 2

(𝜆̃ + 𝜎)(𝜆̃ + 𝜎̄)

(𝜆̃ − 𝜎)(𝜆̃ − 𝜎̄)
= 2

𝜆̃2 − 2𝜆̃ − 1

𝜆̃2 + 2𝜆̃ − 1

= 2

1 +
( 2𝜆̃

1−𝜆̃2

)

1 −
( 2𝜆̃

1−𝜆̃2

) = 2

1 +
(𝜋𝜏2+1

𝜋𝜏2−1

)

1 −
(𝜋𝜏2+1

𝜋𝜏2−1

) = −2𝜋𝜏2 .

Now a similar argument to the end of the proof of Theorem 7.3 applies here and
shows that the automorphism 𝜓 on 𝐹1 taking 𝜂 to 𝜆̃ is 𝜂𝜓 = 𝐵(𝜆̃). As before, 𝜓
coincides with 𝜏2, giving that 𝜆̃ = 𝑣(−1∕𝑤) = 𝐵(𝜂𝜏2) = 𝐵(𝑣(𝑤∕8)𝜏2). Also see
the argument below. □

Corollary 7.6. If 𝑐 is even, the point (𝑥, 𝑦) = (−𝜂,−𝜂𝜏2) lies on the curve𝑓(𝑥, 𝑦) =
0:

𝑓(−𝑣(𝑤∕8), −𝑣(𝑤∕8)𝜏2) = 0, 𝜏2 = (
Σ℘′3

2
Ω𝑓∕𝐾

℘2

) .
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Proof. We have

0 = 𝑓(𝑣(𝑤∕8), 𝑣(𝑤∕4)) = 𝑓 (𝑣(𝑤∕8), −
𝑣(𝑤∕4) − 1

𝑣(𝑤∕4) + 1
)

= 𝑓(𝑣(𝑤∕8), −𝑣(𝑤∕8)𝜏2) = 𝑓(−𝑣(𝑤∕8), −𝑣(𝑤∕8)𝜏2).

□

Combining the arguments in the proofs of Theorems 7.3 and 7.5 for 𝑐 odd
and 𝑐 even yields the following corollary.

Corollary 7.7. The field 𝐹2 = ℚ(𝑣(−1∕𝑤)) = Σ℘3
2
Ω𝑓 is the inertia field for the

prime ideal℘′
2
in the extension 𝐿𝒪,8∕𝐾.

We also give an alternate argument to show𝜓 = 𝜏2 in the proofs of Theorems
7.3 and 7.5. We first note that the modular function 𝑗(𝜏) can be expressed in
terms of 𝑧 = 𝑣(𝜏) −

1

𝑣(𝜏)
, namely

𝑗(𝜏) = 𝐽(𝑧) =
(𝑧8 + 240𝑧6 + 2144𝑧4 + 3840𝑧2 + 256)3

𝑧2(𝑧2 + 4)2(𝑧 − 2)8(𝑧 + 2)8
,

using Proposition 5.2. Now set 𝑧 = 𝜂−
1

𝜂
= ±

2

𝜋
, so that (𝑧,℘2) = 1. This allows

us to reduce the above formula modulo℘2, giving that

𝑗(𝑤∕8) ≡
𝑧24

𝑧22
≡ 𝑧2 (mod℘2).

This shows that 𝑗(𝑤∕8)𝜏 is conjugate to 𝑧𝜏 modulo each prime divisor 𝔭 of℘2

in Ω𝑓, for each automorphism 𝜏 ∈ Gal(Ω𝑓∕𝐾); and this implies that the class
equation𝐻−𝑑(𝑋) and theminimal polynomial 𝜇𝑑(𝑋) of 𝑧 over𝐾 are congruent:

𝐻−𝑑(𝑋) ≡ 𝜇𝑑(𝑋) (mod℘2).

A theoremofDeuring says that the discriminant of𝐻−𝑑(𝑋) is odd (since (
−𝑑

2
) =

+1), so the discriminant of 𝜇𝑑(𝑋) is not divisible by ℘2. This implies that the
discriminant of the minimal polynomial 𝜇̃𝑑(𝑋) = 𝑋ℎ(−𝑑)𝜇𝑑

(
𝑋 −

1

𝑋

)
of 𝜂 over

𝐾 is relatively prime to℘2, as well. This is because

𝜇𝑑(𝑋) =

ℎ(−𝑑)∏

𝑖=1

(𝑋 − (𝜂𝑖 −
1

𝜂𝑖
))

is a product over the conjugates 𝑧𝑖 = 𝜂𝑖 −
1

𝜂𝑖
of 𝑧, so that

𝑋ℎ(−𝑑)𝜇𝑑 (𝑋 −
1

𝑋
) =

ℎ(−𝑑)∏

𝑖=1

(𝑋2 − (𝜂𝑖 −
1

𝜂𝑖
)𝑋 − 1),

=

ℎ(−𝑑)∏

𝑖=1

(𝑋2 − 𝑧𝑖𝑋 − 1), 𝑧𝑖 = 𝜂𝑖 −
1

𝜂𝑖
.
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Hence,

disc(𝜇̃𝑑(𝑋)) =
ℎ(−𝑑)∏

𝑖=1

(𝑧2
𝑖
+ 4)

∏

𝑖<𝑗

Res(𝑋2 − 𝑧𝑖𝑋 − 1,𝑋2 − 𝑧𝑗𝑋 − 1)2

=

ℎ(−𝑑)∏

𝑖=1

(𝑧2
𝑖
+ 4)

∏

𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)
4

=

ℎ(−𝑑)∏

𝑖=1

(𝑧2
𝑖
+ 4) (disc(𝜇𝑑(𝑋)))2.

