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Polynomials with integral Mahler measures

Artūras Dubickas

Abstract. For each 𝑚 ∈ ℕ and each sufficiently large 𝑑 ∈ ℕ, we give an
upper bound for the number of integer polynomials of degree 𝑑 andMahler’s
measure 𝑚. We show that there are at most exp

(
11(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3)
of

such polynomials. For ‘small’ 𝑚, i.e. 𝑚 < 𝑑1∕2−𝜀, this estimate is better than
the estimate 𝑚𝑑(1+𝜀) that comes from a corresponding upper bound on the
number of integer polynomials of degree 𝑑 and Mahler’s measure at most𝑚.
By the results of Zaitseva and Protasov, our estimate has applications in the
theory of self-affine 2-attractors. We also show that for each integer 𝑚 ≥ 3
there is a constant 𝑐 = 𝑐(𝑚) > 0 such that the number of monic integer
irreducible expanding polynomials of sufficiently degree 𝑑 and constant co-
efficient𝑚 (and hence with Mahler’s measure equal to𝑚) is at least 𝑐𝑑𝑚−1.
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1. Introduction
For a degree 𝑑 polynomial

𝑓(𝑥) = 𝑎𝑑𝑥𝑑 +⋯+ 𝑎1𝑥 + 𝑎0 = 𝑎𝑑(𝑥 − 𝛼1) … (𝑥 − 𝛼𝑑) ∈ ℂ[𝑥], ⟩𝑎𝑑 ≠ 0,

we define itsMahler measure by

𝑀(𝑓) = |𝑎𝑑|
𝑑∏

𝑗=1
max{1, |𝛼𝑗|}.

The Mahler measure is multiplicative, namely,

𝑀(𝑓𝑔) = 𝑀(𝑓)𝑀(𝑔) (1)
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for any 𝑓, 𝑔 ∈ ℂ[𝑥], and satisfies

𝑀(𝑓) = 𝑀(𝑓∗), (2)

where 𝑓∗(𝑥) = 𝑥𝑑𝑓(1∕𝑥) for 𝑓 ∈ ℂ[𝑥] of degree 𝑑. Throughout, we say that the
polynomial 𝑓∗ defined as above is reciprocal to the polynomial 𝑓 of degree 𝑑.
The Mahler measure of an algebraic number 𝛼 ∈ ℚ with minimal polynomial
𝑓 ∈ ℤ[𝑥] is defined by𝑀(𝛼) = 𝑀(𝑓).
In [7], Chern and Vaaler gave an asymptotic formula for the number of inte-

ger polynomials of degree at most 𝑑 andMahler’s measure at most 𝑇 as 𝑇 → ∞.
It turns out to be asymptotic to 𝜅𝑑𝑇𝑑+1 with some 𝜅𝑑 > 0 as 𝑇 → ∞. The sit-
uation is much more complicated when 𝑇 is bounded and 𝑑 is large. The case
𝑇 = 2 has been first considered by Mignotte [19]. Later, Mignotte’s bound was
improved by the author and Konyagin. In [13], it was shown that for any real
𝑇 > 1 the number of integer polynomials of degree at most 𝑑 and Mahler’s
measure at most 𝑇 is bounded above by

min{𝑇(1+𝜀)𝑑, 𝑇𝑑+1 exp(𝑑2∕2)} (3)

for any 𝜀 > 0 and any sufficiently large 𝑑. (Throughout the paper, exp(𝑥) stands
for 𝑒𝑥.) For 𝑇 = 2, this gives the upper bound 2(1+𝜀)𝑑. On the other hand, the
best available lower bound for the number of monic integer irreducible polyno-
mials of degree at most 𝑑 and of Mahler’s measure less than 2 is only 𝜅𝑑5 with
some absolute constant 𝜅 > 0, see [11], [12].
As in [1], we say that a polynomial inℤ[𝑥] (or even inℂ[𝑥]) whose roots are

all in |𝑧| > 1 is expanding. Expanding polynomials also appear, for instance,
in the papers of Akiyama and Zaimi [3], Brunotte [6]. Note that if 𝑓 ∈ ℂ[𝑥] is
expanding then

𝑀(𝑓) = |𝑓(0)|. (4)

