New York Journal of Mathematics

New York J. Math. 30 (2024) 828-843.

Polynomials with integral Mahler measures

Artūras Dubickas

Abstract

For each $m \in \mathbb{N}$ and each sufficiently large $d \in \mathbb{N}$, we give an upper bound for the number of integer polynomials of degree d and Mahler's measure m. We show that there are at most $\exp \left(11(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)$ of such polynomials. For 'small' m, i.e. $m<d^{1 / 2-\varepsilon}$, this estimate is better than the estimate $m^{d(1+\varepsilon)}$ that comes from a corresponding upper bound on the number of integer polynomials of degree d and Mahler's measure at most m. By the results of Zaitseva and Protasov, our estimate has applications in the theory of self-affine 2 -attractors. We also show that for each integer $m \geq 3$ there is a constant $c=c(m)>0$ such that the number of monic integer irreducible expanding polynomials of sufficiently degree d and constant coefficient m (and hence with Mahler's measure equal to m) is at least $c d^{m-1}$.

Contents

1. Introduction 828
2. Auxiliary results 831
3. Proof of Theorem 1.4 and Proposition 1.5835
4. Proof of Theorem $1.1 \quad 837$
$\begin{array}{ll}\text { References } & 842\end{array}$

1. Introduction

For a degree d polynomial

$$
\left.f(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}=a_{d}\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{d}\right) \in \mathbb{C}[x],\right\rangle a_{d} \neq 0
$$

we define its Mahler measure by

$$
M(f)=\left|a_{d}\right| \prod_{j=1}^{d} \max \left\{1,\left|\alpha_{j}\right|\right\} .
$$

The Mahler measure is multiplicative, namely,

$$
\begin{equation*}
M(f g)=M(f) M(g) \tag{1}
\end{equation*}
$$

Received April 2, 2024.
2010 Mathematics Subject Classification. 11R06, 11R09, 11C08, 12D10.
Key words and phrases. Mahler's measure, integer expanding polynomial, self-affine 2 attractor.
for any $f, g \in \mathbb{C}[x]$, and satisfies

$$
\begin{equation*}
M(f)=M\left(f^{*}\right), \tag{2}
\end{equation*}
$$

where $f^{*}(x)=x^{d} f(1 / x)$ for $f \in \mathbb{C}[x]$ of degree d. Throughout, we say that the polynomial f^{*} defined as above is reciprocal to the polynomial f of degree d. The Mahler measure of an algebraic number $\alpha \in \overline{\mathbb{Q}}$ with minimal polynomial $f \in \mathbb{Z}[x]$ is defined by $M(\alpha)=M(f)$.

In [7], Chern and Vaaler gave an asymptotic formula for the number of integer polynomials of degree at most d and Mahler's measure at most T as $T \rightarrow \infty$. It turns out to be asymptotic to $\kappa_{d} T^{d+1}$ with some $\kappa_{d}>0$ as $T \rightarrow \infty$. The situation is much more complicated when T is bounded and d is large. The case $T=2$ has been first considered by Mignotte [19]. Later, Mignotte's bound was improved by the author and Konyagin. In [13], it was shown that for any real $T>1$ the number of integer polynomials of degree at most d and Mahler's measure at most T is bounded above by

$$
\begin{equation*}
\min \left\{T^{(1+\varepsilon) d}, T^{d+1} \exp \left(d^{2} / 2\right)\right\} \tag{3}
\end{equation*}
$$

for any $\varepsilon>0$ and any sufficiently large d. (Throughout the paper, $\exp (x)$ stands for e^{x}.) For $T=2$, this gives the upper bound $2^{(1+\varepsilon) d}$. On the other hand, the best available lower bound for the number of monic integer irreducible polynomials of degree at most d and of Mahler's measure less than 2 is only κd^{5} with some absolute constant $\kappa>0$, see [11], [12].

As in [1], we say that a polynomial in $\mathbb{Z}[x]$ (or even in $\mathbb{C}[x]$) whose roots are all in $|z|>1$ is expanding. Expanding polynomials also appear, for instance, in the papers of Akiyama and Zaimi [3], Brunotte [6]. Note that if $f \in \mathbb{C}[x]$ is expanding then

$$
\begin{equation*}
M(f)=|f(0)| . \tag{4}
\end{equation*}
$$

In [23], Zaitseva and Protasov considered various questions related to socalled self-affine 2 -attractors and reduced one of the problems to estimating the number of monic integer expanding polynomials of degree d with constant term ± 2. They showed that for d sufficiently large there are at least $0.06 d^{2}$ and at most $\exp (0.7 d)$ of such polynomials, the upper bound being taken from (3) with $T=2$. Of course, such polynomials have Mahler's measure not at most 2 , but exactly 2 . This raises a natural question of finding a better upper bound for the number of degree d integer polynomials with Mahler's measure 2 and, more generally, with Mahler's measure m, where $m \geq 2$ is an integer.

In the case when d is fixed and $m \rightarrow \infty$ this problem has already been addressed in [2], [8], [17]. In [2, Theorem 5.2], Akiyama and Pethő proved a result which implies that the number of monic integer irreducible expanding polynomials of degree d with constant term m is asymptotic to $v_{d} m^{d-1}$ with some $v_{d}>0$ as $m \rightarrow \infty$. By (4), such polynomials have Mahler's measure equal to m. Similar asymptotical results when the degree d is fixed and Mahler's measure tends to infinity were recently obtained by Dill [8, Section 8].

However, as in the case of the problem of estimating the number of integer polynomials with bounded Mahler's measure which we discussed above, this problem, where Mahler's measure $m \in \mathbb{N}$ of polynomials is fixed and their degree d is large, turns out to be more difficult. In this paper, we will evaluate the number of integer polynomials of degree d and Mahler's measure equal to a positive integer m. Our main result is the following upper bound which improves the bound (3) in case we count only polynomials with Mahler's measure exactly m :
Theorem 1.1. For each positive integer m and each sufficiently large integer d there are at most

$$
\begin{equation*}
\exp \left(11(m d)^{2 / 3}(\log (m d))^{4 / 3}\right) \tag{5}
\end{equation*}
$$

integer polynomials of degree d and Mahler's measure m.
We remark that $m=1$ is the only case when a better result is known. By Kronecker's theorem (see, e.g., [20, Theorem 4.5.4]), integer polynomials with Mahler's measure 1 are products of $\pm x^{k}, k \in \mathbb{N} \cup\{0\}$, and cyclotomic polynomials. The next proposition is the main result of Boyd and Montgomery [5]:

Proposition 1.2. The number of degree d monic integer polynomials with all roots on $|z|=1$ is asymptototic to $\frac{c_{1}}{d \sqrt{\log d}} \exp \left(c_{2} \sqrt{d}\right)$ as $d \rightarrow \infty$, with $c_{1}=$ $\sqrt{105 \zeta(3)} /\left(4 \pi^{2} e^{\gamma / 2}\right)$, where γ is Euler's constant, and $c_{2}=\sqrt{105 \zeta(3)} / \pi$.