Now the 𝑧𝑖 are conjugate over 𝐾, so each 𝑧𝑖 is relatively prime to℘2, which im-
plies that (𝑧2

𝑖
+4,℘2) = 1 for each 𝑖. This proves the claim that (disc(𝜇̃𝑑(𝑋)),℘2)

= 1. This proves

Theorem 7.8. LetR℘2
denote the ring of elements of𝐾 which are integral for℘2.

Then the powers of 𝜂 = 𝑣(𝑤∕8) form a basis over R℘2
for the ring R of elements of

𝐹1 = ℚ(𝜂) which are integral for℘2.

Given this theorem, the congruence

𝜂𝜓 ≡ 𝜂2 (mod℘2)

implies that
𝛼𝜓 ≡ 𝛼2 (mod℘2),

for all 𝛼 ∈ 𝐹1 which are integral for ℘2. Since 𝐹1∕𝐾 is abelian and ℘2 is un-
ramified in this extension, this implies by definition of the Artin symbol that
𝜓 = 𝜏2.

8. Values of 𝒗(𝝉) as periodic points.
We now define the following algebraic functions. The roots of 𝑓(𝑥, 𝑦) =

𝑦2 + (𝑥2 − 1)𝑦 + 𝑥2 (see Proposition 3.1) as a function of 𝑦 are

𝐹̂(𝑥) = −
𝑥2 − 1

2
±
1

2

√
𝑥4 − 6𝑥2 + 1. (8.1)

Also, the roots of 𝑔(𝑥, 𝑦) = 𝑦2 − (𝑥2 − 4𝑥 + 1)𝑦 + 𝑥2 (see Proposition 3.2) are
given by

𝑇̂(𝑥) =
1

2
(𝑥2 − 4𝑥 + 1) ±

1

2

√
(𝑥2 − 2𝑥 + 1)(𝑥2 − 6𝑥 + 1)

=
1

2
(𝑥2 − 4𝑥 + 1) ±

𝑥 − 1

2

√
𝑥2 − 6𝑥 + 1. (8.2)

We prove the following.

Theorem 8.1. If 𝑤 ∈ 𝑅𝐾 is the algebraic integer defined by

𝑤 =
𝑎 +

√
−𝑑

2
, with 𝑎2 + 𝑑 ≡ 0 (mod 25)
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and the integer 𝑐 satisfies

𝑐 ≡ 1 −
𝑎2 + 𝑑

32
(mod 2),

then the generator (−1)1+𝑐𝑣(𝑤∕8) of the field Σ℘′3
2
Ω𝑓 overℚ is a periodic point of

the algebraic function 𝐹̂(𝑥) defined by (8.1) and 𝑣2(𝑤∕8) is a periodic point of the
function 𝑇̂(𝑥) defined by (8.2). If 𝑐 is even, then 𝑣(𝑤∕8) is a pre-periodic point of
𝐹̂(𝑥).

Proof. Setting 𝜂 = (−1)1+𝑐𝑣(𝑤∕8) and 𝐹1 = ℚ(𝜂) = ℚ(𝜂2), we have from the

corollaries to Theorems 7.3 and 7.5 that 𝑓(𝜂, 𝜂𝜏2) = 0, where 𝜏2 = (
𝐹1∕𝐾

℘2

) is

an automorphism in Gal(𝐹1∕𝐾). If the order of 𝜏2 is 𝑛, then applying powers of
𝜏2 gives that

𝑓(𝜂, 𝜂𝜏2) = 𝑓(𝜂𝜏2 , 𝜂𝜏
2
2 ) = ⋯ = 𝑓(𝜂𝜏

𝑛−1
2 , 𝜂) = 0, (8.3)

which implies that 𝜂 is a periodic point of 𝐹̂(𝑥) of period 𝑛. If 𝑐 is even, then
from Corollary 7.6 and the fact that 𝑓(𝑥, 𝑦) = 𝑓(−𝑥, 𝑦) we also have that

𝑓(𝑣(𝑤∕8), −𝑣(𝑤∕8)𝜏2) = 0;

thus, 𝑣(𝑤∕8) is a pre-periodic point of 𝐹̂(𝑥), since −𝑣(𝑤∕8)𝜏2 is periodic.

It is straightforward to check that

𝐹̂(𝑥)2 =
1

2
(𝑥4 − 4𝑥2 + 1) ±

1

2
(𝑥2 − 1)

√
𝑥4 − 6𝑥2 + 1 = 𝑇̂(𝑥2) (8.4)

and that the minimal polynomial of 𝐹̂(𝑥)2 over ℚ(𝑥) is 𝑔(𝑥2, 𝑦). In particular,
𝑓(𝑥, 𝑦) = 0 implies that 𝑔(𝑥2, 𝑦2) = 0, since

𝑔(𝑥2, 𝑦2) = (−𝑥2𝑦 + 𝑥2 + 𝑦2 + 𝑦)(𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦) = 𝑓(𝑥, −𝑦)𝑓(𝑥, 𝑦).

Hence, (8.3) implies that

𝑔(𝜂2, 𝜂2𝜏2) = 𝑔(𝜂2𝜏2 , 𝜂2𝜏
2
2 ) = ⋯ = 𝑔(𝜂2𝜏

𝑛−1
2 , 𝜂2) = 0, (8.5)

which shows that 𝜂2 = 𝑣(𝑤∕8)2 is a periodic point of 𝑇̂(𝑥). □

Remarks.
1. Note that if 𝑐 is even, meaning that 25 || 𝑎2 + 𝑑, then 26 ∣ (𝑎 + 16)2 + 𝑑,

so that 𝑤 + 8 =
𝑎+16+

√
−𝑑

2
= 𝑤′ satisfies (6.1) with 𝑐 odd. Then the infinite

product formula for 𝑣(𝜏) shows that 𝑣(𝑤∕8) = 𝑣(𝑤′∕8−1) = −𝑣(𝑤′∕8), and
−𝑣(𝑤∕8) = 𝑣(𝑤′∕8) in Corollary 7.6.