In [23], Zaitseva and Protasov considered various questions related to so-
called self-affine 2-attractors and reduced one of the problems to estimating
the number of monic integer expanding polynomials of degree 𝑑 with constant
term ±2. They showed that for 𝑑 sufficiently large there are at least 0.06𝑑2 and
at most exp(0.7𝑑) of such polynomials, the upper bound being taken from (3)
with 𝑇 = 2. Of course, such polynomials have Mahler’s measure not at most
2, but exactly 2. This raises a natural question of finding a better upper bound
for the number of degree 𝑑 integer polynomials with Mahler’s measure 2 and,
more generally, with Mahler’s measure𝑚, where𝑚 ≥ 2 is an integer.
In the case when 𝑑 is fixed and 𝑚 → ∞ this problem has already been ad-

dressed in [2], [8], [17]. In [2, Theorem 5.2], Akiyama and Pethő proved a result
which implies that the number of monic integer irreducible expanding polyno-
mials of degree 𝑑 with constant term 𝑚 is asymptotic to 𝑣𝑑𝑚𝑑−1 with some
𝑣𝑑 > 0 as𝑚 → ∞. By (4), such polynomials haveMahler’s measure equal to𝑚.
Similar asymptotical results when the degree 𝑑 is fixed and Mahler’s measure
tends to infinity were recently obtained by Dill [8, Section 8].
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However, as in the case of the problem of estimating the number of integer
polynomials with bounded Mahler’s measure which we discussed above, this
problem, where Mahler’s measure𝑚 ∈ ℕ of polynomials is fixed and their de-
gree 𝑑 is large, turns out to be more difficult. In this paper, we will evaluate
the number of integer polynomials of degree 𝑑 and Mahler’s measure equal to
a positive integer 𝑚. Our main result is the following upper bound which im-
proves the bound (3) in case we count only polynomials withMahler’s measure
exactly𝑚:

Theorem 1.1. For each positive integer 𝑚 and each sufficiently large integer 𝑑
there are at most

exp
(
11(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3)
(5)

integer polynomials of degree 𝑑 and Mahler’s measure𝑚.

We remark that 𝑚 = 1 is the only case when a better result is known. By
Kronecker’s theorem (see, e.g., [20, Theorem 4.5.4]), integer polynomials with
Mahler’s measure 1 are products of ±𝑥𝑘, 𝑘 ∈ ℕ ∪ {0}, and cyclotomic polyno-
mials. The next proposition is the main result of Boyd and Montgomery [5]:

Proposition 1.2. The number of degree 𝑑 monic integer polynomials with all
roots on |𝑧| = 1 is asymptototic to 𝑐1

𝑑
√
log 𝑑

exp(𝑐2
√
𝑑) as 𝑑 → ∞, with 𝑐1 =

√
105𝜁(3)∕(4𝜋2𝑒𝛾∕2), where 𝛾 is Euler’s constant, and 𝑐2 =

√
105𝜁(3)∕𝜋.

Proposition 1.2 immediately implies the upper bound of the form exp(𝑐3
√
𝑑),

where 𝑐3 > 𝑐2, on the number of integer polynomials of sufficiently large degree
𝑑 and Mahler’s measure 𝑚 = 1. This is better than (5) gives for 𝑚 = 1. Of
course, the example (𝑥 −𝑚)𝑓(𝑥), where 𝑓 runs through all monic degree 𝑑−1
polynomials in ℤ[𝑥] with all roots on |𝑧| = 1, shows that the exponent 2∕3 for
𝑑 in (5) cannot be improved to a constant smaller than 1∕2.
On the other hand, for 𝑚 ≥ 2 fixed, and, more generally, for 𝑚 in the range

2 ≤ 𝑚 < 𝑑1∕2−𝜀, Theorem 1.1 gives a better bound than that 𝑚(1+𝜀)𝑑 coming
from (3). In particular, for 𝑚 = 2, Theorem 1.1 improves the upper bound in
[23, Theorem 10]. Since 10.5 ⋅ 22∕3 < 17, Theorem 1.1, which we will prove
with the better constant 10.5 (instead of 11) in (5) (see (32)), combined with
[23, Corollary 6] yields the following:

Corollary 1.3. The total number of not affinely similar 2-attractors in dimension
𝑑 is less than exp

(
17𝑑2∕3(log 𝑑)4∕3

)
for 𝑑 sufficiently large.

