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Periodic points of algebraic functions related

to a continued fraction of Ramanujan

Sushmanth J. Akkarapakam and Patrick Morton

ABSTRACT. A continued fraction v(7) of Ramanujan is evaluated at certain

arguments in the field K = Q(\/ —d), with —d = 1 (mod 8), in which the ideal
(2) = g, is a product of two prime ideals. These values of v(t) are shown
to generate the inertia field of g, or ), in an extended ring class field over the

field K. The conjugates over Q of these same values, together with 0, —1 i\/E,
are shown to form the exact set of periodic points of a fixed algebraic function
F(x), independent of d. These are analogues of similar results for the Rogers-
Ramanujan continued fraction.
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1. Introduction

This paper is concerned with values of Ramanujan’s continued fraction

1/2 2 4 6
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sometimes referred to as the Ramanujan-Gollnitz-Gordon continued fraction,
which is also given by the infinite product

© 2
u(t) = q1/2 H (1 _ qn)(;)’ q= eZm'r’
n=1

for 7 in the upper half-plane. Here, (%) is the Kronecker symbol. See [12],

[9, p.- 153], [5], [6]. The continued fraction v(7) is analogous to the Rogers-
Ramanujan continued fraction

) 5
r(z) = ql/S H (1 _ qn)(;) qg= eZnif,
n=1

whose properties were considered in the papers [17], [18]. In [17] it was shown
that certain values of 7(7), for 7 in the imaginary quadratic field K = Q(@)
with —d = +1 (mod 5), are periodic points of a fixed algebraic function, inde-
pendent of d, and generate certain class fields Z;Q ¢ over K. Here Z; is the ray
class field of conductor | = g5 or g over K, where (5) = g5V in the ring of
integers Rk of K; and € is the ring class field of conductor f corresponding to
the order R_ of discriminant —d = dg f? in K (b is the discriminant of K).

Here we will show that a similar situation holds for certain values of the
continued fraction v(r). We consider discriminants of the form —d = 1 (mod
8) and arguments in the field K = @(\/—_d). Let Rg be the ring of integers in
this field and let the prime ideal factorization of (2) in Rx be (2) = pzp;. We
define the algebraic integer w by

a+vV-—-d
2

, a>+d=0(mod?2%), (Nw),f)=1, (1.1)

where g, = (2,w). Also, the positive (and odd) integer f is defined by —d =
bx f2, where Dy is the discriminant of K /Q.

We will show that
1+v1 2
U(w/8) = iiTMs

where 7 is a generator in Q of the ideal g, (or rather, its extension g,Rq ; in

Q). The algebraic integer 77 and its conjugate £ in Q; were studied in [14] and
shown to satisfy

7”41
mt+ =1, (M =g =) §=—F0: 1.2)
=1
wheret = (%) is the Artin symbol (Frobenius automorphism) for the prime
2

ideal o, and the ring class field Q; over K whose conductor is f. It follows from
results of [14] that

7 = (-1)p(w),
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where c is an integer satisfying the congruence

a’+d

c=1 % (mod 2)
2
and p(7) is the modular function p(7) = EEZ 2 , defined in terms of the Weber-

Schlifli functions f,(7), f(7). (See [20], [8], [19].) The above formula for v(w/8)
follows from the identity
2 1-v(n) 1
pB) v o)
for 7 in the upper half-plane, which we prove in Proposition 4.1. (Also see [7,

Thm. 8.6, p. 475].)
Asin [17], we consider a diophantine equation, namely

— (1),

G X2+Y?=02(1+X2Y2), 0 =-1+V2
An identity for the continued fraction v(7) implies that

(X,Y) = (u(w/8), v(-1/w))

is a point on G,. We prove the following theorem relating the coordinates of
this point.

Theorem A. Let w be given by (1.1) with o, = (2,w) inRg and —d = dg f2 =1

(mod 8).

(a) The field F; = Q(v(w/8)) = Qv*(w/8)) equals the field Z@;sﬂf, where
Z@f is the ray class field of conductor f = @’23 and Qy is the ring class field

of conductor f over the field K. The field F, is the inertia field for g, in the
extended ring class field Loy = ZgQ over K, where O = R_g is the order of
discriminant —d in K.

(b) We have F, = Q(v(—1/w)) = 2.3 Qy, the inertia field of 9, in Log/K.

. . . Fi /K
(c) Ift, is the Frobenius automorphism 7, = o ) then
2

v(w/8)2 + (—1)°c

YY) = Gt /ey — D

(1.3)

See Theorems 6.1, 7.3 and 7.5 and their corollaries. From part (c) of this
theorem we deduce the following.
Theorem B.
(a) Ifw and c are as above, then the generator (—1)'*v(w/8) of the field 2@/23 Qf
over Q is a periodic point of the multivalued algebraic function F(x) given by

x2—-1 1

F(x)=- %3 x4 —6x2+1;
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and v*(w/8) is a periodic point of the algebraic function T(x) defined by

N 1 -1
T(x)=§(x2—4x+1)ix2 Vx2 —6x + 1.

(b) The minimal period of (—1)*v(w/8) (and of v*(w/8)) is equal to the order
of the automorphism t, in Gal(F, /K).

(c) Together with the numbers 0,—1 + \/5 the values (—1)*¢v(w/8) and their
conjugates over Q are the only periodic points of the algebraic function F(x)
in Q or C. The only periodic points of T(x) in Q or C are 0,(—1 + \/5)2, and
the conjugates of the values v*(w/8) over Q.

We understand by a periodic point of the multivalued algebraic function F(x)
the following. Let f(x,y) = x?y + x*> + y?> — y be the minimal polynomial of
F(x) over Q(x). A periodic point of F(x) is an algebraic number a for which

there exist a;, a,, ..., a,_; € Q satisfying
fla,a)) = f(ay,a3) = - = f(ap_1,a) = 0.

A similar definition can be given over any ground field k. See [15], [16]. Thus,

ifa €Qisa periodic point of F(x), so are its conjugates over Q, because f(x,y)
has coefficients in Q. We show in Section 8 that v*(w/8) is actually a periodic
point in the usual sense of the single-valued 2-adic function

2k
=3

defined on a subset of the maximal unramified, algebraic extension K, of the
2-adic field Q,. (Cy is the k-th Catalan number.) This follows from the fact that

v(w/8)*> = T(v(w/8)%),

in the completion F; ; C K, of Fy = 2%3 Q with respect to a prime divisor q of

T(x)=x?—4x+2—(x—1)(x —3) D, Cx4
k=1

%, in F;. This implies that the minimal period of v*(w/8) with respect to the
function T'(x) is n = ord(z,).
From Theorems A and B we conclude the following.

Theorem C. Let K = Q(V —d), with —d = 1 mod 8 and (2) = @2@’2 in Rg. Then
every class field over K of the form Z@; Qyor Z@l; Qy (with f odd) is generated over
Q by an individual periodic point of th_e function F(x) (or of T(x)). Furthermore,
all but three periodic points of F(x) in Q generate a class field ZS,J; Qp in this family

over some imaginary quadratic field K = Q(\ —d), for which —d = dxf? = 1
(mod 8).

These are all analogues of the corresponding facts for the Rogers-Ramanujan
continued fraction r(t) which were proved in [17] and [18].

An important corollary of the fact that the conjugates of the values v(w/8)
in Theorem B are, together with the three fixed points, all the periodic points
of the algebraic function F(x), is the following class number formula. In this
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formula, h(—d) denotes the class number of the order R_; of discriminant —d
in the quadraticfield K = Kj3, and D,, , is the finite set of negative discriminants
—d = 1 (mod 8) for which the Frobenius automorphism 7, in Theorem A has
order n in Gal(F /K,), where F; = F; 4 also depends on d:

Y, h(=d) =3 3 un/k2, n>1. (1.4)

-deD,, kln

(u(n) is the Mobius function.) See Theorem 9.2. This fact is the analogue for
the prime p = 2 of Theorem 1.3 in [18] for the prime p = 5, or of Conjecture 1
of that paper for a prime p > 5.

The layout of the paper is as follows. Section 2 contains a number of g-
identities (following Ramanujan) and theta function identities which we use
to prove identities for various modular functions in Sections 3-5. Most of these
identities are known; straightforward proofs — which use theta functions, but
not the theory of modular forms or functions — are included here for the sake of
completeness. In Sections 6 and 7 we prove Theorem A. The proofs of Theorem
B and (1.4) are given in Sections 8 and 9.

Sections 2-5 and portions of Sections 6-9 also appear in the Ph.D. dissertation
[1] of the first author.

2. Preliminaries.

As is customary, let us set

n—1

(@qh =1 (x@,:=][0-ad"), n=x1
k=0

and
(@9 :=[[A-ag"), gl <1
k=0

Ramanujan’s general theta function f(a, b) is defined as

fla,b) := D, q+D/2pn(n=1/2, 2.1)

n=—oo

Three special cases are defined, in Ramanujan’s notation, as

o(@ = fl@a.9= D, g, (2.2)
¥(q) 1= f(q.¢%) = D, q""*V2, (2.3)
n=0
f(=q) := f(=q.—g) = ), (1" gD/, (2.4)

n=—oo
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Jacobi’s triple product identity, in Ramanujan’s notation, takes the form

f(a,b) = (—a;ab)(—b;ab),(ab;ab). (2.5)
Using this, the above three functions can be written as
(@) = (=4 37)5(d% 4o (2.6)
2. 2
WD) = (6 Do(d* 9P = %, (2.7)
(45 9%
=9 = (@ Peo- (2.8)

The equality that relates the right hand sides of both the equations for f(—q) in
(2.4) and (2.8) is Euler’s pentagonal number theorem.

Another important function that plays a prominent role is given by
(@) 1= (-4 ¢ eo- (2.9)
All the above four functions satisfy a myriad of relations, most of which are

listed and proved in Berndt’s books on Ramanujan’s notebooks, and we will
refer to them as needed.