2. Given that 𝑓(𝑣(𝜏), 𝑣(2𝜏)) = 0, it is tempting to try to show that 𝑣(𝑤∕8) is a
periodic point by considering the chain of equations

𝑓(𝑣(𝑤∕8), 𝑣(𝑤∕4)) = 𝑓(𝑣(𝑤∕4), 𝑣(𝑤∕2)) = ⋯ = 𝑓(𝑣(2𝑛−1𝑤∕8), 𝑣(2𝑛𝑤∕8)) = 0,

and find an integer 𝑛 for which 2𝑛−3𝑤 = 𝑀(𝑤∕8) =
𝑎𝑤+8𝑏

𝑐𝑤+8𝑑
, for some uni-

modular matrix𝑀 for which 𝑣(𝑀(𝑤∕8)) = 𝑣(𝑤∕8). However, this requires
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that𝑀 ∈ Γ1(8), so that 𝑎 ≡ 1 (mod 8) and 8 ∣ 𝑐. This condition leads to the
equation

2𝑛−3𝑐𝑤2 + (2𝑛𝑑 − 𝑎)𝑤 − 8𝑏 = 0.

Moreover, 𝑤 is an algebraic integer, so the fact that 8 ∣ 𝑐 shows that 2𝑛 must
divide the other coefficients of this quadratic. Hence, 2𝑛 ∣ 𝑎, which is im-
possible for 𝑛 ≥ 1. Thus, this approach does not yield an orbit leading back
to 𝑣(𝑤∕8).

As in the papers [15]-[18], the minimal polynomials of periodic points of
𝐹̂(𝑥) can be computed using iterated resultants involving its minimal polyno-
mial 𝑓(𝑥, 𝑦). We set

𝑅(1)(𝑥, 𝑥1) = 𝑓(𝑥, 𝑥1) = 𝑥2𝑥1 + 𝑥2 + 𝑥2
1
− 𝑥1

and define, inductively,

𝑅(𝑛)(𝑥, 𝑥𝑛) = Res𝑥𝑛−1(𝑅
(𝑛−1)(𝑥, 𝑥𝑛−1), 𝑓(𝑥𝑛−1, 𝑥𝑛)) 𝑛 ≥ 2.

Then the roots of the polynomial

𝑅𝑛(𝑥) = 𝑅(𝑛)(𝑥, 𝑥), 𝑛 ≥ 1,

are the periodic points of 𝐹̂(𝑥)whoseminimal periods divide 𝑛. See [15, p. 727].
For example, we compute that

𝑅1(𝑥) = 𝑥(𝑥2 + 2𝑥 − 1),

𝑅2(𝑥) = 𝑥(𝑥2 + 2𝑥 − 1)(𝑥4 − 𝑥3 + 𝑥 + 1),

𝑅3(𝑥) = 𝑥(𝑥2 + 2𝑥 − 1)(𝑥12 − 5𝑥11 + 2𝑥10 + 10𝑥9 + 5𝑥8 + 23𝑥7

− 8𝑥6 − 23𝑥5 + 5𝑥4 − 10𝑥3 + 2𝑥2 + 5𝑥 + 1),

𝑅4(𝑥) = 𝑥(𝑥2 + 2𝑥 − 1)(𝑥4 − 𝑥3 + 𝑥 + 1)(𝑥8 − 𝑥7 + 𝑥6 − 5𝑥5 + 5𝑥3 + 𝑥2 + 𝑥 + 1)

× (𝑥16 + 5𝑥15 − 18𝑥14 − 75𝑥13 + 137𝑥12 + 105𝑥11 + 38𝑥10 + 185𝑥9

− 300𝑥8 − 185𝑥7 + 38𝑥6 − 105𝑥5 + 137𝑥4 + 75𝑥3 − 18𝑥2 − 5𝑥 + 1).

We now set 𝑥 = 𝑧 + 3 in the function 𝑇̂(𝑥), so that the square-root in 𝑇̂(𝑥)
has the 2-adic expansion

√
𝑥2 − 6𝑥 + 1 =

√
𝑧2 − 8 = 𝑧

√

1 −
8

𝑧2
= 𝑧

∞∑

𝑘=0

(−1)𝑘 (
1∕2

𝑘
)
8𝑘

𝑧2𝑘
.

We will show that this series is 2-adically convergent for (roughly) half of the
primitive periodic points of the algebraic function 𝑇̂(𝑥) of a given period 𝑛 in
the field K2(

√
2), where K2 is the maximal unramified, algebraic extension of

the 2-adic field ℚ2.

If we set
𝑇(𝑥) =

1

2
(𝑥2 − 4𝑥 + 1) +

𝑥 − 1

2

√
𝑥2 − 6𝑥 + 1,
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then using the above series in 𝑇(𝑥) and splitting off the 𝑘 = 0 term, we find

𝑇(𝑥) = 𝑥2 − 4𝑥 + 2 + (𝑥 − 1)(𝑥 − 3)

∞∑

𝑘=1

(−1)𝑘22𝑘−1 (
1∕2

𝑘
)

2𝑘

(𝑥 − 3)2𝑘
,

for 𝑥 − 3 ∈ 𝒪×, where 𝒪 is the ring of integers in K2(
√
2). Since

(−1)𝑘−122𝑘−1 (
1∕2

𝑘
) = 𝐶𝑘−1 ∈ ℤ

is the Catalan sequence, it follows that

𝑇(𝑥) ≡ 𝑥2 (mod 2), 𝑥 − 3 ∈ 𝒪×.

Hence, 𝑇(𝑥) is a lift of the Frobenius automorphism for points 𝑥 in the set

D = {𝑥 ∈ K2(
√
2) ∶ |𝑥 − 3|2 = 1}.