We remark that in [23, Theorem 10], the bound corresponding to that of
Corollary 1.3 was exp(0.7𝑑).
It seems very likely that the main contribution in Theorem 1.1 comes from

reducible polynomials, while the number of irreducible polynomials of degree
𝑑 andMahler’smeasure𝑚 should bemuch smaller. In the next theoremwewill
construct many monic integer irreducible polynomials with Mahler’s measure
𝑚 ∈ ℕ ⧵ {1}.
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Theorem 1.4. The number of monic integer irreducible expanding polynomials
of degree 𝑑 with constant coefficient 2 is at least 𝑐0𝑑2, where 𝑐0 > 0 is an absolute
constant. Furthermore, for each𝑚 ≥ 3 there is a constant 𝑐(𝑚) > 0 such that for
each sufficiently large 𝑑 ∈ ℕ the number of monic integer irreducible expanding
polynomials of degree 𝑑 with constant coefficient𝑚 is at least 𝑐(𝑚)𝑑𝑚−1.

Note that the gap between the bounds in Theorems 1.1 and 1.4 is large. Since
we consider the situationwith𝑚 small and 𝑑 large, the bound in Theorem 1.4 is
far from that given in the asymptotic formula 𝑣𝑑𝑚𝑑−1 as 𝑑 → ∞ [2] and closer
to that in [12]. For 𝑚 ≥ 3, the proof of Theorem 1.4 is based on an explicit
construction. For 𝑚 = 2, the construction is different and taken from [23].
However, for the sake of completeness, we will give a full proof of Theorem 1.4
in the case𝑚 = 2 too.
Earlier, somewhat unrelated results on the properties of theMahler measure

have been obtained by the author in [10]. Some of those results were recently
extended by Fili, Pottmeyer andZhang in [14], [15], but now, in the present con-
text, a very useful result seems to be also [10, Theorem 2]. Here, in the same
fashion, we will derive a result that completely characterizes all integer poly-
nomials with integral Mahler measure. This will be a useful tool in completing
the proof of Theorem 1.1:

Proposition 1.5. Let 𝑚 and 𝑑 be two positive integers and let 𝑓 ∈ ℤ[𝑥] be a
polynomial of degree 𝑑 with Mahler measure equal to𝑚. Write

𝑓(𝑥) = 𝑎𝑥𝑠
𝑘∏

𝑗=1
𝑓𝑗(𝑥), (6)

where 𝑎 ∈ ℤ ⧵ {0}, 𝑠 ∈ {0, 1, … , 𝑑} and 𝑓1, … , 𝑓𝑘 ∈ ℤ[𝑥] are not necessarily dis-
tinct irreducible polynomials with positive leading coefficients satisfying 𝑓𝑗(0) ≠
0. Then, for each 𝑗 = 1,… , 𝑘, the polynomial 𝑓𝑗 either has all of its roots on
|𝑧| = 1 or one of the polynomials 𝑓𝑗, 𝑓∗𝑗 is expanding.

By (1), (2), (4) and Proposition 1.5, it follows that with its notation we have

𝑚 = 𝑀(𝑓) = |𝑎|
𝑘∏

𝑗=1
𝑀(𝑓𝑗) = |𝑎|

𝑘∏

𝑗=1
𝑚𝑗, (7)

where𝑚𝑗 = 𝑀(𝑓𝑗) = 𝑀(𝑓∗𝑗 ) ∈ ℕ. Here,𝑚𝑗 = 1 if and only if 𝑓𝑗 is cyclotomic.
In the next section we present some auxiliary results. Then, in Section 3 we

will prove Theorem 1.4 and Proposition 1.5. Finally, in Section 4 we will prove
Theorem 1.1.

2. Auxiliary results
For 𝐱 = (𝑥1, … , 𝑥𝑑) ∈ ℂ𝑑 we put

‖𝐱‖ = max
1≤𝑗≤𝑑

|𝑥𝑗|
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for the 𝑙∞ norm of the vector 𝐱. For a convex closed bounded set 𝐴 ⊂ ℝ𝑑 we
put

𝐹(𝐴) = {𝐱 + 𝐲 ∶ 𝐱 ∈ 𝐴, ⟩⟩‖𝐲‖ ≤ 1∕2} (8)
for the 1∕2–neighbourhood of the set 𝐴. Suppose that 𝐺 ⊆ {1, 2, … , 𝑑} and
𝑔 = |𝐺|. We denote by Pr𝐺(𝐴) the orthogonal projection of the set 𝐴 to the
linear spaceℝ𝑔 spanned by the vectors ofℝ𝑑 corresponding to the indices of 𝐺.
Finally, denote by Vol

(
Pr𝐺(𝐴)

)
the volume of the 𝑔–dimensional (1 ≤ 𝑔 ≤ 𝑑)

convex set Pr𝐺(𝐴). With this notation we have the following lemma for 𝑑 ≥ 1:
Lemma 2.1. We have

Vol
(
𝐹(𝐴)

)
= 1 +

∑

𝐺
Vol

(
Pr𝐺(𝐴)

)
,

where the sum is taken over all nonempty subsets 𝐺 of {1, 2, … , 𝑑}.
See [13, Lemma 0] for the proof.