Last but not least, the Dedekind-eta function is defined as
() =q* f(-q), q=¢€>7, Im7>0. (2.10)

Most of the identities that we use later on are listed here in order, for the sake
of convenience.

P*(q) + 9*(—q) = 2¢*(g%), (2.11)
*(q) — ¢*(—q) = 16q9p*(g?), (2.12)
e(Qp(g?) = P*(q), (2.13)
2( ~3

P(—q) + 9(g?) = 2%{;5), (2.14)

f*(a.9")

—_n) — 2 — L 101 7
o(—q) —9(@°) = —2q Q) (2.15)
P(De(—q) = p*(—g?), (2.16)
?(q) + (—q) = 2p(g"), (2.17)
P*(q) — 9*(—q) = 8q*(g*). (2.18)

All of the above identities and their proofs can be found in [2, p. 40, Entry 25]
and in [2, p. 51, Example (iv)].

For T € ¢, the upper half plane, and q = e(7) = ¢2*¥%, the theta constant with
characteristic [ ¢ | € R is defined as
e/

9[;](1'): Ze(%(n+%)zr+%,(n+%)). (2.19)

nezZ
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It satisfies the following basic properties for [, m, n € Z with N positive:

O[5 ] = ez 0] 22 o) -
e+2k
ola]@= kZOe[ v |00 e
We also have the transformation law, for (‘g 3) € SL,(2):
[6/](512 =xer+do Z;:;E:erd (o), (2.22)

where
x=e(— i(ae + ce’)bd — é(abe2 + cde” + 2bcee’))xy,
and x, is an eighth root of unity depending only on the matrix ( a Z

In particular, we have:

e[ Ja+n=e(-a+9)0 [ (0), (2.23)

e+e + 1]
e[e,](‘%) =e<—%)\/?e(%)9[_€](‘[). (2.24)

We also have the product formula:

1—¢

6 [;,] () = e(ETel)qé 1_[1 (1-g")(1+e (%) q”_l;)(l +e <_T€,> g 2),

(2.25)
which follows from Jacobi’s triple product identity.

More information about these theta constants and the above formulas, as well
as their proofs, can all be found in [10, pp. 71-81]. Also see [9, pp. 143, 158-159].

3. Identities for u(7) and v(7r)

Let us define the functions u(7) and v(7) as

uo) =V2g [ +g) "
n=1

u(1) = ql/z H (1 _ qn)(ﬁ)'
n=1

The functions u(7) and v(7) satisfy the following identities.
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Proposition 3.1. () If x = u(r) and y = u(27), we have
x*(*+1) = 2y2.

(b) If x = v(t) and y = v(27), we have

X’y +xt+yr=y.

Remark. The curve E : f(x,y) = 0 defined by

fGy)=xly+x*+y> -y
is an elliptic curve with j(E) = 1728, so E has complex multiplication by R =
Z[i].
Proof. (a) From (2.11), we have
P*(—q) = 2¢*(¢°) — ¢*(q),
where
(0% 9%
CHIDM
are as defined in (2.6) and (2.7). Squaring both sides gives us

¢*(—q) = 49*(q*) — 40*(DP* (gD + ¥* (@)

?(q) = (—¢; )% (g% ¢ and P(q) =

Using

o*(@) — ¢*(—q) = 16q9*(q*),
which is (2.12), we obtain

o*(a*) +499%(g*) = 9’ (@) 9*(g?).

Dividing both sides by ¢*(g?) and using the relation $(q) = ¢(q) ¥(g?) from
(2.13) we get

@) _ 9@ _ (@) ¢ @)

NS T P P P G

Since

(=1 (=q% q)oo aC))
u(r) = \/_ql/SH(Hq )b \/_ql/8 on =V2q'/8 22 Q)

the result follows by substituting the last equality for u(r) into (3.1).

(b) From [9, p. 153, (9.7)] we have the following relation between u = u(zr) and
v =v(1):

ut(? + 172 +40(?*-1) =0; (3.2)
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40(1 — v?)
(V2 +1)2
Appendix.) Substituting this expression for u* into the relation u*(z)[u*(27) +

1] = 2u?%(21), after squaring, we obtain

which we rewrite as u* = . (See the proof of Proposition 10.1 in the

16x2(1—x2)2.[4y(1—y2) “]22 Ay -y?)

G+t o712 07+ 12
where x = v(r),y = v(27). Clearing the denominators gives us
(1= x*P(? =2y = D* = y(1 = y)O* + D*(x* + D
Now moving everything to one side and factoring the polynomial using Maple,

we finally arrive at

5

X2y + x2 4+ Y2 = )22 = x2y +y + D22 + 2xp% + x> —4xy +y* = 2x + 1)
X (x2y? = 2xy?* + x> +4xy +y? +2x + 1) =

From the definitions of x and y, it is clear that x = O(g'/?) and y = O(q) as q
tends to 0. Hence, the first factor above (and none of the others) vanishes for g
sufficiently small. By the identity theorem of complex analysis, the first factor
vanishes for |g| < 1. This proves the result. O
Remark. The identity in part (b) of Proposition 3.1 can be written as

—v(27)
1+0v(27)

See [5, Thm. 2.2]. This is analogous to the identity for the Rogers-Ramanujan
continued fraction r(7):

V(1) = v(2r) 2D

s r*(51) — 3r3(57) + 4r?(51) = 2r(57) + 1
r>(t) = r(57) .

r4(57) + 2r3(57) + 4r2(57) + 3r(57) + 1
Also see [4, p. 167], [3, pp. 19-20].

Proposition 3.2. The functions x = v*(t) and y = v*(27) satisfy the relation

gx,y) =y —(x*—4x+1)y+x*=0.

Proof. For x = v(7) and y = v(27), we have the relation
x2+y? =y(1 - x?).
Squaring both sides and moving all the terms to the left side, we obtain
x4+ y* +4x2y? — x*y?2 —y? = 0.
Hence, x = v%(r) and y = v?(27) satisfy the relation

g(x,y) =x>+y*+4xy—x?y—y =0.
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Let A, A denote the linear fractional mappings

ox+1 - —-Xx+0
A = A = — =-1 2. 3.3
W) =" AW = . o=—1+Y (33)

Proposition 3.3. The following identity holds:
gu(z/H+1  —uv(t/4)+0
v(t/4) -6  ouv(t/4)+1’

v (_71) = A(u(r/4)) =

whered = —1 — \/E
Proof. This follows from the formula

6[3/*1(87)

—2ri/8 1

O s

using the formulas (2.20), (2.21), (2.24). (Also see [10].) Namely, we have:

(2 LI L) ze[ e

R T R MO

T

= eo
which after some simplification yields

(_1> _ [_ 1+ e3m‘/8]v(r/4) + [e27ri/8 + eSm’/Z]

T [e27i/8 4 e37i/2]u(T /4) + [1 + €771/8] ’
This yields that
(—_1) _ou(r/H+1  —u(@/H)+o
T v(t/4) -6 ou(t/H)+1°
O
The set of mappings

I:I = {xa A(X), A(X), _l/x}
forms a group under composition. We also have the formula
(ox + 1)*(oy + 1)*f(A(X), A(y)) = 2°0*f(y, x).

Proposition 3.4. The function v(7) satisfies the following:

v? <_1) _YO- e (3.4)

87)  oc2v(r) -1’
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Proof. Replacing 7 by 87 in Proposition 3.3 and squaring gives us
02 (—_1) _ (—v(21) + 0)?
87 (ov(21) + 1)2
_(=y+o0)
~ (oy+1)2
_ y*—20y+0?
o224 20y +1°
where y = v(27). Then, replace 20 by 1 — ¢ to obtain
vz<_—1) _ Y -y+oly+a?
3t o2y2+y—0o2y+1
P+ - -y)
SO+ -2 -y
Now replace (y — y?) by x2(y + 1), using Proposition 3.1(b), to get the result:
2 (—_1) _ 2y +1)-x*y+1)
3t +1)—0o2x2(y+1)
(@@= +1)
T (Q-c2x?)(y+1)
x? —o?
T o1
where x = v(7). O

For later use we denote the linear fractional map which occurs in (3.4) by

t(x):
x —o?

t(x) = w1 (3.5)
A straightforward calculation shows that
(0%x — 1X(0%y — 1)°g(t(x), 1)) = 255*g(y, x). (3.6)

4. The relation between v(7) and p(7).

In this section and the next we shall prove several identities between v(7) and
the functions p(7) and b(r) defined as follows. Let f,f;, f, denote the Weber-
Schlifli functions (see [8, p. 233], [19, p. 148]). Then the functions p(7) and
b(7) are given by

DR/ ey 1ta”?
PO = Semp =2 161_[(1 PpTEVZY “1)

f1(T/2)2 had gn/2-1/4
b= f( /2)? 2 ;I;Il (1 + g/~ 1/4) ’ (4.2)
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Note that b(7) occurs in [14, §10, (10.3)].
Proposition 4.1. We have the identity

2 1-v¥r) 1
p) v(@)  u(@)

—v(2). (4.3)

Proof. (See [2, pp. 221-222].) The function v(7) satisfies

_ B o (E) _ /2 (1 _ q8n—1)(1 _ q8n—7)
u(1) ql g 1-qg" q1 g (1 — g8n—3)(1 — g8n—5)

IS CH DN CET
(% 9% (3% %) o

This gives that

1 =g CRT RN DT CH N C LT
v(7) CHRMNCL L (0% %) (0 4%
_ (@%4%)%(a% 4%% — 9(:9%)5(0" D)%
3% (4% (% 4900 (0% %) 0(q7; §*) o
ICETRRCET W ICH DR CUT R
R CHDM
Multiplying the numerator and the denominator by (g%; g®)%, and applying Ja-
cobi’s triple product identity in the form

f(a,b) = (—a;ab)(—b;ab),(ab;ab),

with (a, b) = (—q3, —q°) for the first term in the numerator and (a, b) = (—q, —q’)
for the second, we obtain

o= (0% 8%)%(0% 9950 ¢%)% — 4(4;¢%)%(@7; 4%)% (@ ¢°)

v(z) 02 (€5 9490 (9% 9%

_ - - q (=9, -9
372 (¢; 490 (@% 9%

Now replace g by —q in (2.14), (2.15) and apply this to the numerator to get

2= (=99 + o(g”)] - P(-q)[9(q) — (g*)]
u(7) - 292 (q; %) (g% 4®)2%
W(—q) x (g%

72 (¢ 4?)eo (g% G2

This yields that
1 (1) = q~1/2 CERN % (=% 99%(q" 4o
u(1) (-4 9% (499w (35 3°)2
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Iy (=% 9%(0% 0o (@* 4o
(0% 99 (q% 4%

B G Gl WECRT R
(g% 9%

=g (=¢% ¢9%(@"% ¢*)%

_ o G a%

=4q

(—q% g%
Since R ,
1+ g*n g% g,
p(S‘[) = 2q1/2]:[<%> = 2q1/2 %,
pz1 Mg (g% 9%
we get the result by substituting into the last equality. O

Proposition 4.2. The function p(t) satisfies the identity
p*(Dp*(27) + p*(7) — 2p(27) = 0.