Proposition 1.2 immediately implies the upper bound of the form $\exp \left(c_{3} \sqrt{d}\right)$, where $c_{3}>c_{2}$, on the number of integer polynomials of sufficiently large degree d and Mahler's measure $m=1$. This is better than (5) gives for $m=1$. Of course, the example $(x-m) f(x)$, where f runs through all monic degree $d-1$ polynomials in $\mathbb{Z}[x]$ with all roots on $|z|=1$, shows that the exponent $2 / 3$ for d in (5) cannot be improved to a constant smaller than $1 / 2$.

On the other hand, for $m \geq 2$ fixed, and, more generally, for m in the range $2 \leq m<d^{1 / 2-\varepsilon}$, Theorem 1.1 gives a better bound than that $m^{(1+\varepsilon) d}$ coming from (3). In particular, for $m=2$, Theorem 1.1 improves the upper bound in [23, Theorem 10]. Since $10.5 \cdot 2^{2 / 3}<17$, Theorem 1.1, which we will prove with the better constant 10.5 (instead of 11) in (5) (see (32)), combined with [23, Corollary 6] yields the following:

Corollary 1.3. The total number of not affinely similar 2-attractors in dimension d is less than $\exp \left(17 d^{2 / 3}(\log d)^{4 / 3}\right)$ for d sufficiently large.

We remark that in [23, Theorem 10], the bound corresponding to that of Corollary 1.3 was $\exp (0.7 d)$.

It seems very likely that the main contribution in Theorem 1.1 comes from reducible polynomials, while the number of irreducible polynomials of degree d and Mahler's measure m should be much smaller. In the next theorem we will construct many monic integer irreducible polynomials with Mahler's measure $m \in \mathbb{N} \backslash\{1\}$.

Theorem 1.4. The number of monic integer irreducible expanding polynomials of degree d with constant coefficient 2 is at least $c_{0} d^{2}$, where $c_{0}>0$ is an absolute constant. Furthermore, for each $m \geq 3$ there is a constant $c(m)>0$ such that for each sufficiently large $d \in \mathbb{N}$ the number of monic integer irreducible expanding polynomials of degree d with constant coefficient m is at least $c(m) d^{m-1}$.

Note that the gap between the bounds in Theorems 1.1 and 1.4 is large. Since we consider the situation with m small and d large, the bound in Theorem 1.4 is far from that given in the asymptotic formula $v_{d} m^{d-1}$ as $d \rightarrow \infty$ [2] and closer to that in [12]. For $m \geq 3$, the proof of Theorem 1.4 is based on an explicit construction. For $m=2$, the construction is different and taken from [23]. However, for the sake of completeness, we will give a full proof of Theorem 1.4 in the case $m=2$ too.

Earlier, somewhat unrelated results on the properties of the Mahler measure have been obtained by the author in [10]. Some of those results were recently extended by Fili, Pottmeyer and Zhang in [14], [15], but now, in the present context, a very useful result seems to be also [10, Theorem 2]. Here, in the same fashion, we will derive a result that completely characterizes all integer polynomials with integral Mahler measure. This will be a useful tool in completing the proof of Theorem 1.1:

Proposition 1.5. Let m and d be two positive integers and let $f \in \mathbb{Z}[x]$ be a polynomial of degree d with Mahler measure equal to m. Write

$$
\begin{equation*}
f(x)=a x^{s} \prod_{j=1}^{k} f_{j}(x) \tag{6}
\end{equation*}
$$

where $a \in \mathbb{Z} \backslash\{0\}, s \in\{0,1, \ldots, d\}$ and $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ are not necessarily distinct irreducible polynomials with positive leading coefficients satisfying $f_{j}(0) \neq$ 0 . Then, for each $j=1, \ldots, k$, the polynomial f_{j} either has all of its roots on $|z|=1$ or one of the polynomials f_{j}, f_{j}^{*} is expanding.

By (1), (2), (4) and Proposition 1.5, it follows that with its notation we have

$$
\begin{equation*}
m=M(f)=|a| \prod_{j=1}^{k} M\left(f_{j}\right)=|a| \prod_{j=1}^{k} m_{j}, \tag{7}
\end{equation*}
$$

where $m_{j}=M\left(f_{j}\right)=M\left(f_{j}^{*}\right) \in \mathbb{N}$. Here, $m_{j}=1$ if and only if f_{j} is cyclotomic.
In the next section we present some auxiliary results. Then, in Section 3 we will prove Theorem 1.4 and Proposition 1.5. Finally, in Section 4 we will prove Theorem 1.1.

2. Auxiliary results

For $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{C}^{d}$ we put

$$
\|\mathbf{x}\|=\max _{1 \leq j \leq d}\left|x_{j}\right|
$$

for the l_{∞} norm of the vector \mathbf{x}. For a convex closed bounded set $A \subset \mathbb{R}^{d}$ we put

$$
\begin{equation*}
F(A)=\{\mathbf{x}+\mathbf{y}: \mathbf{x} \in A,\rangle\rangle\|\mathbf{y}\| \leq 1 / 2\} \tag{8}
\end{equation*}
$$

for the $1 / 2$-neighbourhood of the set A. Suppose that $G \subseteq\{1,2, \ldots, d\}$ and $g=|G|$. We denote by $\operatorname{Pr}_{G}(A)$ the orthogonal projection of the set A to the linear space \mathbb{R}^{g} spanned by the vectors of \mathbb{R}^{d} corresponding to the indices of G. Finally, denote by $\operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right)$ the volume of the g-dimensional $(1 \leq g \leq d)$ convex set $\operatorname{Pr}_{G}(A)$. With this notation we have the following lemma for $d \geq 1$:
Lemma 2.1. We have

$$
\operatorname{Vol}(F(A))=1+\sum_{G} \operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right),
$$

where the sum is taken over all nonempty subsets G of $\{1,2, \ldots, d\}$.
See [13, Lemma 0] for the proof.
Lemma 2.2. Let $V(g, n)$ be the maximal volume of a convex hull of n points in the parallelepiped $\prod_{j=1}^{g}\left[-u_{j} / 2, u_{j} / 2\right] \subset \mathbb{R}^{g}$, where u_{1}, \ldots, u_{g} are positive. Then, for $n=g^{\lambda}$, where $\lambda>1$ and g is sufficiently large, we have

$$
V\left(g, g^{\lambda}\right)<\left(\frac{23.22(\lambda-1) \log g}{g}\right)^{g / 2} \prod_{j=1}^{g} u_{j} .
$$