Lemma 2.2. Let 𝑉(𝑔, 𝑛) be the maximal volume of a convex hull of 𝑛 points in
the parallelepiped

∏𝑔
𝑗=1[−𝑢𝑗∕2, 𝑢𝑗∕2] ⊂ ℝ𝑔, where 𝑢1, … , 𝑢𝑔 are positive. Then,

for 𝑛 = 𝑔𝜆, where 𝜆 > 1 and 𝑔 is sufficiently large, we have

𝑉(𝑔, 𝑔𝜆) <
(23.22(𝜆 − 1) log 𝑔

𝑔

)𝑔∕2 𝑔∏

𝑗=1
𝑢𝑗.

Proof. Let𝑊(𝑔, 𝑛) be the maximal volume of a convex hull of 𝑛 points in the
unit ball𝑊𝑔 inℝ𝑔. The volume of𝑊𝑔 equals𝑤𝑔 =

𝜋𝑔∕2

Γ(𝑔∕2+1)
; see, e.g., [22]. Next,

as in [9], [13], we will need a result on the estimate of the volume of a polytope
with few vertices in the style of [4], [16], [18]. Specifically, in [4, eq. (4)], it was
shown that for 𝑛 = 𝑔𝜆, where 𝜆 > 1, and any 𝜀 > 0 the inequality

𝑊(𝑔, 𝑔𝜆) < (1 + 𝜀)𝑔𝑤𝑔

(2𝑒(𝜆 − 1) log 𝑔
𝑔

)𝑔∕2
(9)

holds for each sufficiently large 𝑔.
As observed in [13], by rescaling, it suffices to prove the inequality of the

lemma for the parallepiped

𝑃𝑔 =
𝑔∏

𝑗=1
[−𝑢𝑗∕2, 𝑢𝑗∕2] = [−1∕

√
𝑔, 1∕

√
𝑔]𝑔.

Note that 𝑃𝑔 is inscribed into the unit ball𝑊𝑔 with center at the origin, hence
𝑉(𝑔, 𝑔𝜆) ≤ 𝑊(𝑔, 𝑔𝜆). Furthermore, by Stirling’s formula, Γ(𝑔∕2+1) > (𝑔∕2𝑒)𝑔∕2
for 𝑔 sufficiently large, so using 𝑢𝑗 = 2∕

√
𝑔 we obtain

𝑤𝑔 =
𝜋𝑔∕2

Γ(𝑔∕2 + 1)
<
(2𝜋𝑒
𝑔

)𝑔∕2
=
(𝜋𝑒
2

)𝑔∕2 𝑔∏

𝑗=1
𝑢𝑗.

This implies the required result by (9) and (1+𝜀)2𝜋𝑒2 < 23.22with appropriate
choice of 𝜀. □
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Lemma 2.3. For every 𝑘 ∈ ℕ and any real numbers 𝑚1, … ,𝑚𝑘 ≥
√
2 and

𝑑1, … , 𝑑𝑘 > 0 we have

(𝑚1𝑑1)2∕3 +⋯+ (𝑚𝑘𝑑𝑘)2∕3 ≤
(
𝑚1…𝑚𝑘(𝑑1 +⋯+ 𝑑𝑘)

)2∕3
. (10)

Proof. The inequality (10) is equality for 𝑘 = 1. It is sufficient to prove (10) for
𝑘 = 2 and then apply induction on 𝑘. Dividing both sides of (10) with 𝑘 = 2 by
𝑑2∕31 and setting 𝑦 = 𝑑2∕𝑑1 we see that it suffices to show that𝑚2∕3

1 + (𝑚2𝑦)2∕3

does not exceed (𝑚1𝑚2(𝑦 + 1))2∕3 for 𝑦 > 0.
Let us consider the function

𝜑(𝑦) = (𝑚1𝑚2(𝑦 + 1))2∕3 −𝑚2∕3
1 − (𝑚2𝑦)2∕3.