Proof. We use the relation between x = v(r) and y = v(27) from Proposition
3.1(b): x2 = 222 This gives
(b) ) g

5 L ya-y)

( 2x ) o 4xr (1+y)
1—x2 (1—x2)2 (1- y(l—y))2

(1+y)

4y1-y)1+y)

(@ +y) -y1-y)
4y -yY)
T (1+y22
4y -y?)
S 4y2 4 (1-y2)2

Now divide both the numerator and the denominator by (1 — y?)? to obtain

) a4 (2L
2 —y2 —y2
(1 x2) R e (4.4)
—X y
(1_y2)2 + 1 (l_yz) + 1
From Proposition 4.1, we know that
2u(7) 2x
87) = = ,
P(80) 1—0v%(r) 1-—x2
and 2v(2 2
v(2t
p(167) = () 2y

1—0227) 1-—y2
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Thus, (4.4) becomes

2p(16
p(se) = P00
p2(167) +1
Replacing 7 by 7/8 and rearranging gives us the result. |

Proposition 4.3. a) The functions x = b(7) and y = b(27) satisfy the relation
x%y? +4y? —16x = 0.
b) The following identity holds between x = b(7) and z = b(41):
(b(7) + 2)*b*(471) = 28(63(7) + 4b(1)).

Proof. a) On putting 47 for 7 in x, we have

2
© (1 _ g2l (q;99% o(—q)

From (2.11), we have
9> (—q) + ¢*(q) = 2¢*(g?).
Multiplying both sides by ¢*(—q?) = ¢(q)¢(—q) from (2.16), we obtain
P> (—9P*(—a*) + 9 (De*(—q°) = 20(Dp(—DP*(g?).
Now dividing both sides by ¢?(q)p?(q?) gives us
P’ =)  9) _, 9(=0)
(@) 9@ 9@ o(q)
Hence, we see that x = b(47) and y = b(87) satisfy the relation
x%y? +4y? —16x = 0.

Now replace 7 by 7/4.
b) From (2.17), upon taking fourth powers, we get

4
[p(=a) + ¢()] =16¢*(g".
Multiplying both sides by p*(—g*)/[¢*(@)9*(g*)] gives us

p*(q) g e
Then using (2.16) twice for the right side, we obtain
4
e+ @] gH(—g*) _ 16 PEDP@
¢*(q) p*(q?) P*(q)
Now use (2.11) for the last factor on the right side to get

[o(-q) + o(@)]’ p*(=q" p*(—q*)

P*(g?).

e +e@] gt—g") __ g(-a)

To2(_ 2
9*(q) AR A C) P*Ca) +#*(@)
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This implies that
o(—q) 1" [e(=a . o=@ [[e(-D\
5o e | = S 1Gar) w1

The result follows on multiplying through by 28 and substituting
_ p

b4r) = 229 and p(16r) = 22590

o(q) p(q*)

into the above equation, and then replacing 7 by 7/4. (]

5. The relation between v(7) and b(7).
We begin this section by proving the following identity.

Proposition 5.1.
V(0 +1)?* 4
vi(r) —6v2(t)+1  B2(47)

(5.1)

Proof. We prove (5.1) using the identity relating the Weber-Schlifli functions
from [20, p. 86, (12)] (see also [8, p. 234, (12.18)]):

() + 5@ = ().
From the definitions (4.1) and (4.2) of p(7) and b(7), this identity translates to
b(47)
16
Using the result of Proposition 4.1, we write this equation as

b _ ( 20(z/2) )4 B

1 — p*(47).

16 v*(r/2)
(1-v2(/2))*

Setting x = v(r/2) and y = v(r) and using the relation between x and y from

16 1—-v%(r/2)

Proposition 3.1(b) in the form x? = y((llT_y)) gives that
y
2
<y<1—y)>
b*(47) - 16x* 1 (1+y)
16 (1 —x2)4 (1 Y-y )4
a+y)
_ 1620 -y 2+ D16y — 1)
1+ y2)* 2+ 1)
2
(O* =1 +4y*) —16y*(y* - 1)
B 2+ 1)

(02 =172 —4y?)’
R
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_ -6y + 1)

2+
which is equivalent to (5.1). (The plus sign holds on taking the square-root
because b(ico) = 2, v2(ic0) = 0.) O

Proposition 5.1 will now be used to prove the following formula for the func-
tion j(7) in terms of v(7).
Proposition 5.2. Ifv = v(r) and 7 lies in the upper half-plane, we have

(010 + 2320™ + 732012 — 1192010 + 71008 — 11920° + 7320% 4 2320% + 1)3
v2(v2 — 1)2(v2 + D4(v* — 6V2 + 1)8 ’

Jj(0) =

Proof. Let
(x2 —16x + 16)3

x(x —16)
Then from [14, p. 1967, (2.8)] the function

1 77(7/4)2 gg — o27i/8

G(x) =

a(@®) =S¢ ———> (5.2)
o n(r)?
satisfies the relation
, (a® — 16a* + 16)° 4
= =G . 5.3
i®= i —1e (a*(D)) (5.3)
Moreover, a(t) and b(7) satisfy
16a*(7) + 16b*(1) = a*(1)b*(1),
so that
16b*(7)
)= ——=—. 5.4
a*(7) 50— 16 (5.4)
Setting b = b(7), we substitute for &« = a(r) in (5.3) and find that
16b* (b® + 224b* + 256)3
J@ (b4 — 16) b*(b* — 16)* ©
Now replace t by 47 and use (5.1) to replace 6*(47) by
16(v* — 6v% 4+ 1)2
b*(47) = ,
“) 02 + 1)
giving
. v — 8u!* + 12012 + 8v!0 + 23008 4 80 + 12v* — 8v? + 1)3
jlr) = ( ) , (5.5)

v8(V2 + 1)*(v? — 1)8(v* — 6V2 +1)2
with v = v(t). Replacing v(r) by A(v(—1/47)) from Proposition 3.3 gives that
jé4t) = jo(x?),
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where x = v(—1/47) and j,(x) is the rational function

(x® +232x7 4+ 732x% — 1192x° 4 710x* — 1192x3 + 732x2 + 232x + 1)}

) = X(x — 120x + (X2 — 6x + 1)8
(5.6)
Finally, replace 7 by 7 /4 to give that
J@) = j*(=1/7)),
which implies that j,(v*(t)) = j(—1/7) = j(r), completing the proof. O
We highlight the relation
J(@) = j,(0*(1)), (5.7)

which we will make use of in Section 7. Using the linear fractional map ¢(x)
from (3.5) and the identity v>(—1/87) = t(v*(1)) in (3.4) yields

. _1 s 2 _1 _ 2
i(5) =i ((5)) = i@,
A calculation on Maple shows that

(x8 — 8x7 + 12x° + 8x° — 10x* + 8x3 + 12x% — 8x + 1)°
x8(x — 1*(x +1)2(x2 —6x + 1) '

J22(x) = jo(t(x)) =
Therefore,

i) = Jn@ (58)

We take this opportunity to prove the following known identity (see [9, p.
154]) from the results we have established so far.

Proposition 5.3.

_ n*on*(n)

U_Z(T) + UZ(T) —6 = W

(5.9)

Proof. We will show that (5.9) follows from (5.1). We first have that

vit) — 603 (1) + 1
V(1)
3 8
B ( ©A(0)+1) ) ~
v4(1)—6V2(1)+1
_ 8 _ 8b%(47)
a ( 4 )_1 T 4-1p2(47)

b2(47)

V() +vi(t) -6 =
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by (5.1). Using the expression b(47) = 2¢(—q)/¢(q) from the proof of Proposi-
tion 4.3a) and (2.18) gives

49%(—q)
<¢2<q>> _ 89’ _ 8¢*(=q)
4_<4¢2<—q>> 2(q) — p2(—q)  8qP2(g*)’
»2(q)

V() +vi(t) -6 =

.2 2.,2 2,232
[CHDS and ¥(q) = (@599« _ (@595

Now putting p(—q) = (¢; ¢*)% (9% ¢He = o P =
yields

_ 1
V() + V3(1) — 6 = ¢*(—q) - <q¢2(q4)>

(g% %%
(@ >w(—)
T q(g8; g%)%

=( (4 Do )( (g% 9% )
(g%90)% ) \a(g%q®)e
_ 4%@ 9% 9@t 9%
q'/5(q2; q»% - ¢*3(q8; ¢®)%
_ 2@re)
n2Q2T)n*(87)’
using that () = ¢'/**(¢; @)co- H

6. The field generated by v(w/8).

As in the Introduction, let —d = 1 (mod 8) and set —d = by f2, where d is

the discriminant of the field K = Q(v —d). Further, let 2 2 @2@’2 in the ring of
integers Rg of K. We denote by Z; the ray class field of conductor f over K and
Qy the ring class field of conductor f over K.