Proof. Let $W(g, n)$ be the maximal volume of a convex hull of n points in the unit ball W_{g} in \mathbb{R}^{g}. The volume of W_{g} equals $w_{g}=\frac{\pi^{g / 2}}{\Gamma(g / 2+1)}$; see, e.g., [22]. Next, as in [9], [13], we will need a result on the estimate of the volume of a polytope with few vertices in the style of [4], [16], [18]. Specifically, in [4, eq. (4)], it was shown that for $n=g^{\lambda}$, where $\lambda>1$, and any $\varepsilon>0$ the inequality

$$
\begin{equation*}
W\left(g, g^{\lambda}\right)<(1+\varepsilon)^{g} w_{g}\left(\frac{2 e(\lambda-1) \log g}{g}\right)^{g / 2} \tag{9}
\end{equation*}
$$

holds for each sufficiently large g.
As observed in [13], by rescaling, it suffices to prove the inequality of the lemma for the parallepiped

$$
P_{g}=\prod_{j=1}^{g}\left[-u_{j} / 2, u_{j} / 2\right]=[-1 / \sqrt{g}, 1 / \sqrt{g}]^{g} .
$$

Note that P_{g} is inscribed into the unit ball W_{g} with center at the origin, hence $V\left(g, g^{\lambda}\right) \leq W\left(g, g^{\lambda}\right)$. Furthermore, by Stirling's formula, $\Gamma(g / 2+1)>(g / 2 e)^{g / 2}$ for g sufficiently large, so using $u_{j}=2 / \sqrt{g}$ we obtain

$$
w_{g}=\frac{\pi^{g / 2}}{\Gamma(g / 2+1)}<\left(\frac{2 \pi e}{g}\right)^{g / 2}=\left(\frac{\pi e}{2}\right)^{g / 2} \prod_{j=1}^{g} u_{j}
$$

This implies the required result by (9) and $(1+\varepsilon)^{2} \pi e^{2}<23.22$ with appropriate choice of ε.

Lemma 2.3. For every $k \in \mathbb{N}$ and any real numbers $m_{1}, \ldots, m_{k} \geq \sqrt{2}$ and $d_{1}, \ldots, d_{k}>0$ we have

$$
\begin{equation*}
\left(m_{1} d_{1}\right)^{2 / 3}+\cdots+\left(m_{k} d_{k}\right)^{2 / 3} \leq\left(m_{1} \ldots m_{k}\left(d_{1}+\cdots+d_{k}\right)\right)^{2 / 3} \tag{10}
\end{equation*}
$$

Proof. The inequality (10) is equality for $k=1$. It is sufficient to prove (10) for $k=2$ and then apply induction on k. Dividing both sides of (10) with $k=2$ by $d_{1}^{2 / 3}$ and setting $y=d_{2} / d_{1}$ we see that it suffices to show that $m_{1}^{2 / 3}+\left(m_{2} y\right)^{2 / 3}$ does not exceed $\left(m_{1} m_{2}(y+1)\right)^{2 / 3}$ for $y>0$.

Let us consider the function

$$
\varphi(y)=\left(m_{1} m_{2}(y+1)\right)^{2 / 3}-m_{1}^{2 / 3}-\left(m_{2} y\right)^{2 / 3} .
$$

It is positive at $y=0$, since $m_{2}>1$. Its derivative

$$
\varphi^{\prime}(y)=\frac{2 m_{2}^{2 / 3}}{3(y+1)^{1 / 3}}\left(m_{1}^{2 / 3}-\left(1+\frac{1}{y}\right)^{1 / 3}\right)
$$

vanishes at $y_{0}=1 /\left(m_{1}^{2}-1\right)$. Since $\varphi^{\prime}(y)<0$ for $0<y<y_{0}$ and $\varphi^{\prime}(y)>0$ for $y>y_{0}$, the minimum of the function $\varphi(y)$ in $[0, \infty)$ is attained at $y=y_{0}$. Thus, in order to prove that $\varphi(y) \geq 0$ for all $y>0$ it remains to verify the inequality $\varphi\left(y_{0}\right) \geq 0$.

From

$$
\begin{aligned}
\varphi\left(y_{0}\right) & =\varphi\left(\frac{1}{m_{1}^{2}-1}\right)=\left(m_{1} m_{2}\right)^{2 / 3}\left(\frac{m_{1}^{2}}{m_{1}^{2}-1}\right)^{2 / 3}-m_{1}^{2 / 3}-\frac{m_{2}^{2 / 3}}{\left(m_{1}^{2}-1\right)^{2 / 3}} \\
& =m_{2}^{2 / 3}\left(m_{1}^{2}-1\right)^{1 / 3}-m_{1}^{2 / 3}
\end{aligned}
$$

we see that $\varphi\left(y_{0}\right) \geq 0$ is equivalent to $\left(m_{1}^{2}-1\right)^{1 / 3} \geq\left(m_{1} / m_{2}\right)^{2 / 3}$. The latter inequality is equivalent to $\left(m_{1}^{2}-1\right) m_{2}^{2} \geq m_{1}^{2}$, and can be also written as ($m_{1}^{2}-$ 1) $\left(m_{2}^{2}-1\right) \geq 1$, which holds due to $m_{1}^{2}-1 \geq 1$ and $m_{2}^{2}-1 \geq 1$.

Lemma 2.4. For every integer $m \geq 3$ there is a constant $c(m)>0$ such that for each sufficiently large integer d there are at least $c(m) d^{m-1}$ irreducible polynomials of the form

$$
x^{d}-x^{b_{m-1}}-\cdots-x^{b_{1}}+m
$$

where $b_{1}, \ldots, b_{m-1} \in \mathbb{Z}$ and $0<b_{1}<\cdots<b_{m-1}<d$.
Proof. Fix $m \geq 3$. For each $d>m$ let $S(d, m)$ be the set polynomials of the form $x^{d}-x^{b_{m-1}}-\cdots-x^{b_{1}}+m$ with integers b_{1}, \ldots, b_{m-1} satisfying

$$
\begin{equation*}
0<b_{1}<\cdots<b_{m-1}<d \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(b_{1}, \ldots, b_{m-1}\right)=1 \tag{12}
\end{equation*}
$$

Note that the number of vectors $\left(b_{1}, \ldots, b_{m-1}\right) \in \mathbb{Z}^{m-1}$ satisfying (11) is $\binom{d-1}{m-1}$. It is well known that the probability of $m-1 \geq 2$ random integers being coprime
is $1 / \zeta(m-1)$. Thus, there is a constant $c_{1}(m)>0$ such that for each sufficiently large d we have

$$
\begin{equation*}
|S(d, m)| \geq c_{1}(m) d^{m-1} \tag{13}
\end{equation*}
$$

We claim that every reciprocal monic divisor $g \in \mathbb{Z}[x]$ of $f \in S(d, m)$ must be cyclotomic. Indeed, if not, then, by Kronecker's theorem (see, e.g. [20, Theorem 4.5.4]), at least one root of g must be in $|z|>1$. Since g is reciprocal, it must have a root α satisfying $|\alpha|<1$. But then $f(\alpha)=0$ implies

$$
m=\alpha^{b_{1}}+\cdots+\alpha^{b_{m-1}}-\alpha^{d} \leq\left|\alpha^{d}\right|+\sum_{j=1}^{m-1}\left|\alpha^{b_{j}}\right|<m
$$

which is impossible.
By Schinzel's result [21, Theorem 4], either the nonreciprocal part of $f \in$ $S(d, m)$ (which is equal to the noncyclotomic part by the above) is irreducible or there is a positive constant $c_{2}(m)$ (which given explicitly in [21] and for the polynomial of the form $x^{d}-x^{b_{m-1}}-\cdots-x^{b_{1}}+m$ depends only on m) and a vector $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{Z}^{m}$ such that

$$
0<\max _{1 \leq j \leq m}\left|\gamma_{j}\right| \leq c_{2}(m)
$$

and

$$
\begin{equation*}
\gamma_{1} b_{1}+\cdots+\gamma_{m-1} b_{m-1}+\gamma_{m} d=0 . \tag{14}
\end{equation*}
$$