Furthermore,

𝑇(𝑥) − 3 = (𝑥 − 3)2 + 2(𝑥 − 3) − 4 − (𝑥 − 1)(𝑥 − 3)

∞∑

𝑘=1

𝐶𝑘−1
2𝑘

(𝑥 − 3)2𝑘
.

It follows that
|𝑇(𝑥) − 3|2 = |𝑥 − 3|2

2
= 1, (8.6)

and 𝑇 maps D to itself.

We next prove

Proposition 8.2. We have the congruences

𝑅(𝑛)(𝑥, 𝑥𝑛) ≡ (𝑥2
𝑛

+ 𝑥𝑛)(𝑥𝑛 + 1)2
𝑛−1 (mod 2);

𝑅𝑛(𝑥) ≡ (𝑥2
𝑛

+ 𝑥)(𝑥 + 1)2
𝑛−1 (mod 2).

Proof. We have 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦. So, for 𝑛 = 1, we get

𝑅(1)(𝑥, 𝑥1) = 𝑓(𝑥, 𝑥1) = 𝑥2𝑥1 + 𝑥2 + 𝑥2
1
− 𝑥1

≡ 𝑥2𝑥1 + 𝑥2 + 𝑥2
1
+ 𝑥1 (mod 2)

≡ (𝑥2 + 𝑥1) (𝑥1 + 1) (mod 2).

Hence,
𝑅1(𝑥) ≡ (𝑥2 + 𝑥) (𝑥 + 1) (mod 2).

Now for the induction step, assume the result is true for 𝑛 − 1. Then,

𝑅(𝑛)(𝑥, 𝑥𝑛) = Res𝑥𝑛−1(𝑅
(𝑛−1)(𝑥, 𝑥𝑛−1), 𝑓(𝑥𝑛−1, 𝑥𝑛))

≡ Res𝑥𝑛−1((𝑥
2𝑛−1 + 𝑥𝑛−1)(𝑥𝑛−1 + 1)2

𝑛−1−1, (𝑥2
𝑛−1

+ 𝑥𝑛)(𝑥𝑛 + 1)) (mod 2).
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By definition, the resultant of two polynomials 𝑓 =

𝑛∑

𝑖=0

𝑎𝑖𝑥
𝑖 and 𝑔 =

𝑚∑

𝑖=0

𝑏𝑖𝑥
𝑖,

having roots 𝛼1, 𝛼2, … , 𝛼𝑛 and 𝛽1, 𝛽2, … , 𝛽𝑚, respectively, is given by

Res(𝑓, 𝑔) = 𝑎𝑚𝑛

𝑛∏

𝑖=1

𝑔(𝛼𝑖),

and
Res(𝑔, 𝑓) = (−1)𝑚𝑛Res(𝑓, 𝑔).

The roots of (𝑥2
𝑛−1

+ 𝑥𝑛) (𝑥𝑛 + 1), as a polynomial in 𝑥𝑛−1, are ±
√
−𝑥𝑛. Hence,

Res𝑥𝑛−1((𝑥
2𝑛−1 + 𝑥𝑛−1)(𝑥𝑛−1 + 1)2

𝑛−1−1, (𝑥2
𝑛−1

+ 𝑥𝑛)(𝑥𝑛 + 1))

= (−1)2
𝑛−1⋅2

(
𝑥𝑛 + 1

)2𝑛−1(
𝑥2

𝑛−1

+
√
−𝑥𝑛

)(√
−𝑥𝑛 + 1

)2𝑛−1−1

×
(
𝑥2

𝑛−1

−
√
−𝑥𝑛

)(
−
√
−𝑥𝑛 + 1

)2𝑛−1−1

= (−1)2
𝑛(
𝑥𝑛 + 1

)2𝑛−1(
𝑥2

𝑛

+ 𝑥𝑛
)(
𝑥𝑛 + 1

)2𝑛−1−1

=
(
𝑥2

𝑛

+ 𝑥𝑛
)(
𝑥𝑛 + 1

)2𝑛−1
.

Hence, we obtain

𝑅(𝑛)(𝑥, 𝑥𝑛) ≡ (𝑥2
𝑛

+ 𝑥𝑛)(𝑥𝑛 + 1)2
𝑛−1 (mod 2),

𝑅𝑛(𝑥) ≡ (𝑥2
𝑛

+ 𝑥)(𝑥 + 1)2
𝑛−1 (mod 2),

completing the induction. □

Corollary 8.3. The degree of 𝑅𝑛(𝑥) is deg(𝑅𝑛(𝑥)) = 2𝑛+1 − 1.

Proof. This follows from the proposition, if the leading coefficient of 𝑅𝑛(𝑥) is
not divisible by 2. In fact, this follows from the relation

𝑅(𝑛)(𝑥, 𝑥𝑛) = 𝐴𝑛(𝑥𝑛)𝑥
2𝑛 + 𝑆𝑛(𝑥, 𝑥𝑛),

where for 𝑛 ≥ 3,

𝐴𝑛(𝑥𝑛) = (𝑥𝑛 + 1)(𝑥2𝑛 + 1)(𝑥2𝑛 − 2𝑥𝑛 − 1)2(𝑥2𝑛 + 2𝑥𝑛 − 1)2
𝑛−1−4

and for 𝑛 ≥ 1,

deg(𝐴𝑛(𝑥𝑛)) = 2𝑛 − 1, deg
𝑥
(𝑆𝑛(𝑥, 𝑥𝑛)) ≤ 2𝑛 − 2, deg

𝑥𝑛
(𝑆𝑛(𝑥, 𝑥𝑛)) = 2𝑛.