In this section we take 7 = w/8, where
a++vV-d
2

For this value of w,

, with a®> + d = 0 (mod 2°), (N(w), f) = 1. (6.1)

b*(87) = b*(w)
is the fourth power of the number
B =i"(w) (6.2)

from [14, (10.3), Thms. 10.6, 10.7]. We also need the number 7 from [14,
(10.2),(10.9)], which is given by

2
= ié—ffz((g)u//zz))z = ip(w),
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EEa(Z— a2+d> (mod 4).

16

(We have replaced v in the formulas of [14] by a and a by ¢.) But here the
integer a® +d is divisible by 32, by (6.1), so ¢ is even. Replacing ¢ by the integer
¢ = ¢/2, satisfying

a’>+d

=1-
¢ 32

(mod 2)
yields

7= (—1)fp(w), w= @. (6.3)

It follows from the results of [14] that £ = §/2 and 7 lie in the ring class field
Qy of the quadratic field K = Q(V —d) (where —d = bdg f 2 and by is the dis-
criminant of K/Q) and £* + 7* = 1. Furthermore, Q(7) = Q(7*) = Q;. We
also note that (§) = g/, and () = g, in Q, so that (§77) = (2).

From (4.3) and (6.3) we have that

2 1 1—0v3(w/8)
1= = - )= ——7—. 6.4
- R ey (6.4)
In particular, v(w/8) satisfies a quadratic equation over Q; and the map p :
-1
v(w/8) — o/
see that X = v?(w/8) satisfies the equation

leaves the right side of (6.4) invariant. On squaring (6.4), we

4
Xz—(2+;>X+1=O, (6.5)

and therefore

vi(w/8) =

2
Tr4+2+20/n2+1 _(li\/1+n’2)
2 B |

T
Hence

v(w/8) =+ (6.6)

1+V1+ 72
p- .
It follows from these expressions that
Qr(v(w/8)) = Qp(v*(w/8)) = Q (V1 + 72).
We now prove the following.

Theorem 6.1. If

w= #, with a? + d = 0 (mod 2°),

and g, = (2,w) in R, then the field Q(v(w/8)) = Q(V 1 + 72) coincides with
the class field 2%30 £ over K = Q(V—d). The units v(w/8) and vi(w/8) have
degree 4h(—d) over Q.
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Proof. Let A = Q(V1 + 72). It is clear that A contains the ring class field Q,
since Q(z%) = Qy. We use the fact that 1 + o @; from [16, Lemma 5].
From this fact it is clear that 1+ 72 is not a square in Q > since @; is unramified
in Q¢ /K. Hence, [A : Qf] = 2. Further, the prime divisors q of @; in Qf
are certainly ramified in A. Equation (6.5) implies that x = v?(w/8) satisfies
(x — 1)?/(4x) = 1/72, and therefore Q(v*(w/8)) = Q(V1 + 72). This implies
that [Q(v3(w/8)) : Q] = 4h(—d), since

[A: Q] =[A:Qr][Qf : K][K : Q] = 4h(-d).
Since v?(7) is a modular function for I';(8) ([9, p.154]), it follows from Schertz
[19, Thm. 5.1.2] that v*(w/8) € Zg;, the ray class field of conductor 8f over
K. More precisely, v*(w/8) € Ly g, where Ly g = Z3Q 1 is an extended ring class
field corresponding to the order O = R_j. See [8, p. 315]. Thus, A C Lyg is an
abelian extension of K, whose conductor f divides 8 f in K. The discriminant
of the polynomial X* — (1 + 72) is of course 4(1 + 7%) = g2g”. Since the
ramification index of each q | @g ise; = 21in A/Qy, Dedekind’s discriminant
theorem says that at least g) 2 divides the discriminant d = b, /9 , and since the
power of q in D is odd and at most 3 (Q /K is unramified over 2), it follows that
p’f exactly divides b. We claim now that ¢, is unramified in A.

From above x = v*(w/8) satisfies (x — 1)? — %x =0. Thusx; = x —1
satisfies h(x;) = 0, with
h(X) = X2 — i(x + 1), disc(h(X)) = 5 + 4%,
where the ideal ( ) = (—) &* = @’ 4 is not divisible by go,. This shows
that disc(h(X)) is not divisible by ¢, and therefore that g, is unramified in
Q(v*(w/8)). Thus d = @
Now [Zg : Z;] = —qbK(@z@ ) = 8, where ¢y is the Euler function for the

quadratic field K, and Q(¢g) C Zg. Since the prime divisors of 2 do not ramify
inQ 1> We have that Q rNZg =X and therefore

[Log : Qf] =[Z5Qp 1 Qp] =[Zg 1 1] =38,
from which we obtain
Gal(Z3Q;/Qy) = Gal(Zg/Zy).
By this isomorphism the intermediate fields LQ; of 23Q/Qf are in 1 — 1 cor-
respondence with the intermediate fields L of X3 /Z;.

The ray class field 2@3@;3 has degree 4 over the Hilbert class field X, and
two of its quadratic subfields are Zgofzs and Z@,%S,J/Zz = X, = Z,(i). It follows
that Gal(Zpg%s /Z1) = Z, X Z, and the third quadratic subfield has conduc-
tor equal to f/ = @%@’23 over K. The other quadratic intermediate fields of
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3¢/, are £,(1/2) and =,(\/—2), both of which have conductor (8) = G507
over K, the field Zpg, and a field whose conductor over K is ga’zzp; Hence,
L = 2%3 is the only quadratic intermediate field whose conductor is not di-
visible by ¢o,. This proves that Q(v*(w/8)) = ZgaQy and (6.6) shows that

Q(v(w/8)) = Q(v*(w/8)) = T Q. O

Corollary 6.2. The field Q(v(w/8)) = T Qg is the inertia field for the prime
ideal g, in the extension Lo g /K = ZgQ /K.
Proof. The above proofimplies that Gal(ZgQf/Qp) & Z,XZ,X Z,, since there

are 7 quadratic intermediate fields. Any subfield containing Q; which properly
contains 2@/23 must also contain another quadratic subfield, in which g, must

ramify. O
Corollary 6.3. If —d = 1 (mod 8) and w is given by (6.1), then the quantity
_ nPw/8mw/2)
n(w/4)m*(w)

generates the class field ZerQy for K = Q(V —d) over Q.

Proof. We appeal to equation (5.9). Setting 7 = v(w/8), first use the equation
preceding (6.6) to see that

AP=p2+n2—6=

T +2F2V1+ 72 72424271+ 72
2 + 2 —6
1—m?
7T2
This gives that A = +241 =72 Since V1 —72\1+ 72 = V174 = +£2 €
T
Qf and @(Az) = Qy, we get that Q(A) = Q(V1 + 72) = Zﬁzsﬂf, by the result
of Theorem 6.1. O

=4

The fact that v*(w/8) € Ly g in the above proofis derived in [8, p. 317] using
Shimura’s Reciprocity Law. We can give a more elementary proof of this fact by

showing that V1 + 72 € Ly, as follows. We focus on the elliptic curve
1 1
Ei(a) : Y2+XY +—=Y =X3+—X?,
at a4
which is the Tate normal form for a point of order 4, with
8
n(w/4)
nw) |-

as in (5.2). From [14, (2.10), Prop. 3.2, p. 1970], the curve E; = E;(a) has
complex multiplication by the order O = R_; of discriminant —d in K. Now,

at = a(w)* = —(
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with 8 = i~*b(w) as in (6.2),
1 p'-16 1 1

@ 1opt 16 B
and Lynch [13] has given explicit expressions for the points of order 8 on E; in
terms of 8. Lynch [13, Prop. 3.3.1, p. 38] defines the following expressions:

BV2+ B+ 4/ + (B2 -4

b, = ,
2pV2

B2+ B+ 4 - (B2 -4

b2 = s
26V2

BV2- B+ 42+ (B2 -9

b3 = )
2672

y - BY2- (B2 + 92— (-4

4 — .

2pV2
With these expressions, Lynch shows [13, Thm. 3.3.1, p. 41] that the points
(X,Y) = P; = (byb3by, —b1b3by) and P, = (byb3bs, —b,bsb})

are points of order 8 on E;(«). By [11, Satz 2] or [14, Prop. 6.4] the correspond-
ing Weber functions satisfy

8283 <

X@,) + €3%Qs, b=—.

4b+1 1
OC4

(See [14, (6.1)]. The expression inside the parentheses arises from putting the
curve E; (a) in standard Weierstrass form.) Asin [14, p. 1976], b, >, 83, A € Qy,
so that X(P;) = b;b3b, € Ly g for i = 1, 2. This implies that

V2g+ (82 + 4)1/2) (62 +4—V2p(8 + 4)1/2>
V28 45

(B + )

(by + by)bsby = (

— 52

N_ 263

lies in Lyg. But we know that 4 — 8 # 0. In addition, V2 e Q(g) C Zg and
B € Qy,s0 that (82 +4)1/2 = 24/E2 + 1 € Lyg, with £ = 8/2. Now 7 and £ are
conjugate over Q, hence +V 1 + 72 is conjugate to /1 + &2 over Q. Since ZgQy
is normal over Q, this implies that V1 + 72 € Ly g, which proves the assertion.

Proposition 6.4. Assumecin(6.3)isodd. The map A(x) = C;H see (3.3)) fixes
the set of conjugates of v(w/8). If f 4(x) is the minimal polynomial of v(w /8) over
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Q, then
(x — YD fy(A(x)) = 23D £ (x).

Proof. Note that (6.4) implies that the minimal polynomial of v(w/8) is

Fal) = 2702 = 1y (1), (67)

where b,;(x) is the minimal polynomial of 7. Note that the degree of b,(x) is
2h(—d) and the constant term of b;(x) is

h(—d —_

from [14]. Thus, deg(f4(x)) = 4h(—d), which implies by Theorem 6.1 that
fa(x) isirreducible.