It is clear that at least one $\gamma_{j}, j=1, \ldots, m-1$, must be nonzero.
For each nonzero vector $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{Z}^{m}$ the number of vectors

$$
\left(b_{1}, \ldots, b_{m-1}\right) \in \mathbb{Z}^{m-1}
$$

satisfying both (11) and (14) is less than d^{m-2}. Furthermore, there are at most $\left.\left(2 c_{2}(m)+1\right)\right)^{m}$ possible vectors $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{Z}^{m}$. Hence, by (13), at least

$$
\begin{equation*}
c_{1}(m) d^{m-1}-\left(2 c_{2}(m)+1\right)^{m} d^{m-2} \tag{15}
\end{equation*}
$$

polynomials from $S(d, m)$ have irreducible noncyclotomic part.
Now, we will show that no polynomial in $S(d, m)$ has a cyclotomic factor. Indeed, $f \in S(d, m)$ has a cyclotomic divisor if and only if there is a root of unity ζ such that $\zeta^{d}=-1$ and

$$
\begin{equation*}
\zeta^{b_{m-1}}=\cdots=\zeta^{b_{1}}=1 . \tag{16}
\end{equation*}
$$

Then, in view of (12) there are $u_{m-1}, \ldots, u_{1} \in \mathbb{Z}$ such that

$$
b_{m-1} u_{m-1}+\cdots+b_{1} u_{1}=1 .
$$

Thus, if (16) is true, we obtain

$$
\zeta=\zeta^{b_{m-1} u_{m-1}+\cdots+b_{1} u_{1}}=1,
$$

which contradicts to $\zeta^{d}=-1$. Hence, for every $f \in S(d, m)$, the polynomial f itself coincides with its noncyclotomic part, which is shown to be irreducible with at most $\left(2 c_{2}(m)+1\right)^{m} d^{m-2}$ exceptions. Thus, by (15), we arrive at the required result with the constant, say, $c(m)=c_{1}(m) / 2$.

3. Proof of Theorem 1.4 and Proposition 1.5

Proof of Theorem 1.4. To prove the theorem for $m \geq 3$ it suffices to show that each polynomial as in Lemma 2.4 is expanding. Indeed, it is clear that it has no roots in $|z|<1$. If it has a root of unit modulus then it must be reciprocal, which is not the case. This means that all the roots of such polynomial must be in $|z|>1$, and hence it is expanding.

In all that follows we will prove the theorem for $m=2$. Let us consider the polynomials of the form

$$
f_{a, b, c}(x)=\left(1+x^{a}\right)\left(1+x^{b}\right)\left(1+x^{c}\right)+1
$$

where $a \geq b \geq c$ are three positive integers satisfying $a+b+c=d$ and, for example,

$$
\begin{equation*}
b \not \equiv c \quad(\bmod 3) \tag{17}
\end{equation*}
$$

There is an absolute constant $c_{4}>0$ such that, for d large enough, say $d \geq d_{0}$, there are at least $c_{4} d^{2}$ of such polynomials. (For $d \leq d_{0}$ there is at least one expanding polynomial $x^{d}+2$, so the lower bound $c_{5} d^{2}$ with some other constant $c_{5}>0$ also holds for all $d \in \mathbb{N}$.)

It remains to show that $f_{a, b, c}$ has no root in $|z| \leq 1$. Indeed, then all roots of $f_{a, b, c}$ are in $|z|>1$ and the modulus of their product is 2 , so $f_{a, b, c}$ is monic integer irreducible expanding polynomial.

Suppose $\alpha \in \mathbb{C}$ satisfying $|\alpha| \leq 1$ is a root of $f_{a, b, c}$. The numbers

$$
z_{a}=1+\alpha^{a}=\left|z_{a}\right| e^{i \varphi_{a}}, \quad z_{b}=1+\alpha^{b}=\left|z_{b}\right| e^{i \varphi_{b}}, \quad z_{c}=1+\alpha^{c}=\left|z_{c}\right| e^{i \varphi_{c}}
$$

all lie in the circle $|z-1| \leq 1$ and satisfy $z_{a} z_{b} z_{c}=-1$. Therefore, $\left|z_{a} z_{b} z_{c}\right|=1$ and

$$
\begin{equation*}
\varphi_{a}+\varphi_{b}+\varphi_{c}= \pm \pi, \quad \varphi_{a}, \varphi_{b}, \varphi_{c} \in(-\pi / 2, \pi / 2) \tag{18}
\end{equation*}
$$

Moreover, we must have $\left|z_{a}\right| \leq 2\left|\cos \left(\varphi_{a}\right)\right|$ with equality if $|\alpha|=1$. Likewise, $\left|z_{b}\right| \leq 2\left|\cos \left(\varphi_{b}\right)\right|$ and $\left|z_{c}\right| \leq 2\left|\cos \left(\varphi_{c}\right)\right|$. Hence,

$$
\begin{equation*}
\left|\cos \left(\varphi_{a}\right) \cos \left(\varphi_{b}\right) \cos \left(\varphi_{c}\right)\right| \geq \frac{1}{8} \tag{19}
\end{equation*}
$$

Note that (18) implies that all three numbers $\varphi_{a}, \varphi_{b}, \varphi_{c}$ must be positive or all three negative. Replacing $\left(\varphi_{a}, \varphi_{b}, \varphi_{c}\right)$ by $\left(-\varphi_{a},-\varphi_{b},-\varphi_{c}\right)$ if necessary we may assume that all three numbers are positive. Then, $\varphi_{a}, \varphi_{b}, \varphi_{c}$ are angles of an acute triangle. It is an elementary exercise to show that the sum of their cosine angles $\cos \left(\varphi_{a}\right)+\cos \left(\varphi_{b}\right)+\cos \left(\varphi_{c}\right)$ attains its maximum $3 / 2$ only if all three angles are $\pi / 3$. Thus, by (19), we obtain

$$
\frac{1}{2} \leq\left(\cos \left(\varphi_{a}\right) \cos \left(\varphi_{b}\right) \cos \left(\varphi_{c}\right)\right)^{1 / 3} \leq \frac{\cos \left(\varphi_{a}\right)+\cos \left(\varphi_{b}\right)+\cos \left(\varphi_{c}\right)}{3} \leq \frac{1}{2}
$$

This implies that under assumption (18) inequality (19) only holds when $\varphi_{a}=$ $\varphi_{b}=\varphi_{c}= \pm \pi / 3$.