We refer the reader to the lemma in [15, pp. 727-728] for a similar proof. □

The roots of the factor 𝑥2𝑛 +𝑥 = 𝑥(𝑥 + 1)
𝑥2

𝑛−1+1

𝑥+1
= 𝑥(𝑥 + 1)ℎ𝑛(𝑥) other than

𝑥 = 0, 1 have degree greater than 1, and therefore satisfy 𝑥 − 3 ≢ 0 (mod 2). It
follows fromHensel’s Lemma that 2𝑛 −1 of the roots of 𝑅𝑛(𝑥) overℚ2 have the
property that 𝑥 − 3 ∈ 𝒪×, and for these roots the series for 𝑇(𝑥) converges in
K2.
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Now the argument at the end of the proof of Theorem 7.3 shows that 𝜂 ≢ 1

(mod ℘2), so that the image of 𝜂 in the completion 𝐹1,𝔮 ⊂ K2 of 𝐹1 = Σ℘′3
2
Ω𝑓

with respect to a prime divisor 𝔮 of℘2 in 𝐹1 satisfies 𝜂2 − 3 ∈ 𝒪×. Hence, the
series for 𝑇(𝜂2) converges. We claim now that 𝜂2𝜏2 = 𝑇(𝜂2). But 𝑔(𝜂2, 𝜂2𝜏2) = 0

implies that 𝜂2𝜏2 is one of the values of 𝑇̂(𝜂2). The value different from 𝑇(𝜂2) in
K2 is

𝑇1(𝜂
2) = 𝜂4 − 4𝜂2 + 1 − 𝑇(𝜂2)

≡ 𝜂4 − 4𝜂2 + 1 − 𝜂4 (mod 𝔮)
≡ 1 (mod 𝔮).

But we also know 𝜂2𝜏2 − 3 = (𝜂2 − 3)𝜏2 ∈ 𝒪×, so that 𝜂2𝜏2 ≠ 𝑇1(𝜂
2). This yields

the following.

Theorem 8.4. If 𝑤 satisfies (6.1), then the value 𝜂 = 𝑣(𝑤∕8) and the automor-

phism 𝜏2 = (
𝐹1∕𝐾

℘2

) satisfy

𝜂2𝜏2 = 𝑇(𝜂2),

in the completion 𝐹1,𝔮 ⊂ K2 of 𝐹1 = Σ℘′3
2
Ω𝑓 with respect to a prime divisor 𝔮 of

℘2 in 𝐹1, where

𝑇(𝑥) = 𝑥2 − 4𝑥 + 2 − (𝑥 − 1)(𝑥 − 3)

∞∑

𝑘=1

𝐶𝑘−1
2𝑘

(𝑥 − 3)2𝑘

converges for 𝑥 in D = {𝑥 ∈ K2(
√
2) ∶ |𝑥 − 3|2 = 1}.

Since 𝜏2 fixes the prime divisors of ℘2, it extends naturally to an automor-
phism of 𝐹1,𝔮, and can be applied to the individual terms of the series represent-
ing 𝑇(𝑥). Thus, we see inductively that

𝜂2𝜏
𝑖
2 = 𝑇(𝜂2𝜏

𝑖−1
2 ) = 𝑇(𝑇𝑖−1(𝜂2)) = 𝑇𝑖(𝜂2)

is the 𝑖-th iterate of𝑇(𝑥) applied to 𝜂2. From this and the fact thatℚ(𝜂2) = 𝐹1we
see that the order of 𝜏2 in Gal(𝐹1∕𝐾) is the minimal period of the periodic point
𝜂2, and that 𝜂2 is a periodic point in the ordinary sense of the 2-adic function𝑇(𝑥).
This also shows that theminimal period of 𝜂with respect to 𝐹̂(𝑥) is 𝑛 = ord(𝜏2),
since if 𝜂 had smaller minimal period 𝑚, then by the proof of Theorem 8.1, 𝜂2
would have period 𝑚 < 𝑛 with respect to the function 𝑇(𝑥). This completes
the proof of the assertions of Theorem B of the Introduction regarding minimal
periods.

9. The periodic points of 𝑭̂(𝒙) and a class number formula.

In this section we show that the only periodic points of 𝐹̂(𝑥) are the values
given in Theorem 8.1. In fact, we will prove the following.
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Theorem 9.1. The only periodic points of the function 𝐹̂(𝑥) in ℚ are the fixed
points 0, 𝜎, 𝜎̄ and the conjugates overℚ of the values 𝑣(𝑤∕8) in Theorem 8.1 (for
odd 𝑐).

Proof. Let 𝑔(𝑥, 𝑦) = 𝑥2𝑦2+2𝑦+𝑥2. Note that 𝑔(𝑥, 𝑦) = 𝑔(𝑦, 𝑥) for the polyno-
mial 𝑔(𝑥, 𝑦) in [16, Thm. 2, p. 327]. By the results of that paper the numbers𝜋, 𝜉
and their conjugates overℚ (as−𝑑 ranges over all discriminants≡ 1modulo 8)
are, together with 0 and −1, the only periodic points of the algebraic function
𝔣(𝑧) defined by 𝑔(𝑧, 𝔣(𝑧)) = 0. The assertion of the theoremwill follow from the
identity

(𝑥2 − 1)2(𝑦2 − 1)2𝑔 (
2𝑥

𝑥2 − 1
,

2𝑦

𝑦2 − 1
) = 4𝑓(𝑥, 𝑦)(𝑥2𝑦2 − 𝑥2𝑦 + 𝑦 + 1). (9.1)

Here, as in Proposition 3.1, 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑥2 + 𝑦2 − 𝑦. Let 𝜂 be a periodic
point of 𝐹̂(𝑥) inℚ which is distinct from its fixed points 0, 𝜎, 𝜎̄. Then there are
𝜂1 = 𝜂, 𝜂2, … , 𝜂𝑛 in ℚ for which

𝑓(𝜂1, 𝜂2) = 𝑓(𝜂2, 𝜂3) = ⋯ = 𝑓(𝜂𝑛, 𝜂1) = 0. (9.2)

Setting 𝜆𝑖 =
2𝜂𝑖

𝜂2
𝑖
−1
, equations (9.1) and (9.2) give that

𝑔(𝜆1, 𝜆2) = 𝑔(𝜆2, 𝜆3) = ⋯ = 𝑔(𝜆𝑛, 𝜆1) = 0. (9.3)

Note that 𝜂𝑖 ≠ ±1 since ±1 are preperiodic (and not periodic) for 𝑓(𝑥, 𝑦), since

𝑓(±1, 𝑦) = 𝑦2 + 1, 𝑓(±𝑖, 𝑦) = 𝑦2 − 2𝑦 − 1, 𝑓(1 ±
√
2, 𝑦) = (𝑦 + 1 ±

√
2)2.