We use (6.7) to prove the proposition, as follows. Setting h = h(—d) and
assuming c is odd, we have that

A
(x = )" fa(A(x) = 27(x = )" M(Ax)* ~ )by (A(zTgx—)l)
2h
g an [ 20 =2x = 1) X +2x-1
=270y ( (x —0)? ) bd( x2—2x—1>
_ ohg2h(y2 _ 5y _ 1y2hp (PG 1
=2"g*"(x* —-2x—1) bd(P(x)—1>’
where
P(x) = 2x P)+1 _ x*+2x—1 — R(0).

an =
x2 -1 P(x)—1 x2-2x-1

We also know from [14] that the map x — x—+1 permutes the roots of by(x) and
o

_2h X+ 1) o

(X 1) bd (x 1 =2 bd(X).

This gives that b, (ig;i) = (P(x) — 1)~2"2"b,(P(x)) and therefore that

(x — )" fa(A(xX)) = 2" (x? — 2x — *(P(x) — 1)~2"by(P(x))
21 2h

= 22h0'2h(x2 —2x — 1)2h (m) bd(P(X))
= 23hg2hp=h(x2 — 1)?"b(P(x))
=2 f ().
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We also check that
-1 1
4h —h,.4h
X — ) =2""x"(—=-1 b;(P(-1/x
fa(3) (= a(P(=1/x))

= 27"(x? = 1)'by(P(x)) = fa(x).
We conclude the following. Recall the definition of A(x) from (3.3).

)2h(—d)

Proposition 6.5. If c is odd, the mappings in the group
H, = {x, A(x), A(x),—1/x}
permute the roots of f4(x).

Now let cbeeven,d = 1 + \/5, and B(x) = Sx+1 = Xto _ —A(-x).
x—20 ox—1
Then we have
(3 = 8" Fa(BG) = 274x = 8 (B00) = 170y (T )
1— B2(x)
2h
26(x? +2x —1) x?—2x—-1

— 2—/1 -5 4h b _

(emo (B D) (222

2x
= 282 (x? + 2 — 1) by [ 155
1-x>
2x —2h 2x
— ohs2h(y2 2h , Hh
= 22h§2h (52 4 2x — 1)2h. 1——362 Zhb ( 2x )
B x2+2x—1] 9\1—x2
= 22h52h . (52 — 1)%hp, ( 2x )
1—x2
= 22hg52h thd(x)
= 23182 f4(x).
Setting B(x) = B(—1/x) = _;)j_-; ! = —A(—x), we have the following.

Proposition 6.6. If c is even, the mappings in the group
H, = {x, B(x), B(x),—1/x}

permute the roots of f4(x).

7. The diophantine equation.

From (3.4) we know that (X,Y) = (v(w/8),v(—1/w)) is a solution of the
diophantine equation

Gt X2+Y?%=02(1+X2Y2), o=-1+V2
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This seems to be an analogue of the equation C5 in [17]. Set
F(X,Y)=X?4+Y? -1+ X%Y?).
Then
(0Y + 1)2F,(X, A(Y)) = 4V202(X2Y + X2 + Y2 — Y) = 4202 f(X, Y).

Since

- —-x+0 —-6x+1 1
Alx) = = , 0=—=1 2,
(x) ox+1 X+ o +\/_

the linear fractional map A(x) is the analogue of the map T(x) in [17, p. 1199].
Considering Thm. 5.1 in [17, p. 1205] suggests the following conjecture.

> Q¢ /K
& A then
2

—v(w/8)2 +0o
ov(w/8)2 +1°

Conjecture 7.1. Assumecisodd. If 7, = (

—u(=1/w) = A(v(w/8)™) =

where w is given by (6.1).

To prove this conjecture, we first appeal to Proposition 4.2, which implies

that
1++/1-p4(1)
pA(7)
Setting T = w, (6.3) gives that
1xV1—-7% 1§
pw) = > =—
T T
Note that
1+821-¢ 1-¢*
I N !
1-¢? 1+ &2
and f = —7x™2 from [16, p. 333]. Thus, 712§ =—1""2,
Theorem 7.2. Ifw is given by (6.1) we have
1+& -1
p(ZLU) = T2 = E

Proof. We use an argument from [14, Section 10]. With the number g =
i~?b(w) from (6.2) we have [14, eq. (8.0), p. 1980]
, (B® + 2243* + 256)°

Jw) = 4(g4 4

B4(B* —16)
(See the proof of Proposition 5.2.) Furthermore, the roots of the equation
(B® + 224B* + 256)3
BB+ —16)*

0=(X-16) - j(w)X = (X - 16)* -
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are, on the one hand, given by the values
X = P w), —fi*w), -5 w);
(see [8, p. 233, Th. 12.17]) and on the other, are equal to the expressions
(8% — 4)* (8% + 4)* 21234
TR R4 (B 16
See [14, p. 2000]. From [14, p. 2000] we also have (since our value w satisfies
the conditions for w in [14, Prop. 3.1])

B*+4)°
g —ap
since f%“(w) must be a unit (from the results of [21]). There are two cases to
consider.

ft(w) = (7.1)

Case 1. First assume that

__ -4
P (w) = —W, (7.2)
2124
f%4(w) = (,64——16)2'

In this case, (7.1) and (7.2) give the following formula:
w)* (B2 +4)°
fw)* (B —=2)5(B +2)°
Now we use the following ideal factorizations in the ring class field Q;:
(B +4) = @ip, (B—2) =36 (B+2)=p9) (7.3)
See [16, Lemma 4]. These factorizations imply that

pw) =

6
G507 1.
= > in Qf,

praws (28 -

28V
which implies that

1
pw) = o (7.4)
By the remarks preceding the statement of the theorem, this shows that p(2w)
. . . 14§ -
is not an algebraic integer, giving that p(2w) = e -2,

Case 2. The alternative to (7.2) is

~ 21234
P4 (w) = _(,6’4——16)2’ (7.5)
piw = LY
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In this case we have
6

fz(w)24:<ﬁ2+4>6£( 367 )z 1
F(w)24 228 02502 0,50 g2

giving that p(2w) = é. However, this is impossible, since the above remarks

pQw) =

2
show that the only prime divisors occuring in the factorization of p(2w) are
prime divisors of ¢o,. This shows that Case 2 is impossible, and Case 1 proves
the formula of the theorem. O

Now we set
n=v(w/8), 1=-v(-1/w), v=v(w/4). (7.6)

We first show A is a root of the minimal polynomial f;(x) of v(w/8) (c odd).
We have from Proposition 3.3 that

20 24>v) v+ -1
2-1 A@w) -1 1»-2v-1
Proposition 4.1 and Theorem 7.2 give further that

V—l+2 - +2 T
24 y Y paw) T w41

/12_1:7}_1_2___2_2_#2_1. (7.7)
v p2w)
Since ﬂ:f is a root of by(x), we have from (6.7) that
T

24
— o—h(=d)( 32 _ 1)2h(~d) ( ) -0
Ja() (A = Dby ( 5E ) =0

Hence, 1 = —v(—1/w) is a conjugate of v(w/8).

Theorem 7.3. If c is odd, we have the formula
- —v(w/8)2+0o
A=-v(-1 =A 8)2)=—— o=-1+V2,
u(=1/w) = A(w/8) = e 0 V2
where w is given by (6.1).
Proof. We will prove that A(1) = v(w/8)™ = 1™ by showing that
A1) —n? = 0 (mod g,).
We have 72 + 1% = 02(1 + %A2), which implies that
—A+o —A+d* _ —d+o0 N o2 — 22
od+1 1-022 oA+1 o212—-1
(=1+0)oA—-1)+0%—-2%
o2 -1
—(c+ DA+ (> +1DA+0% -0
o242 -1

AQ) —n* =
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22+ -2y +4-32
B (64 +1)(oA—1)
_ V20 -0?
2= +6)

We multiply the last expression by

1 (—4+3V2)1-062 2021 —65)?
A(/l)_n_zz 12— o2 - T 12_g

which is obtained from the last calculation by fixing A and mapping \/5 to —\/3.
This yields the formula

_ 1 —2(A—0)A—-29) A2+21-1
A/1—2<A/1——)= =-2—— 7.8
A=) AD -2 ) =G5 5a s -1 ¥
Now i
2421-1 1Ty 79
2-21-1 [_2° '
22-1
where
20 w2 +1
2-1 7-1
from (7.7). It follows from (7.9) that
241
/12+2l—1_1+7-[fz_1_ 5
B2—2d—1 _mom
n72—-1
Thus, (7.8) becomes
(A - 77) (AW - niz) P
and therefore (772) = () = ¢, yields that
(A) = 7?) (AG) = =) = 0 (mod g2).
72
It follows that )
AQ) =n? or AQ) = o (mod q), (7.10)

for each prime divisor q of g, in F; = Q(n). But A(1) = —1/A(4) and 7 are
units, so the second congruence in (7.10) implies the first. This proves that

A1) =n? (mod ¢,) (7.11)
in F;. Note that A(1) and 1 = —v(—1/w) are roots of f4(x) (Proposition 6.5),
so F, = Q(A4) is isomorphic to F; = Q(n) = Q(v(w/8)). However, by (3.4),
—v(w/8)? + o2

/12 — Uz(—l/w) = 1— O'ZU(LU/S)2
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does not lie in F;, since \/5 ¢ F, (otherwise g, would be ramified in F;; note
that v(w/8) is not a fourth root of unity, so the determinant of the linear frac-
tional transformation in o2 is nonzero). It follows that from Theorem 6.1 that

Fy = Q) = 3,0

A ¢ F,, so A(1) € F;. There-
oA+1

fore, 1 : n - A(X) is an automorphism of F;, and since g, is not ramified in
F, but @’2 is, it follows that 1 fixes go,, implying that it fixes the field K.