Then, we deduce $\left|z_{a}\right|=2\left|\cos \left(\varphi_{a}\right)\right|=1$ and, similarly, $\left|z_{b}\right|=\left|z_{c}\right|=1$. Hence,

$$
\alpha^{a}=\alpha^{b}=\alpha^{c}=-1+e^{ \pm \pi i / 3}=e^{ \pm 2 \pi i / 3}
$$

This can only happen if $|\alpha|=1$. Moreover, α must be a root of unity, since $\alpha^{3 a}=1$. Set $\alpha=e^{2 \pi k i / N}$ with some $N \in \mathbb{N}$ and $k \in\{0, \ldots, N-1\}$, where $\operatorname{gcd}(k, N)=1$. Then, $2 \pi i k a / N= \pm 2 \pi i / 3+2 \pi i s$ with $s \in \mathbb{Z}$, which implies $k a / N \mp 1 / 3 \in \mathbb{Z}$. Multiplying by N we see that N must be divisible by 3 . Hence, k is not divisible by 3 . Similarly, $k b / N \mp 1 / 3 \in \mathbb{Z}$ and $k c / N \mp 1 / 3 \in \mathbb{Z}$, which by subtracting implies $k(b-c) / N \in \mathbb{Z}$. Hence, $b-c$ must be divisible by N, and so by 3 , which is impossible because of (17). This completes the proof of the theorem.

Proof of Proposition 1.5. Assume that $k \geq 1$ and for some $j \in\{1, \ldots, k\}$ the polynomial $g=f_{j} \in \mathbb{Z}[x]$ of positive degree is not as claimed in the proposition. If g has no roots on $|z|=1$ and g is not as claimed in the proposition, then it must have a root in $|z|<1$ and a root in $|z|>1$. We will show the same is true if g has a root on $|z|=1$. Indeed, then, as not all roots of g are on $|z|=1$, g must have a root α of modulus distinct from 1 . Note that α is reciprocal, since it has a conjugate on $|z|=1$. So α and α^{-1} are conjugate over \mathbb{Q}. This implies that g has a root in $|z|<1$ and a root in $|z|>1$ as claimed.

Therefore, if $g=f_{j}$ is not as claimed in the proposition, it must have a root in $0<|z|<1$ and a root in $|z|>1$. This implies $s \leq d-2$. Assume that the nonzero roots of f defined in (6) are $\alpha_{1}, \ldots, \alpha_{d-s}$. Without restriction of generality we can label them as

$$
\left|\alpha_{1}\right| \geq \cdots \geq\left|\alpha_{q}\right|>1 \geq\left|\alpha_{q+1}\right| \geq \cdots \geq\left|\alpha_{d-s}\right|
$$

where $1 \leq q \leq d-s-1$ because $\left|\alpha_{1}\right|>1$ and $\left|\alpha_{d-s}\right|<1$. Then, by the definition of Mahler's measure,

$$
m=|a| b \alpha_{1} \ldots \alpha_{q}
$$

with some (possibly negative) nonzero integer b. Here, the product $\alpha_{1} \ldots \alpha_{q}$ is a real number, because if α is a nonreal root of f then its complex conjugate $\bar{\alpha}$ is also its root with the same multiplicity.

Take an automorphism σ of the splitting field of f that maps the root α_{i} of g to its another root α_{t}, where $1 \leq i \leq q<t \leq d-s$. Then, as $\sigma\left(\alpha_{i}\right)=\alpha_{t}$, $\sigma(m)=m$ and $\sigma(|a| b)=|a| b$, we obtain

$$
m=\frac{|a| b \alpha_{t}}{\sigma\left(\alpha_{i}\right)} \prod_{j=1}^{q} \sigma\left(\alpha_{1}\right) \ldots \sigma\left(\alpha_{q}\right) .
$$

Hence,

$$
\left|\alpha_{1} \ldots \alpha_{q}\right|=\frac{m}{|a b|}=\frac{\left|\alpha_{t}\right|}{\left|\sigma\left(\alpha_{i}\right)\right|}\left|\sigma\left(\alpha_{1}\right) \ldots \sigma\left(\alpha_{q}\right)\right| \leq\left|\alpha_{t}\right| \cdot\left|\alpha_{1} \ldots \alpha_{q-1}\right|,
$$

where the last inequality holds by the definition of $\alpha_{1}, \ldots, \alpha_{q}$ (these are the only roots of f outside the unit circle). This implies $\left|\alpha_{t}\right| \geq\left|\alpha_{q}\right|$, which is impossible due to $\left|\alpha_{t}\right| \leq 1$ and $\left|\alpha_{q}\right|>1$.

4. Proof of Theorem 1.1

For any $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right) \in \mathbb{C}^{d}$ and any $k \in \mathbb{N}$ we set

$$
S_{k}(\mathbf{w})=\sum_{j=1}^{d} w_{j}^{k}
$$

In the same fashion, for a polynomial

$$
f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}=a_{d}\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{d}\right) \in \mathbb{R}[x]
$$

where $a_{d} \neq 0$, we denote by

$$
S_{k}(f)=\sum_{j=1}^{d} \alpha_{j}^{k}
$$

the sum of k th powers of its d roots.
Recall that, by the Newton identities, we have

$$
\begin{equation*}
a_{d} S_{k}(f)+a_{d-1} S_{k-1}(f)+\cdots+a_{d-k+1} S_{1}(f)+a_{d-k} k=0 \tag{20}
\end{equation*}
$$

for $k=1,2, \ldots, d$. For any $m \in \mathbb{N}$ and any two distinct polynomials

$$
f(x)=m x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0} \in \mathbb{Z}[x]
$$

and

$$
g(x)=m x^{d}+b_{d-1} x^{d-1}+\cdots+b_{0} \in \mathbb{Z}[x],
$$

where $a_{d}=b_{d}=m$, there is a unique index $k \in\{1,2, \ldots, d\}$ such that $a_{d-j}=$ b_{d-j} for $j=0,1, \ldots, k-1$ and $a_{d-k} \neq b_{d-k}$. This yields $S_{j}(f)=S_{j}(g)$ for $j=1, \ldots, k-1$. Thus, by (20), we deduce

$$
m\left(S_{k}(f)-S_{k}(g)\right)+k\left(a_{d-k}-b_{d-k}\right)=0
$$

Since $a_{d-k}-b_{d-k}$ is a nonzero integer, this implies

$$
\begin{equation*}
\left|S_{k}(f)-S_{k}(g)\right| \geq \frac{k}{m} \tag{21}
\end{equation*}
$$

for this integer $k \in\{1,2, \ldots, d\}$.
We now prove the bound

$$
\begin{equation*}
B=B(m, d)<\exp \left(10.4(m d)^{\frac{2}{3}}(\log (m d))^{\frac{4}{3}}\right) \tag{22}
\end{equation*}
$$

for the number $B(m, d)$ of polynomials $f \in \mathbb{Z}[x]$ of sufficiently large degree d with leading coefficient $m \in \mathbb{N}$ and all d roots in $|z| \leq 1$.