Equation (9.3) implies that 𝜆1 is a periodic point of the function 𝔣(𝑧) defined
above. Also, 𝜆𝑖 ≠ 0,−1 since 𝜂𝑖 ∉ {0, 𝜎, 𝜎̄}. By the results of [16, Thm. 2], this
shows that 𝜆1 must be a conjugate of the number 𝜋 for some discriminant −𝑑
and is therefore a root of the polynomial 𝑏𝑑(𝑥). (See Proposition 6.4.) Since
𝜆1 = 2𝜂∕(𝜂2 − 1), this shows that 𝜂 is a root of the minimal polynomial 𝑓𝑑(𝑥)
of 𝑣(𝑤∕8), for 𝑐 odd, by (6.7). This completes the proof. □

Remark. We can use equation (9.1) to give an alternate proof of the Corollary
to Theorem 7.3, as follows. We would like to show that 𝑓(𝜂, 𝜂𝜏2) = 0, where

𝜂 = 𝑣(𝑤∕8) and 𝜏2 = (
𝐹1∕𝐾

℘2

), with 𝐹1 = Σ℘′3
2
Ω𝑓. Since 𝜏2|Ω𝑓

= (
Ω𝑓∕𝐾

℘2

), we

know that 𝑔(𝜋, 𝜋𝜏2) = 0, by [16, pp. 332-333]. Using 𝜋 =
2𝜂

𝜂2−1
from (6.4),

equation (9.1) implies that 𝑓(𝜂, 𝜂𝜏2)𝑘(𝜂, 𝜂𝜏2) = 0, where 𝑘(𝑥, 𝑦) = 𝑥2𝑦2−𝑥2𝑦 +

𝑦 + 1. But 𝑘(𝜂, 𝜂𝜏2) ≡ 𝑘(𝜂, 𝜂2)mod℘2 in 𝐹1. An easy computation shows that
𝑘(𝑥, 𝑥2) ≡ (𝑥 + 1)6 (mod 2), so 𝑘(𝜂, 𝜂𝜏2) ≡ (𝜂 + 1)6 mod ℘2. If 𝜂 ≡ 1 modulo
some prime divisor 𝔭 of℘2 in 𝐹1, then the relation 𝜂2 −

2

𝜋
𝜂 − 1 = 0would give

that 2

𝜋
≡ 0 (mod 𝔭), which is impossible since 2

𝜋
≅ ℘′

2
. Hence, 𝑘(𝜂, 𝜂𝜏2) ≢ 0

mod℘2, which implies 𝑘(𝜂, 𝜂𝜏2) ≠ 0 and therefore 𝑓(𝜂, 𝜂𝜏2) = 0, as claimed.
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Theorem 9.1 has the following consequence. As in the last remark, let 𝐹1 =
Σ℘′3

2
Ω𝑓 be the field generated by 𝑣(𝑤∕8) in Theorem 6.1. Then [𝐹1 ∶ ℚ] =

4ℎ(−𝑑) and 𝐹1 is the inertia field for ℘2 in the field Σ8Ω𝑓, an extended ring

class field over 𝐾𝑑 = ℚ(
√
−𝑑). As in Section 7, let 𝜏2 = (

𝐹1∕𝐾𝑑

℘2

) be the Artin

symbol for℘2 in the extension 𝐹1∕𝐾𝑑. Now define the set of discriminants

𝔇𝑛,2 = {−𝑑 < 0 | − 𝑑 ≡ 1 (mod 8) and ord(𝜏2) = 𝑛 in Gal(𝐹1∕𝐾𝑑)}. (9.4)

Theorem 9.2. If 𝑛 ≥ 2, we have the following relation between class numbers of
discriminants in the set𝔇𝑛,2:

∑

−𝑑∈𝔇𝑛,2

ℎ(−𝑑) =
1

2

∑

𝑘∣𝑛

𝜇(𝑛∕𝑘)2𝑘. (9.5)

Proof. This proof mirrors the arguments in [18, pp.792-793, 806]. First, define

P𝑛(𝑥) =
∏

𝑘∣𝑛

𝑅𝑘(𝑥)
𝜇(𝑛∕𝑘). (9.6)

We show that P𝑛(𝑥) ∈ ℤ[𝑥]. From Proposition 8.2 it is clear that 𝑅𝑛(𝑥), for
𝑛 > 1, is divisible (mod 2) by the 𝑁 irreducible (monic) polynomials ℎ̄𝑖(𝑥) of
degree 𝑛 over 𝔽2, where

𝑁 =
1

𝑛

∑

𝑘∣𝑛

𝜇(𝑛∕𝑘)2𝑘,

and that these polynomials are simple factors of 𝑅𝑛(𝑥) (mod 2). It follows from
Hensel’s Lemma that𝑅𝑛(𝑥) is divisible by distinct irreducible polynomialsℎ𝑖(𝑥)
of degree 𝑛 overℤ2, the ring of integers inℚ2, for 1 ≤ 𝑖 ≤ 𝑁, with ℎ𝑖(𝑥) ≡ ℎ̄𝑖(𝑥)

(mod 2). In addition, all the roots of ℎ𝑖(𝑥) are periodic of minimal period 𝑛 and
lie in the unramified extension K2. Furthermore, 𝑛 is the smallest index for
which ℎ𝑖(𝑥) ∣ 𝑅𝑛(𝑥) over ℚ2.