The same argument now shows that A(1) =

Recalling the rational function j,(x) from (5.6), a computation on Maple
shows that

; 1—7/2_.2_.2 ) = i(w/4
i ((152) ) = 10 = @@/ = j(w/4),

by (5.7). Now Proposition 3.3 and the fact that A(x) has order 2 imply that
v(w/4) = A(v(—1/w)) and
1-vw/4) 1-A((-1/w))
1+ow/4) 1+ A(-1/w))
_u(-l/w)+o
- —ou(-1/w)+1
= A(-v(-1/w)) = AQQ). (7.12)

This implies that

2
(A = Jy ((} =) ) = j(w/4).

On the other hand, equation (5.7) gives
Jw/8) = j,(n**) = (A = j(w/4) = j(w/8)™.
Hence 1p|9f = 12|Qf. It follows that ¢ = 7, or ¢ = p7,, wherep : n — —1/n1is
the nontrivial automorphism of F; /Qy. If = pt,, then by (7.11)
n? = A1) = n* (mod g,)
and ™ = n? (mod ¢,) imply that
n* =9t = ;% = % (mod g,).

It follows from this congruence that »* + 1 = (y + 1)* = 0 mod g, and hence
n = 1 (mod g,), since g, is unramified in F; /K. This implies in turn that
z=7n-—7"1 =0(mod g,). But this contradicts (4.3) (with 7 = w/8) and (6.3),
according to which z = 2/ is relatively prime to ¢,. Hence, ¢ = 7, must be
the Artin symbol for ¢o, in F; /K. This completes the proof. O
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Z.,3Q7 /K
Corollary 7.4. Assumecisodd. If T, = | ———— ), then

§92
L 1—o(w/4)
o(w/8)" = 1+v(w/4)

and
J(o(w/8),v(w/8)2) = 0.

Proof. The first formula is immediate from n¥ = 7™ = A(1) and (7.12). The
second follows from Proposition 3.1 and

Fow/8), 0(w/) =0 = f (v(w/8), %) ,
since ( ) —y) 2fy)
! Y1vy) " 1 +y)?
O
Theorem 7.5. Ifc is even, then
o _ v(w/4) -1
o(w/8) = v(w/4)+1

and
v(w/8)2+0o

b(=1/w) = Blo(w/8)™) = Zr e

Proof. From Proposition 3.3, we have that

v(-1/w) = A(v(w/4)) = —B(-v(w/4),

where (—x)+
xX+o —(—x)+o0 -
B(x) = sl s —— = —A(—x).
Hence, according to (7.12), we obtain
T, _ U(LU/4)—1 _ _ _ _ 7,
v(w/8)2 = w1 B(v(-1/w)) < v(-1/w)=B(u(w/8)"),

showing that both the statements in the theorem are equivalent. We now show
that Proposition 6.6 implies that v(w/8) and v(—1/w) are conjugate algebraic
integers.

In similar fashion to (7.6), we set
n=0vw/8), 1=v(-1/w)=-1, v =v(w/4).
Then, according to (7.7), we get

1 h_ 2
24 2_(;_7’)_ paw) 1472 g2 41
1-]2 2+(l_,,) 2+ 2 1—7%2 772—-1"
v pQw)
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Since

z z+i is a root of b;(x), we have that
72—

fah =27 = 1 () =,

showing that 4 = v(—1/w) is a conjugate of y = v(w/8).
Now,
A+o o*-2 2A-o o*-2°
Gl—1 1-0212 oA+l 1-0222
A=0)odl—=1)+ (> =213
o212 -1
(c—1A%2 = (> + DA+ (6% +0)
(cA+1)(cA—-1)
—V20(A%+21-1)
o2l —=36)A + )
—\20(1l—-0)A—-23)
g2l = &)1 + &)
V262 +0)
A-a)

B(D) —n* =

In the above calculation, mapping \/E to —\/5, while fixing 1, gives us

1 V20(1 +6)
BA))— = =—F7F7"7"—.
n? (A-0)
Multiplying the above two expressions gives us

o on(an, LY, A+l +0) 1P -21-1
(B ’”(Bw 772)_2(1—0)(1—5)_212”1—1

21 7241
_ 21 +() _ 21 +(=3) .

1_( 21 ) 1_(7r72+1)

1-12 mr2-1

Now a similar argument to the end of the proof of Theorem 7.3 applies here and
shows that the automorphism ¢ on F; taking 7 to A is n¥ = B(1). As before, 3
coincides with 75, giving that 1 = v(—1/w) = B(n™) = B(v(w/8)™). Also see
the argument below. O

Corollary 7.6. Ifciseven, the point(x,y) = (—n, —n"2) lies on the curve f(x,y) =
0:
e Qy /K)

f(=v(w/8),—v(w/8)) =0, 1, = (
()
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Proof. We have
0= f(v(w/8),v(w/4) = f (U(w /8), _%)

= f(o(w/8), —v(w/8)™) = f(—v(w/8), —v(w/8)™).
]

Combining the arguments in the proofs of Theorems 7.3 and 7.5 for ¢ odd
and c even yields the following corollary.

Corollary 7.7. The field F, = Q(v(—1/w)) = Z@;Q 7 is the inertia field for the
prime ideal @’2 in the extension Ly g /K.

We also give an alternate argument to show ¢ = 7, in the proofs of Theorems
7.3 and 7.5. We first note that the modular function j(7) can be expressed in

terms of z = v(7) — % namely
u(T

. (z8 + 240z° + 2144z* + 384022 + 256)°
j@) =J(2) = YRS 2 2 ,
z2(z2 + 4)2(z — 2)8(z + 2)

using Proposition 5.2. Nowsetz = 7 — 1= iﬁ’ so that (z, 2,) = 1. This allows
/e

us to reduce the above formula modulo ¢,, giving that

. _ 224 .,

This shows that j(w/8) is conjugate to z* modulo each prime divisor p of g,
in Qy, for each automorphism 7 € Gal(Q/K); and this implies that the class
equation H_4(X) and the minimal polynomial u;(X) of z over K are congruent:

H_4(X) = pug(X) (mod §,).
A theorem of Deuring says that the discriminant of H_;(X) is odd (since (%d> =

+1), so the discriminant of u;(X) is not divisible by g,. This implies that the
discriminant of the minimal polynomial fi;(X) = X"y, (X — %) of  over
K is relatively prime to ¢o,, as well. This is because

h(~d)

ua) = ] & = — %»
i=1 l

is a product over the conjugates z; = n; — L of z, so that
Ni

h(~d)

1 1
Xh=Dy, (X - )—() =[] &-m->)x-0,
i=1 M
h(~d) 1
=[] &-zx-1), z;=n,——.
i=1 M
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Hence,
h(=d)
disc(itg(X)) = J] (z2+4) J]Res(X? - zX - 1,X2 - z;X — 1)

i=1 i<j

h(—d)

- TG+ T i-2)

i=1 i<j

h(—d)

=[] @ + 49 isc(uaCON*

i=1
Now the z; are conjugate over K, so each z; is relatively prime to go,, which im-
plies that (zl.2+4, ¢,) = 1foreachi. This proves the claim that (disc(f;(X)), ¢2,)
= 1. This proves

Theorem 7.8. Let R, denote the ring of elements of K which are integral for §,.
Then the powers of n = v(w/8) form a basis over Ry, for the ring R of elements of
F; = Q(n) which are integral for g,.

Given this theorem, the congruence

n? =n* (mod g,)
implies that

a? = a? (mod ¢,),
for all « € F; which are integral for go,. Since F; /K is abelian and g, is un-
ramified in this extension, this implies by definition of the Artin symbol that

Y =1,

8. Values of v(7) as periodic points.

We now define the following algebraic functions. The roots of f(x,y) =
¥? + (x2 — 1)y + x? (see Proposition 3.1) as a function of y are

2
-1 1
X 3 + 3 x4 —6x2 + 1. (8.1)

Also, the roots of g(x,y) = y?> — (x?> — 4x + 1)y + x? (see Proposition 3.2) are
given by

F(x)=—

T(x) = %(x2 —4x+ 1)+ %\/(x2 —2x+1D(x2—6x+1)

-1
= %(x2—4x+1)ix2 Vx2 —6x + 1. (8.2)

We prove the following.

Theorem 8.1. If w € Ry is the algebraic integer defined by

a+V-d
W= ——

, with a®> + d = 0 (mod 2°)
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and the integer c satisfies
_a’+d
32
then the generator (—1)'*v(w/8) of the field 2@123 Qy over Q is a periodic point of
the algebraic function F(x) defined by (8.1) and v*(w/8) is a periodic point of the
function T(x) defined by (8.2). If c is even, then v(w/8) is a pre-periodic point of
F(x).
Proof. Setting 7 = (=1)'*v(w/8) and F; = Q(n) = Q(»?), we have from the
Fi/K\ .
is
2

an automorphism in Gal(F, /K). If the order of 7, is n, then applying powers of
T, gives that

c=1

(mod 2),

corollaries to Theorems 7.3 and 7.5 that f(n,n™) = 0, where 7, = (

fO.n7) = fo2,p%) = - = f( ,m) =0, (8.3)

which implies that 7 is a periodic point of F(x) of period n. If ¢ is even, then
from Corollary 7.6 and the fact that f(x,y) = f(—x,y) we also have that

flow/8), —v(w/8)) = 0;

thus, v(w/8) is a pre-periodic point of F(x), since —v(w/8)% is periodic.

It is straightforward to check that

F(x)* = %(x4 —4x>+1)+ %(x2 —1DVx4—6x2+1="T(x? (8.4)

and that the minimal polynomial of F(x)? over Q(x) is g(x2,y). In particular,
f(x,y) = 0implies that g(x?, y?) = 0, since

gx%, ¥ = (=x?y + x> + y* + Y)(X?y + x> + y* = y) = f(x, =) f (x, ).
Hence, (8.3) implies that

g ) = (P2, ™) = - = g(P%,9?) =0, (8.5)
which shows that ? = v(w/8)? is a periodic point of T'(x). O
Remarks.
1. Note that if ¢ is even, meaning that 2° || a® + d, then 2° | (a + 16)* + d,

sothat w + 8 = @ = w'’ satisfies (6.1) with ¢ odd. Then the infinite
product formula for v(z) shows that v(w/8) = v(w’ /8 —1) = —v(w’/8), and
—uv(w/8) = v(w’/8) in Corollary 7.6.