Fix

$$
\begin{equation*}
X:=6 m d \tag{23}
\end{equation*}
$$

For each complex number $z=x+i y$ satisfying $|z| \leq 1$ we define

$$
\hat{z}:=\frac{\lfloor X|x|\rfloor \operatorname{sign}(x)+i\lfloor X|y|\rfloor \operatorname{sign}(y)}{X} .
$$

Here, $\operatorname{sign}(x)=1$ for $x>0, \operatorname{sign}(x)=-1$ for $x<0$ and $\operatorname{sign}(0)=0$. It is clear that $|\hat{z}| \leq 1$ and $|z-\hat{z}|<\frac{\sqrt{2}}{X}$. Hence,

$$
\begin{equation*}
\left|z^{k}-\hat{z}^{k}\right|=|z-\hat{z}| \cdot\left|z^{k-1}+\cdots+\hat{z}^{k-1}\right|<\frac{\sqrt{2} k}{X} \tag{24}
\end{equation*}
$$

Since each \hat{z} is of the form $\frac{\mathbb{Z}+i \mathbb{Z}}{X}$, the distance between two distinct \hat{z} is at least $1 / X$. Consider a union of open circles at distinct \hat{z} with radii $1 /(2 X)$. They are not intersecting and are all in the circle with radius $1+1 /(2 X)$. If there are N of them, then

$$
\pi\left(\frac{1}{2 X}\right)^{2} N<\pi\left(1+\frac{1}{2 X}\right)^{2}
$$

which, by (23), for d large enough, implies

$$
\begin{equation*}
N<(2 X+1)^{2} \leq 145 m^{2} d^{2} \tag{25}
\end{equation*}
$$

Likewise, for each vector $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{C}^{d}$, where $\left|\alpha_{j}\right| \leq 1$, we can define another vector $\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{d}\right) \in \mathbb{C}^{d}$. Accordingly, for $f \in \mathbb{Z}[x]$ of degree d with leading coefficient m and roots $\alpha_{1}, \ldots, \alpha_{d}$ we define

$$
\hat{f}(x)=m\left(x-\hat{\alpha}_{1}\right) \ldots\left(x-\hat{\alpha}_{d}\right)
$$

By the definition of \hat{z}, the set $\left\{\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{d}\right\}$ is symmetric with respect to complex conjugation, since so is the initial set $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$. Hence, $\hat{f} \in \mathbb{R}[x]$ which implies $S_{k}(\hat{f}) \in \mathbb{R}$ for $k=1, \ldots, d$.

Assume that some two integer polynomials f, g of degree d with leading coefficient m are distinct. For each $k=1, \ldots, n$, by (23), (24), we have

$$
\left|S_{k}(f)-S_{k}(\hat{f})\right|<d \frac{\sqrt{2} k}{X}<\frac{k}{4 m}
$$

Choosing k as in (21) we obtain

$$
\begin{aligned}
\left|S_{k}(\hat{f})-S_{k}(\hat{g})\right| & \geq\left|S_{k}(f)-S_{k}(g)\right|-\left|S_{k}(f)-S_{k}(\hat{f})\right|-\left|S_{k}(g)-S_{k}(\hat{g})\right| \\
& >\frac{k}{m}-\frac{k}{4 m}-\frac{k}{4 m}=\frac{k}{2 m}
\end{aligned}
$$

This implies that \hat{f} and \hat{g} are distinct and that the l_{∞}-distance between any distinct vectors of the form

$$
\begin{equation*}
\left(2 m S_{1}(\hat{f}), \ldots, \frac{2 m S_{k}(\hat{f})}{k}, \ldots, \frac{2 m S_{d}(\hat{f})}{d}\right) \in \mathbb{R}^{d} \tag{26}
\end{equation*}
$$

is at least 1 . Note that there are B distinct vectors as in (26), since f runs over B distinct polynomials.

Let A be the convex hull of the vectors

$$
\begin{equation*}
\left(2 m d \Re(u), \ldots, \frac{2 m d \Re\left(u^{k}\right)}{k}, \ldots, \frac{2 m d \Re\left(u^{d}\right)}{d}\right) \in \mathbb{R}^{d} \tag{27}
\end{equation*}
$$

where u runs over all possible (at most N) images of the unit circle $|z| \leq 1$ under the map $z \rightarrow \hat{z}$. Each vector in (26) belongs to A, since it is the arithmetic mean
of some d vectors as defined in (27). Since the distance between any vectors as in (26) is at least one, their number B is bounded above by the volume of the set $F(A)$ defined in (8), namely,

$$
B \leq \operatorname{Vol}(F(A))
$$

Thus, by Lemma 2.1, we obtain

$$
\begin{equation*}
B \leq 1+\sum_{G} \operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right) \tag{28}
\end{equation*}
$$

where the sum is taken over all nonempty subsets G of $\{1,2, \ldots, d\}$. By (27) and $\left|\Re\left(u^{k}\right)\right| \leq 1$, the set A is contained in the parallelepiped

$$
P=\prod_{j=1}^{d}\left[-u_{j} / 2, u_{j} / 2\right]
$$

with $u_{j}=4 m d / j$.
Fix

$$
\begin{equation*}
L:=10(m d)^{2 / 3}(\log (m d))^{1 / 3} \tag{29}
\end{equation*}
$$

Fix a nonempty subset G of $\{1, \ldots, d\}$ with $|G|=g$. Assume first that $g \geq L$, where L is defined in (29). By (25), $\operatorname{Pr}_{G}(A) \subseteq P$ is a convex polytope with at most

$$
145 m^{2} d^{2}<L^{3} \leq g^{3}
$$

vertices. So, by Lemma 2.2 and $\lambda \leq 3$, we obtain

$$
\operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right)<\left(\frac{46.44 \log g}{g}\right)^{g / 2} \prod_{j \in G} u_{j} \leq\left(\frac{46.44 \log L}{L}\right)^{g / 2} \prod_{j \in G} u_{j}
$$

Inserting L from (29) and using the fact that d is large enough we obtain

$$
\begin{equation*}
\operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right)<\left(\frac{0.568(m d)^{1 / 3}}{(\log (m d))^{1 / 3}}\right)^{-g} \prod_{j \in G} u_{j} \tag{30}
\end{equation*}
$$

On the other hand, in case $g<L$, by (29), we have

$$
\left(\frac{0.568(m d)^{1 / 3}}{(\log (m d))^{1 / 3}}\right)^{g}<\exp \left(\frac{10}{3}(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)
$$

Hence, using the trivial bound $\operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right) \leq \prod_{j \in G} u_{j}$, we derive that

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right)}{\exp \left(\frac{10}{3}(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)}<\left(\frac{(\log (m d))^{1 / 3}}{0.568(m d)^{1 / 3}}\right)^{g} \prod_{j \in G} u_{j} \tag{31}
\end{equation*}
$$

By (30), the bound (31) is true for every nonempty $G \in\{1, \ldots, d\}$, with $g=|G|$.
Also, from (28) it follows that

$$
B-\exp \left(\frac{10}{3}(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)<B-1 \leq \sum_{G} \operatorname{Vol}\left(\operatorname{Pr}_{G}(A)\right)
$$