Now consider the identity

(𝜎𝑥 + 1)2(𝜎𝑦 + 1)2𝑓(𝐴̄(𝑥), 𝐴̄(𝑦)) = 23𝜎2𝑓(𝑦, 𝑥), (9.7)

where 𝐴̄(𝑥) = −𝑥 + 𝜎

𝜎𝑥 + 1
, as in (3.3). If the periodic point 𝑎 of 𝐹̂(𝑥), withminimal

period 𝑛 > 1, is a root of one of the polynomials ℎ𝑖(𝑥), then 𝑎 is a unit in K2,
and for some 𝑎1, … , 𝑎𝑛−1 we have

𝑓(𝑎, 𝑎1) = 𝑓(𝑎1, 𝑎2) = ⋯ = 𝑓(𝑎𝑛−1, 𝑎) = 0. (9.8)

Furthermore, 𝑎 ≢ 1 (mod
√
2), since otherwise its reduction 𝑎 ≡ 𝑎̄ ≡ 1 (mod

2) would have degree 1 over 𝔽2 (using that K2 is unramified over ℚ2). Hence,
𝑎+1+

√
2 is a unit inK2(

√
2), which gives that 𝜎𝑎+1 is a unit, as well. All of the

𝑎𝑖 satisfy 𝑎𝑖 ≢ 1 (mod
√
2), since the congruence 𝑓(1, 𝑦) ≡ (𝑦 + 1)2 (mod 2) has
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only 𝑦 ≡ 1 as a solution. Hence, if some 𝑎𝑖 ≡ 1 (mod
√
2), then 𝑎𝑗 ≡ 1 for 𝑗 > 𝑖,

which would imply that 𝑎 ≡ 1 (mod
√
2), as well. The elements 𝑏𝑖 = 𝐴̄(𝑎𝑖) are

distinct and lie in K2(
√
2) and satisfy

𝑏𝑖 − 1 ≡
−𝑎𝑖 + 𝜎 − 𝜎𝑎𝑖 − 1

𝜎𝑎𝑖 + 1
≡

−2

𝜎𝑎𝑖 + 1
≡ 0 (mod

√
2).

The identity (9.7) yields that

𝑓(𝑏, 𝑏𝑛−1) = 𝑓(𝑏𝑛−1, 𝑏𝑛−2) = ⋯ = 𝑓(𝑏1, 𝑏) = 0 (9.9)

in K2(
√
2). Hence, 𝑏𝑖 ≡ 1 (mod

√
2), and the orbit {𝑏, 𝑏𝑛−1, … , 𝑏1} is distinct

from all the orbits in (9.8).

Now the map 𝐴̄(𝑥) has order 2, so it is clear that 𝑏 = 𝐴̄(𝑎) has minimal
period 𝑛 in (9.9), since otherwise 𝑎 = 𝐴̄(𝑏) would have period smaller than 𝑛.
It follows that there are at least 2𝑁 periodic orbits of minimal period 𝑛 > 1.
Noting that

𝑅1(𝑥) = 𝑓(𝑥, 𝑥) = 𝑥(𝑥2 + 2𝑥 − 1),

these distinct orbits and factors account for at least

3 +
∑

𝑑∣𝑛,𝑑>1

(2
∑

𝑘∣𝑑

𝜇(𝑑∕𝑘)2𝑘) = −1 + 2
∑

𝑑∣𝑛

(
∑

𝑘∣𝑑

𝜇(𝑑∕𝑘)2𝑘) = 2 ⋅ 2𝑛 − 1

roots, and therefore all the roots, of𝑅𝑛(𝑥). This shows that the roots of𝑅𝑛(𝑥) are
distinct and the expressions P𝑛(𝑥) are polynomials. Furthermore, over K2(

√
2)

we have the factorization

P𝑛(𝑥) = ±
∏

1≤𝑖≤𝑁

ℎ𝑖(𝑥)ℎ̃𝑖(𝑥), 𝑛 > 1, (9.10)

where ℎ̃𝑖(𝑥) = 𝑐𝑖(𝜎𝑥 + 1)
𝑛ℎ𝑖(𝐴̄(𝑥)), and the constant 𝑐𝑖 is chosen to make ℎ̃𝑖(𝑥)

monic.

By the results of Section 8, for each discriminant −𝑑 ∈ 𝔇𝑛,2 we have that
𝑓𝑑(𝑥) ∣ P𝑛(𝑥). Furthermore, every root of P𝑛(𝑥) is a root of some 𝑓𝑑(𝑥), by
Theorem 9.1, where 𝑜𝑟𝑑(𝜏2) = 𝑛 in order for the roots of 𝑓𝑑(𝑥) to haveminimal
period 𝑛. It follows that

P𝑛(𝑥) = 𝑐𝑛

∏

−𝑑∈𝔇𝑛,2

𝑓𝑑(𝑥),

for some constant 𝑐𝑛, and taking degrees on both sides and using (9.10) gives
the formula

2
∑

𝑘∣𝑛

𝜇(𝑛∕𝑘)2𝑘 =
∑

−𝑑∈𝔇𝑛,2

4ℎ(−𝑑).

The formula of the theorem follows. □

The result of Theorem 9.2 is the analogue of [18, Thm.1.3] for the prime 2 in
place of 5. The factor 1∕2 in front is to be interpreted as 2∕𝜙(8), replacing the
factor 2∕𝜙(5) in the result of [18]. Also, see Conjecture 1 in the Introduction of
that paper.
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Theorem 9.1 will now be used to prove the corresponding fact for the alge-
braic function 𝑇̂(𝑥) in Theorem 8.1.