2. Given that f(v(7),v(27)) = 0, it is tempting to try to show that v(w/8) is a
periodic point by considering the chain of equations

Fw/8),v(w/4) = fo(w/4),v(w/2)) = - = f(LQ2"'w/8),v(2"w/8)) = 0,

and find an integer n for which 2" 3w = M(w/8) = awi:g
cw

modular matrix M for which v(M(w/8)) = v(w/8). However, this requires

, for some uni-
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that M € I';(8), so that a = 1 (mod 8) and 8 | ¢. This condition leads to the
equation
2" 3cw? 4+ (2"d — a)w — 8b = 0.

Moreover, w is an algebraic integer, so the fact that 8 | ¢ shows that 2" must
divide the other coefficients of this quadratic. Hence, 2" | a, which is im-
possible for n > 1. Thus, this approach does not yield an orbit leading back
to v(w/8).

As in the papers [15]-[18], the minimal polynomials of periodic points of
F(x) can be computed using iterated resultants involving its minimal polyno-
mial f(x,y). We set

RW(x,x;) = f(x,x)) = x%x; + x* + x2 — x;
and define, inductively,
RU(x, x,) = Res, | (R"D(x, x1), f (X1, Xp)) 1> 2.
Then the roots of the polynomial
R,(x) = RM™(x,x), n>1,

are the periodic points of F(x) whose minimal periods divide n. See [15, p. 727].
For example, we compute that

Ry(x) = x(x* +2x —1),

R(x)=x(x*+2x—1D(x*=x>+x+1),

Ry(x) = x(x? 4+ 2x — 1)(x!? — 5x' + 2x'0 4+ 10x7 + 5x® + 23x7
—8x% —23x° + 5x* — 10x3 + 2x% + 5x + 1),

Ri(x)=x(x*+2x—=Dx*=x3+x+ 1B —x" +x0 =5x° +5x3 + x2 4+ x + 1)
X (x16 4+ 5x1 —18x!* — 75x13 + 137x12 + 105x! + 38x'0 + 185x°
—300x® — 185x7 + 38x% — 105x° + 137x* + 75x3 — 18x2 — 5x + 1).

We now set x = z + 3 in the function T(x), so that the square-root in T'(x)
has the 2-adic expansion

3 - L (1/2) 8k
Vxi—6x+1=Vz2—8=z 1—;—21§(—1)(k>Z7k.

We will show that this series is 2-adically convergent for (roughly) half of the
primitive periodic points of the algebraic function T'(x) of a given period n in

the field KZ(\/E), where K, is the maximal unramified, algebraic extension of
the 2-adic field Q,.

If we set

1 ~1
T(x):i(x2—4x+1)+x2 VxZ —6x + 1,
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then using the above series in T(x) and splitting off the k = 0 term, we find

1/2) 2k

T(x) = X* —4x + 2+ (x = )(x — 3) D (~1)k221 ( k) (c—3)%

k=1
for x — 3 € 0%, where O is the ring of integers in Kz(\/E). Since

1/2

(_1)k—122k—1 ( .

) = Ck—l (S Z
is the Catalan sequence, it follows that
T(x) = x?(mod 2), x —3 € O%.

Hence, T(x) is a lift of the Frobenius automorphism for points x in the set

D={xeK,W2):|x=3],=1}

Furthermore,

2 o 2
Tx)—3=x—-3)+2(x—3)—4—-(x—1)(x—-3 Coi——.
(x) (x =37 +2(x = 3) =4 — (x = 1)( )k;kl(x_w

It follows that
IT(x) = 3], =|x~— 3|§ =1, (8.6)

and T maps D to itself.
‘We next prove
Proposition 8.2. We have the congruences
RM™(x,x,) = (x¥" + x,)(x, + 1)*"~1 (mod 2);
R,(x) = (x*" + x)(x + 1)*'~! (mod 2).

Proof. We have f(x,y) = x2y + x> + y> — y. So, for n = 1, we get
RW(x,x;) = f(x,x)) = x?x; + x* + x} — x;
= x%x; + X% + x} + x; (mod 2)
= (x? + x1) (x1 + 1) (mod 2).
Hence,
Ri(x) = (x? 4+ x) (x + 1) (mod 2).
Now for the induction step, assume the result is true for n — 1. Then,
RO(x, x,) = Res, | (ROD(x, %) f (X1, X))
=Res, (¢ + %, )0,y + D 7L (2, + x,)(x, + 1)) (mod 2).
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n m
By definition, the resultant of two polynomials f = Z a;x'and g = Z b;x!,
i=0 i=0
having roots ay, a5, ..., &, and By, B, .. , B, r€SpPectively, is given by

n
Res(f,g) = a | [ g(ay),
i=1
and

Res(g, f) = (=1)™Res(f, g).
The roots of (xfl_1 + x,) (x, + 1), as a polynomial in x,,_;, are ++/—x,,. Hence,

Res,,, (%" 43, )00t + D77 (2, + )06, + 1)
= D x4+ 1) (T o) W+ 1)
% (xzn—l _ ,—_xn)( _ ,__xn + 1)2”—1_1

n—1 n—1__
= (D (x4 1)) (2 x) (x4 1)
-1

1

1

= (x¥ +x,)(x, + 1)2n
Hence, we obtain
RM™(x,x,) = (x*" + x,)(x, + 1)*"~! (mod 2),
R,(x) = (x¥" + x)(x + 1)¥"~! (mod 2),
completing the induction. O
Corollary 8.3. The degree of R,,(x) is deg(R,,(x)) = 2" — 1.

Proof. This follows from the proposition, if the leading coefficient of R,(x) is
not divisible by 2. In fact, this follows from the relation

RO(x, x) = Ap(x,)x>" + S,(x, ),
where for n > 3,
An(x,) = (% + D2 + 1)(X2 — 2x, — 1)2(x2 + 2x, — 1)2" 4
and forn > 1,
deg(A,(x,)) = 2" — 1, deg (Su(x,x,)) <2" =2, deg, (Su(x,x,))=2".
We refer the reader to the lemma in [15, pp. 727-728] for a similar proof. [

x4

The roots of the factor x2" + x = x(x + 1) = x(x + 1)h,,(x) other than
X

x = 0,1 have degree greater than 1, and therefore satisfy x — 3 # 0 (mod 2). It
follows from Hensel’s Lemma that 2" — 1 of the roots of R, (x) over Q, have the
property that x — 3 € (0%, and for these roots the series for T'(x) converges in
K,.



820 SUSHMANTH J. AKKARAPAKAM AND PATRICK MORTON

Now the argument at the end of the proof of Theorem 7.3 shows that n # 1
(mod ¢,), so that the image of 7 in the completion F; ; C K, of F; = 2%3 Qy

with respect to a prime divisor q of g, in F; satisfies n?> — 3 € 0. Hence, the
series for T(n?) converges. We claim now that 72 = T(?). But g(n%,17*2) =0
implies that 7% is one of the values of T'(5?). The value different from T(5?) in
K, is
i) =n*—4n* +1-T(n?)
=n*—4n’ +1 —7n* (mod q)
=1 (mod q).

But we also know 7?2 — 3 = (5% — 3)™2 € 9%, so that n*™2 # T;(»?). This yields
the following.

Theorem 8.4. If w satisfies (6.1), then the value n = v(w/8) and the automor-

: Fi/K\ .
phism t, = satisfy
2]

7’2 =T,
in the completion Fy ; C K, of Fy = Z%s Q with respect to a prime divisor q of
%, in F,, where

o0 2k
T(x) = x> —4x +2— (x — 1)(x—3)kZ=]1Ck—1m

converges forx in D = {x € K,(\/2) 1 |x — 3|, = 1}.

Since 7, fixes the prime divisors of go,, it extends naturally to an automor-
phism of F; ¢, and can be applied to the individual terms of the series represent-
ing T'(x). Thus, we see inductively that

7 = TP ) = T 67) = T'0?)

is the i-th iterate of T(x) applied to . From this and the fact that Q(n?) = F, we
see that the order of 7, in Gal(F, /K) is the minimal period of the periodic point
n?, and that n? is a periodic point in the ordinary sense of the 2-adic function T(x).
This also shows that the minimal period of 7 with respect to F(x) isn = ord(t,),
since if 7 had smaller minimal period m, then by the proof of Theorem 8.1, 5>
would have period m < n with respect to the function T(x). This completes
the proof of the assertions of Theorem B of the Introduction regarding minimal
periods.

9. The periodic points of F(x) and a class number formula.

In this section we show that the only periodic points of F(x) are the values
given in Theorem 8.1. In fact, we will prove the following.
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Theorem 9.1. The only periodic points of the function F(x) in Q are the fixed

points 0,0, & and the conjugates over Q of the values v(w/8) in Theorem 8.1 (for
odd c).