Dividing this inequality by a corresponding exponent and combining it with

$$
\frac{(\log (m d))^{1 / 3} u_{j}}{0.568(m d)^{1 / 3}}=\frac{4 m d(\log (m d))^{1 / 3}}{0.568 j(m d)^{1 / 3}}<\frac{7.05(m d)^{2 / 3}(\log (m d))^{1 / 3}}{j}
$$

from (31) we derive that

$$
\frac{B}{\exp \left(\frac{10}{3}(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)}<\prod_{j=1}^{d}\left(1+\frac{7.05(m d)^{2 / 3}(\log (m d))^{1 / 3}}{j}\right)
$$

Now, applying the inequalities $\prod_{j=1}^{d}\left(1+y_{j}\right)<\exp \left(y_{1}+\cdots+y_{d}\right)$ and

$$
\sum_{j=1}^{d} \frac{1}{j} \leq \log d+1 \leq \log (m d)+1
$$

we can further bound

$$
\prod_{j=1}^{d}\left(1+\frac{7.05(m d)^{2 / 3}(\log (m d))^{1 / 3}}{j}\right)<\exp \left(7.06(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)
$$

This, by the above upper bound on B and by $10 / 3+7.06<10.4$, implies the upper bound on B as claimed in (22).

Now, we will estimate the number $D=D(m, d)$ of distinct integer polynomials of degree d and Mahler measure m. More precisely, we proceed to show that

$$
\begin{equation*}
D=D(m, d)<\exp \left(10.5(m d)^{2 / 3}(\log (m d))^{4 / 3}\right) \tag{32}
\end{equation*}
$$

In case $m=1$ the result follows by Proposition 1.2. In the case when $m \geq$ $d^{1 / 2}$, we have $d \leq(m d)^{2 / 3}$ and $\log m \leq \log (m d) \leq(\log (m d))^{4 / 3}$, so in view of (3) the required bound (32) follows by

$$
D(m, d) \leq m^{d(1+\varepsilon)}<\exp \left(2(m d)^{2 / 3}(\log (m d))^{4 / 3}\right)
$$

So, from now on, we assume that

$$
\begin{equation*}
2 \leq m \leq d^{1 / 2} \tag{33}
\end{equation*}
$$

Assume that $f \in \mathbb{Z}[x]$ is a polynomial of degree d and Mahler's measure $m \geq 2$. By Proposition 1.5 (see (6) and (7)), we can write f in the form

$$
f(x)=f_{1}(x) f_{2}(x)
$$

where $f_{1} \in \mathbb{Z}[x]$ has the leading coefficient $\pm m_{1}$, degree d_{1} and all roots in $|z| \leq 1$, and $f_{2} \in \mathbb{Z}[x]$ has the constant coefficient $\pm m_{2}$, degree $d_{2}=d-d_{1}$ and all roots in $|z|>1$. Here, m_{1} and m_{2} are positive integers such that $m_{1} m_{2}=m$, $M\left(f_{1}\right)=m_{1}, M\left(f_{2}\right)=M\left(f_{2}^{*}\right)=m_{2}$.

The number of such polynomials with $d_{2}=0$ is bounded above by $2 B(m, d)$, where $B(m, d)$ has been defined in (22). If $d_{2}>0$ then $m_{2}>1$. The number
of such polynomials with $d_{1}=0$ is bounded above by $2 B(m, d)$ as well. If $m_{1}=1$ then f has all roots in $|z| \geq 1$, so the number of such polynomials can be bounded by $2 B(m, d)$ too. Thus,

$$
\begin{equation*}
D(m, d) \leq 6 B(m, d)+E(m, d) \tag{34}
\end{equation*}
$$

where $B(m, d)$ has been defined in (22) and $E(m, d)$ stands for the number of polynomials with Mahler's measure m representable in the form $f_{1} f_{2}$, where $f_{1} \in \mathbb{Z}[x]$ of degree $d_{1} \geq 1$ has all roots in $|z| \leq 1$ and Mahler measure $m_{1} \geq 2$, and $f_{2} \in \mathbb{Z}[x]$ of degree $d_{2}=d-d_{1} \geq 1$ has all roots in $|z|>1$ and Mahler measure $m_{2} \geq 2$. (Of course, the part $E(m, d)$ only appears for composite m.) Here, the leading coefficient of f_{1} (with all roots in $|z| \leq 1$) is $\pm m_{1}$, and the leading coefficient of f_{2}^{*} (with all roots in $|z|<1$) is $\pm m_{2}$. Consequently,

$$
E(m, d) \leq 4 \sum_{\substack{m_{1} m_{2}=m,>m_{1}, m_{2} \geq 2 \\>d_{1}+d_{2}=d}} B\left(m_{1}, d_{1}\right) B\left(m_{2}, d_{2}\right) .
$$

Note that there are at most m pairs of positive integers $\left(m_{1}, m_{2}\right)$ satisfying $m_{1} m_{2}=m$ and exactly d pairs of positive integers $\left(d_{1}, d_{2}\right)$ for which $d_{1}+d_{2}=d$. Thus,

$$
\begin{equation*}
E(m, d) \leq 4 m d \max _{\substack{\left.m_{1} m_{2}=m,\right) m_{1}, m_{2} \geq 2 \\>d_{1}+d_{2}=d}} B\left(m_{1}, d_{1}\right) B\left(m_{2}, d_{2}\right) . \tag{35}
\end{equation*}
$$

Take a positive integer d_{0} for which the bound (22) on $B(m, d)$ is true for all $d \geq d_{0}$. For $d<d_{0}$ we will use the trivial bound

$$
\begin{equation*}
B(m, d)<c_{6} m^{d+1}, \tag{36}
\end{equation*}
$$

where c_{6} is a constant depending on d_{0} only (see (3)).
Now, we are ready to show the required bound (32) for d large enough. Without loss of generality, we may assume that $d \geq 2 d_{0}$. Also, from $d_{1}+d_{2}=d$ we see that at least one of the numbers d_{1}, d_{2} is greater than or equal to d_{0}. If both d_{1} and d_{2} are at least d_{0} then the product $B\left(m_{1}, d_{1}\right) B\left(m_{2}, d_{2}\right)$ is less than

$$
\exp \left(10.4\left(m_{1} d_{1}\right)^{2 / 3}\left(\log \left(m_{1} d_{1}\right)\right)^{4 / 3}+10.4\left(m_{2} d_{2}\right)^{2 / 3}\left(\log \left(m_{2} d_{2}\right)\right)^{4 / 3}\right)
$$

by (22). This implies the required bound (32) by Lemma 2.3 with $k=2$ due to $m_{1}, m_{2} \geq 2$, and (22), (34), (35).