Theorem 9.3. The periodic points of the function 𝑇̂(𝑥) of (8.2) in ℚ (or ℂ) are
exactly the squares of the periodic points of the function 𝐹̂(𝑥), i.e., the fixed points
0, 𝜎2, 𝜎̄2 and the conjugates overℚ of the values 𝑣2(𝑤∕8), where𝑤 is given by (6.1).

Proof. As in the proof of Theorem 8.1, the polynomials 𝑔(𝑥, 𝑦) = 𝑦2 − (𝑥2 −

4𝑥 + 1)𝑦 + 𝑥2 and 𝑓(𝑥, 𝑦) = 𝑦2 + (𝑥2 − 1)𝑦 + 𝑥2 defining 𝑇̂ and 𝐹̂, respectively,
satisfy the identity

𝑔(𝑥2, 𝑦2) = 𝑓(𝑥, −𝑦)𝑓(𝑥, 𝑦).

Let 𝜂2 be a periodic point of 𝑔(𝑥, 𝑦) of period𝑛. Then there exist 𝜂2
1
, 𝜂2

2
, … , 𝜂2

𝑛−1
∈

ℚ such that
𝑔(𝜂2, 𝜂2

1
) = 𝑔(𝜂2

1
, 𝜂2

2
) = ⋯ = 𝑔(𝜂2

𝑛−1
, 𝜂2) = 0.

This means that, for every 𝑖 = 0, 1, … , 𝑛 − 1, either

𝑓(𝜂𝑖, 𝜂𝑖+1) = 0 or 𝑓(𝜂𝑖, −𝜂𝑖+1) = 0, where 𝜂0 = 𝜂 = 𝜂𝑛.

Now if 𝑓(𝜂𝑖, 𝜂𝑖+1) = 0 for all 𝑖, then 𝜂 is a periodic point of 𝐹̂(𝑥).

Otherwise, there exists an 𝑖 such that 𝑓(𝜂𝑖, 𝜂𝑖+1) ≠ 0, but 𝑓(𝜂𝑖, −𝜂𝑖+1) = 0. In
this case, if 𝑖 < 𝑛−1, replace 𝜂𝑖+1 by−𝜂𝑖+1 in the next equation of the sequence,
yielding 𝑓(−𝜂𝑖+1, 𝜂𝑖+2) = 0. And if this happens for 𝑖 = 𝑛 − 1, then simply
replace 𝜂 by −𝜂. This works because 𝑓(−𝑥, 𝑦) = 𝑓(𝑥, 𝑦). In other words, in the
chain of equations for 𝑓, whenever the second argument has a negative sign,
choose the next first argument with the same negative sign. And in case the
last equation has second argument 𝜂 with a negative sign, then choose the first
argument of the first equation as −𝜂 also. Hence, there is a chain of equations
𝑓(𝜂𝑖, 𝜂𝑖+1) = 0 beginning and ending with ±𝜂. Hence, ±𝜂 is a periodic point
of 𝐹̂(𝑥) in either case, which implies that 𝜂2 is the square of a periodic point of
𝐹̂(𝑥). This completes the proof. □

With this theorem, we have completely proved all the statements in Theorem
B of the Introduction.

10. Appendix
Here we give a proof of the relation between 𝑢(𝜏) and 𝑣(𝜏) that was used in

the proof of Proposition 3.1b).

Proposition 10.1. The following relation holds between 𝑢(𝜏) and 𝑣(𝜏):

𝑢4(𝑣2 + 1)2 + 4𝑣(𝑣2 − 1) = 0.
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Proof. We have derived in the proof of Proposition 4.1 that

1

𝑣(𝜏)
− 𝑣(𝜏) = 𝑞−1∕2

(−𝑞2; 𝑞4)2∞

(−𝑞4; 𝑞4)2∞
.

Proceeding in a similar way, we obtain

1

𝑣(𝜏)
+ 𝑣(𝜏) =

𝜓(−𝑞) ⋅ 𝜑(𝑞)

𝑞1∕2 (𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

= 𝑞−1∕2
(𝑞2; 𝑞2)∞

(−𝑞; 𝑞2)∞
⋅
(−𝑞; 𝑞2)2∞(𝑞

2; 𝑞2)∞

(𝑞; 𝑞2)∞(𝑞
8; 𝑞8)2∞

= 𝑞−1∕2
(−𝑞; 𝑞2)∞

(𝑞; 𝑞2)∞
⋅
(𝑞2; 𝑞2)2∞

(𝑞8; 𝑞8)2∞

= 𝑞−1∕2
(−𝑞; 𝑞2)2∞

(𝑞2; 𝑞4)∞
⋅ (𝑞2; 𝑞4)2∞(𝑞

4; 𝑞8)2∞

= 𝑞−1∕2
(−𝑞; 𝑞2)2∞(𝑞

2; 𝑞4)∞

(−𝑞4; 𝑞4)2∞
.

(See [2, pp. 221-222].) Putting the above two expressions to use in 4𝑣(1−𝑣2)

(1+𝑣2)2
=

4

(
1

𝑣
−𝑣

)

(
1

𝑣
+𝑣

)2 , we find that

4𝑣(1 − 𝑣2)

(1 + 𝑣2)2
= 4𝑞1∕2

(−𝑞2; 𝑞4)2∞

(−𝑞4; 𝑞4)2∞
⋅

(−𝑞4; 𝑞4)4∞

(−𝑞; 𝑞2)4∞(𝑞
2; 𝑞4)2∞

= 4𝑞1∕2
(−𝑞2; 𝑞4)2∞(−𝑞

4; 𝑞4)2∞

(−𝑞; 𝑞2)4∞(𝑞
2; 𝑞4)2∞

= 4𝑞1∕2
(−𝑞2; 𝑞2)2∞

(−𝑞; 𝑞2)4∞(𝑞
2; 𝑞4)2∞

= 4𝑞1∕2
(−𝑞2; 𝑞2)4∞

(−𝑞; 𝑞2)4∞

= 𝑢4(𝜏),

completing the proof. □
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