Proof. Let §(x,y) = x?y* +2y + x2. Note that §(x, y) = g(y, x) for the polyno-
mial g(x, y)in[16, Thm. 2, p. 327]. By the results of that paper the numbers 7, §
and their conjugates over Q (as —d ranges over all discriminants = 1 modulo 8)
are, together with 0 and —1, the only periodic points of the algebraic function
f(z) defined by g(z, {(z)) = 0. The assertion of the theorem will follow from the
identity

2x 2y
2_12 2_12~<
(x* =Dy )gx2—1y2—1

>

) = 4f e ) — X2y +y +1). (O.1)

Here, as in Proposition 3.1, f(x,y) = x%y + x2 + y?> — y. Let n be a periodic
point of F(x) in Q which is distinct from its fixed points 0, o, 5. Then there are
71 = 1,8, ...,7, in Q for which

Sm2) = f(2,m3) = - = f(Mu.m) = 0. 9.2)

Setting 4; = %’ equations (9.1) and (9.2) give that
7

81, 42) = (A2, 43) = -+ = §(Ay, 41) = 0. (9:3)

Note that »; # +1 since +1 are preperiodic (and not periodic) for f(x, y), since

fELY) =2 +1, f&,y)=y* =2y -1, fFAxV2,y) = +1£V2)2

Equation (9.3) implies that 1, is a periodic point of the function f(z) defined
above. Also, 4; # 0,—1 since »; ¢ {0,0,&}. By the results of [16, Thm. 2], this
shows that 4; must be a conjugate of the number 7 for some discriminant —d
and is therefore a root of the polynomial b;(x). (See Proposition 6.4.) Since
A = 2n9/(n? — 1), this shows that 7 is a root of the minimal polynomial f4(x)
of v(w/8), for ¢ odd, by (6.7). This completes the proof. O

Remark. We can use equation (9.1) to give an alternate proof of the Corollary

to Theorem 7.3, as follows. We would like to show that f(n,5n™) = 0, where
Fi/K . . Q;/K

7 = v(w/8) and 7, = ( ;/2 ), with F; = 2%3(2]». Since T2|Qf = (?), we

know that g(z, 7%2) = 0, by [16, pp. 332-333]. Using 7 = 7722—21 from (6.4),

equation (9.1) implies that f(»,n™2)k(n,n%) = 0, where k(x, y) = x?y? — x%y +
y + 1. But k(n,7%2) = k(n,7?) mod g, in F;. An easy computation shows that
k(x,x?) = (x + 1)® (mod 2), so k(n,1%) = (n + 1)® mod ¢,. If » = 1 modulo
some prime divisor p of ¢, in F;, then the relation % — %77 —1 = 0 would give
that % = 0 (mod p), which is impossible since % = g); Hence, k(n,n™) £ 0
mod ¢,, which implies k(n, n™2) # 0 and therefore f(n,n™) = 0, as claimed.
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Theorem 9.1 has the following consequence. As in the last remark, let F; =
Z@? Qy be the field generated by v(w/8) in Theorem 6.1. Then [F; : Q] =

4h(—d) and F; is the inertia field for g, in the field Z3Q, an extended ring

F1/Kq4
2

symbol for go, in the extension F; /K. Now define the set of discriminants

D,, =1{—d < 0| —d =1 (mod 8) and ord(r,) = nin Gal(F; /Ky)}.  (9.4)

class field over K; = Q(V —d). Asin Section 7, let 7, =

) be the Artin

Theorem 9.2. Ifn > 2, we have the following relation between class numbers of
discriminants in the set D,, ,:

> h(-d) = %Z w(n/k)2k. 9.5)

—deD,, kln

Proof. This proof mirrors the arguments in [18, pp.792-793, 806]. First, define
Pa(x) = [ [ ReCey /b, (9.6)

kin
We show that P,(x) € Z[x]. From Proposition 8.2 it is clear that R,(x), for
n > 1, is divisible (mod 2) by the N irreducible (monic) polynomials /;(x) of
degree n over [F,, where
1 k
N == uln/k)2",
" in
and that these polynomials are simple factors of R, (x) (mod 2). It follows from
Hensel’s Lemma that R, (x) is divisible by distinct irreducible polynomials ;(x)
of degree n over Z,, the ring of integers in Q,, for 1 < i < N, with h;(x) = h;(x)
(mod 2). In addition, all the roots of h;(x) are periodic of minimal period n and
lie in the unramified extension K,. Furthermore, n is the smallest index for
which h;(x) | R,(x) over Q,.
Now consider the identity

(ox + D)*(oy + 1’ F(A(x), AD)) = 2°0*f(, ), .7

where A(x) = — I (lj

period n > 1, is a root of one of the polynomials &;(x), then a is a unit in K,
and for some ay, ..., a,_; we have

fla,a)) = f(ay,a3) = -+ = f(ay_1,a) = 0. (9.8)
Furthermore, a # 1 (mod \/E), since otherwise its reduction a = @ = 1 (mod
2) would have degree 1 over [, (using that K, is unramified over Q,). Hence,
a+1 +\/§ isaunitin K2(\/§), which gives that ca+1 is a unit, as well. All of the
q; satisfy a; # 1 (mod \/5), since the congruence f(1,y) = (y + 1)? (mod 2) has

,as in (3.3). If the periodic point a of F(x), with minimal
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only y = 1 as a solution. Hence, if some @; = 1 (mod \/E), then a i=1 for j > i,
which would imply that a = 1 (mod \/5), as well. The elements b; = A(a;) are
distinct and lie in Kz(\/E) and satisfy

_—eqt+o—-oq;—1 -2
bi—1= oa; +1 _oai+1_0(m0d\/5)'
The identity (9.7) yields that
J(b,by1) = f(by_1,by3) =--- = f(b1,0) =0 9.9)

in Kz(\/i). Hence, b; = 1 (mod \/E), and the orbit {b, b,,_;, ..., by} is distinct
from all the orbits in (9.8).

Now the map A(x) has order 2, so it is clear that b = A(a) has minimal
period n in (9.9), since otherwise a = A(b) would have period smaller than n.
It follows that there are at least 2N periodic orbits of minimal period n > 1.
Noting that

Ri(x) = f(x,x) = x(x* +2x — 1),
these distinct orbits and factors account for at least
3+ ) @O ud/k2d)=-1+2).Q ud/k)2k)=2-2" -1
dind>1  kld dln k|d
roots, and therefore all the roots, of R,,(x). This shows that the roots of R,,(x) are
distinct and the expressions P,(x) are polynomials. Furthermore, over Kz(\/E)
we have the factorization
P.x) =% J] h(h(x), n>1, (9.10)
1<i<N
where h;(x) = c;(ox + 1)"h;(A(x)), and the constant c; is chosen to make /;(x)
monic.

By the results of Section 8, for each discriminant —d € 9, , we have that
fa(x) | P,(x). Furthermore, every root of P,(x) is a root of some f;(x), by
Theorem 9.1, where ord(t,) = n in order for the roots of f;(x) to have minimal
period n. It follows that

Pi) =, [I fa),
—deD,,
for some constant ¢, and taking degrees on both sides and using (9.10) gives
the formula
2 ) u(n/k)2k =% 4h(-d).
kin -deD,,
The formula of the theorem follows. 0

The result of Theorem 9.2 is the analogue of [18, Thm.1.3] for the prime 2 in
place of 5. The factor 1/2 in front is to be interpreted as 2/¢(8), replacing the
factor 2/¢(5) in the result of [18]. Also, see Conjecture 1 in the Introduction of
that paper.
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Theorem 9.1 will now be used to prove the corresponding fact for the alge-
braic function T'(x) in Theorem 8.1.

Theorem 9.3. The periodic points of the function T(x) of (8.2) in Q (or C) are
exactly the squares of the periodic points of the function F(x), i.e., the fixed points
0,02, 5% and the conjugates over Q of the values v>(w/8), where w is given by (6.1).

Proof. As in the proof of Theorem 8.1, the polynomials g(x,y) = y? — (x? —
4x + 1)y + x? and f(x,y) = y? + (x> — 1)y + x? defining T and F, respectively,
satisfy the identity

g(x%,y?) = f(x, =) f (x,).
Let7? be a periodic point of g(x, y) of period n. Then there existn?,73, ..., n>_| €
Q such that
gm*n}) =gm;,m3) = - = gm,_,n*) = 0.
This means that, for everyi =0, 1, ...,n — 1, either

J@imip1) =0 or f(;, —1i41) = 0, Where 7o =7 =17,.
Now if f(;,7;4+1) = 0 for all i, then 7 is a periodic point of F'(x).

Otherwise, there exists an i such that f(#;, 7;41) # 0, but f(n;, —1;31) = 0. In
this case, ifi < n—1, replace ;,, by —7;,; in the next equation of the sequence,
yielding f(—7;4+1,mi42) = 0. And if this happens for i = n — 1, then simply
replace n by —#. This works because f(—x,y) = f(x,y). In other words, in the
chain of equations for f, whenever the second argument has a negative sign,
choose the next first argument with the same negative sign. And in case the
last equation has second argument 7 with a negative sign, then choose the first
argument of the first equation as —» also. Hence, there is a chain of equations
S (i, mi41) = 0 beginning and ending with +7. Hence, +7 is a periodic point
of F(x) in either case, which implies that 7? is the square of a periodic point of
F(x). This completes the proof. O

With this theorem, we have completely proved all the statements in Theorem
B of the Introduction.

10. Appendix

Here we give a proof of the relation between u(r) and v(r) that was used in
the proof of Proposition 3.1b).

Proposition 10.1. The following relation holds between u(t) and v(7):

ut(? + 12 +40(v>-1)=0.
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Proof. We have derived in the proof of Proposition 4.1 that
a2 o4)2
L — U(T) = q_1/2 M_
v(®) (g% 9%
Proceeding in a similar way, we obtain
1 —_ .
1 = P(=q) - 9(q) :
v(®) 3'/2(4: 4 (q% 4%
2 @) (4050707
3o (4:92)e(@% 653
L 69 (@45995%
(@9 (3% ¢%)%
. 12)2
~1/2 (=497 (@ )2 (q% g°)2
o @595 9%
(4% 9%
_ g1 T4 90
(—g%9%%
(See [2, pp. 221-222].) Putting the above two expressions to use in

4(%—v)

>, we find that

=4q

=dq

=dq

4v(1-0?) _
a+v22

1
~+v
v

A+v22 (g% 9%  (—q:q)% (g% 9%
_4g? (—4% g% (—q" )%
(—4: 4% (@2 99%
_ a2 (-4%¢M%
(-5 4% (a% 4%
12084 8)s
(-q;g2)&

awd-vY) _ap a5 (ahaY

= u*(7),

completing the proof. O
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