Otherwise, we must have either $d_{1}<d_{0} \leq d_{2}$ or $d_{2}<d_{0} \leq d_{1}$. In the first case, $d_{1}<d_{0} \leq d_{2}$, by (22) and (36), we obtain

$$
B\left(m_{1}, d_{1}\right) B\left(m_{2}, d_{2}\right)<c_{6} m_{1}^{d_{1}+1} \exp \left(10.4\left(m_{2} d_{2}\right)^{2 / 3}\left(\log \left(m_{2} d_{2}\right)\right)^{4 / 3}\right) .
$$

Here, the factor $c_{6} m_{1}^{d_{1}+1}$ is very small, since from (33) it follows that

$$
\log c_{6}+\left(d_{1}+1\right) \log m_{1} \leq \log c_{6}+\left(d_{1}+1\right) \log m<c_{7} \log d
$$

This immediately yields the desired bound (32) by $m_{2} d_{2} \leq m d$, (22), (34) and (35). It is clear that the second case, $d_{2}<d_{0} \leq d_{1}$, is symmetric to that above and can be treated analogously. This completes the proof of Theorem 1.1.

References

[1] Akiyama, Shigeki; Drungilas, Paulius; Jankauskas, Jonas. Height reducing problem on algebraic integers. Funct. Approx. Comment. Math. 47 (2012), 105-119. MR2987115, Zbl 1290.11144, doi: 10.7169/facm/2012.47.1.9. 829
[2] Akiyama, Shigeki; Pethö, Attila. On the distribution of polynomials with bounded roots II. Polynomials with integer coefficients. Unif. Distrib. Theory 9 (2014), no. 1, 5-19. MR3237072, Zbl 1384.11081. 829, 831
[3] Akiyama, Shigeki; Zaimi, Toufik. Comments on the height reducing property. Cent. Eur. J. Math. 11 (2013), no. 9, 1616-1627. MR3071928, Zbl 1356.11074, doi: 10.2478/s11533-013-0262-4. 829
[4] BÁrány, Imre; Füredi, Zoltán. Approximation of the sphere by polytopes having few vertices. Proc. Amer. Math. Soc. 102 (1988), no. 3, 651-659. MR0928998, Zbl 0669.52003, doi: 10.2307/2047241. 832
[5] Boyd, David W.; Montgomery, Hugh L. Cyclotomic partitions. In: Number theory (Banff, AB, 1988), pp. 7-25, de Gruyter, Berlin, 1990. MR1106647, Zbl 0697.10040. 830
[6] Brunotte, Horst. On expanding real polynomials with a given factor. Publ. Math. Debrecen 83 (2013), no. 1-2, 161-178. MR3081232, Zbl 1274.11072, doi: 10.5486/PMD.2013.5568. 829
[7] Chern, Shey-Jey; VaAler, Jeffrey D. The distribution of values of Mahler's measure. J. Reine Angew. Math. 540 (2001), 1-47. MR1868596, Zbl 0986.11017, doi: 10.1515/crll.2001.084. 829
[8] Dill, Gabriel A. On the frequency of height values. Res. Number Theory 7 (2021), no. 2, Paper No. 33, 33 p. MR4252906, Zbl 1479.11114, doi: 10.1007/s40993-021-00261-1. 829
[9] DUbickas, Artūras. On the number of polynomials of small house. Lithuanian Math. J. 39 (1999), no. 2, 168-172. MR1754098, Zbl 0947.11032, doi: 10.1007/BF02469281. 832
[10] Dubickas, Artūras. Mahler measures close to an integer. Canad. Math. Bull. 45 (2002), no. 2, 196-203. MR1904083, Zbl 1086.11049, doi: 10.4153/CMB-2002-022-8. 831
[11] DUbickas, Artūras. Nonreciprocal algebraic numbers of small measure. Comment. Math. Univ. Carolin. 45 (2004), no. 4, 693-697. MR2103084, Zbl 1127.11070. 829
[12] Dubickas, Artūras; Jankauskas, Jonas. Nonreciprocal algebraic numbers of small Mahler's measure. Acta Arith. 157 (2013), no. 4, 357-364. MR3019421, Zbl 1284.11137, doi: 10.4064/aa157-4-3. 829, 831
[13] Dubickas, Artūras; Konyagin, Sergei V. On the number of polynomials of bounded measure. Acta Arith. 86 (1998), no. 4, 325-342. MR1659085, Zbl 0926.11080, doi: 10.4064/aa-86-4-325-342. 829, 832
[14] Fili, Paul A.; Pottmeyer, Lukas; Zhang, Mingming. On the behavior of Mahler's measure under iteration. Monatsh. Math. 193 (2020), no. 1, 61-86. MR4127434, Zbl 1450.11110, doi: 10.1007/s00605-020-01416-5. 831
[15] Fili, Paul A.; Pottmeyer, Lukas; Zhang, Mingming. Wandering points for the Mahler measure. Acta Arith. 204 (2022), no. 3, 225-252. MR4460207, Zbl 1506.11138, doi: 10.4064/aa210930-6-5. 831
[16] Galicer, Daniel; Merzbacher, Mariano; Pinasco, Damián. Asymptotic estimates for the largest volume ratio of a convex body. Rev. Mat. Iberoam. 37 (2021), no. 6, 23472372. MR4310295, Zbl 1472.52008, doi: $10.4171 / \mathrm{rmi} / 1263.832$
[17] Kirschenhofer, Peter; Thuswaldner, Jörg. Distribution results on polynomials with bounded roots. Monatsh. Math. 185 (2018), no. 4, 689-715. MR3777427, Zbl 1403.05009, doi: 10.1007/s00605-017-1054-x. 829
[18] Kochol, Martin. A note on approximation of a ball by polytopes. Discrete Optim. 1 (2004), no. 2, 229-231. MR2099676, Zbl 1085.52502, doi: 10.1016/j.disopt.2004.07.003. 832
[19] Mignotte, Maurice. Sur les nombres algébriques de petite mesure. In: Mathematics, CTHS: Bull. Sec. Sci., III, pp. 65-80, Bib. Nat., Paris, 1981. MR0638732, Zbl 0467.12008. 829
[20] Prasolov Victor V. Polynomials. Algorithms and Computation in Mathematics, 11, Springer-Verlag, Berlin, 2010. MR2683151, Zbl 1272.12001. 830, 834
[21] Schinzel, ANDRZEJ. Reducibility of lacunary polynomials. I. Acta Arith. 16 (1969/70), 123-159. MR0252362, Zbl 0196.06903, doi: 10.4064/aa-16-2-123-160. 834
[22] Smith, David J.; Vamanamurthy, Mavina K. How small is a unit ball? Math. Mag. 62 (1989), no. 2, 101-107. MR0991538, Zbl 0702.52006, doi: 10.1080/0025570X.1989.11977419. 832
[23] Zaitseva, Tatyana I.; Protasov, Valdimir Yu. Self-affine 2-attractors and tiles. Sb. Math. 213 (2022), no. 6, 794-830. MR4461454, Zbl 1526.37021, doi: 10.1070/SM9682. 829, 830, 831
(Artūras Dubickas) Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, NaUGARDUKo 24, LT-03225 Vilnius, Lithuania
arturas.dubickas@mif.vu.lt
This paper is available via http://nyjm.albany.edu/j/2024/30-37.html.