It is positive at 𝑦 = 0, since𝑚2 > 1. Its derivative

𝜑′(𝑦) =
2𝑚2∕3

2

3(𝑦 + 1)1∕3
(
𝑚2∕3
1 −

(
1 + 1

𝑦

)1∕3)

vanishes at 𝑦0 = 1∕(𝑚2
1 − 1). Since 𝜑′(𝑦) < 0 for 0 < 𝑦 < 𝑦0 and 𝜑′(𝑦) > 0 for

𝑦 > 𝑦0, the minimum of the function 𝜑(𝑦) in [0,∞) is attained at 𝑦 = 𝑦0. Thus,
in order to prove that 𝜑(𝑦) ≥ 0 for all 𝑦 > 0 it remains to verify the inequality
𝜑(𝑦0) ≥ 0.
From

𝜑(𝑦0) = 𝜑
( 1
𝑚2
1 − 1

)
= (𝑚1𝑚2)2∕3

( 𝑚2
1

𝑚2
1 − 1

)2∕3
−𝑚2∕3

1 −
𝑚2∕3
2

(𝑚2
1 − 1)2∕3

= 𝑚2∕3
2 (𝑚2

1 − 1)1∕3 −𝑚2∕3
1

we see that 𝜑(𝑦0) ≥ 0 is equivalent to (𝑚2
1 − 1)1∕3 ≥ (𝑚1∕𝑚2)2∕3. The latter

inequality is equivalent to (𝑚2
1 − 1)𝑚2

2 ≥ 𝑚2
1, and can be also written as (𝑚

2
1 −

1)(𝑚2
2 − 1) ≥ 1, which holds due to𝑚2

1 − 1 ≥ 1 and𝑚2
2 − 1 ≥ 1. □

Lemma 2.4. For every integer𝑚 ≥ 3 there is a constant 𝑐(𝑚) > 0 such that for
each sufficiently large integer 𝑑 there are at least 𝑐(𝑚)𝑑𝑚−1 irreducible polynomi-
als of the form

𝑥𝑑 − 𝑥𝑏𝑚−1 −⋯− 𝑥𝑏1 +𝑚,
where 𝑏1, … , 𝑏𝑚−1 ∈ ℤ and 0 < 𝑏1 < ⋯ < 𝑏𝑚−1 < 𝑑.

Proof. Fix 𝑚 ≥ 3. For each 𝑑 > 𝑚 let 𝑆(𝑑,𝑚) be the set polynomials of the
form 𝑥𝑑 − 𝑥𝑏𝑚−1 −⋯− 𝑥𝑏1 +𝑚 with integers 𝑏1, … , 𝑏𝑚−1 satisfying

0 < 𝑏1 < ⋯ < 𝑏𝑚−1 < 𝑑 (11)

and
gcd(𝑏1, … , 𝑏𝑚−1) = 1. (12)

Note that the number of vectors (𝑏1, … , 𝑏𝑚−1) ∈ ℤ𝑚−1 satisfying (11) is
(𝑑−1
𝑚−1

)
.

It iswell known that the probability of𝑚−1 ≥ 2 random integers being coprime
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is 1∕𝜁(𝑚−1). Thus, there is a constant 𝑐1(𝑚) > 0 such that for each sufficiently
large 𝑑 we have

|𝑆(𝑑,𝑚)| ≥ 𝑐1(𝑚)𝑑𝑚−1. (13)
We claim that every reciprocal monic divisor 𝑔 ∈ ℤ[𝑥] of 𝑓 ∈ 𝑆(𝑑,𝑚)must

be cyclotomic. Indeed, if not, then, by Kronecker’s theorem (see, e.g. [20, The-
orem 4.5.4]), at least one root of 𝑔 must be in |𝑧| > 1. Since 𝑔 is reciprocal, it
must have a root 𝛼 satisfying |𝛼| < 1. But then 𝑓(𝛼) = 0 implies

𝑚 = 𝛼𝑏1 +⋯+ 𝛼𝑏𝑚−1 − 𝛼𝑑 ≤ |𝛼𝑑| +
𝑚−1∑

𝑗=1
|𝛼𝑏𝑗 | < 𝑚,

which is impossible.
By Schinzel’s result [21, Theorem 4], either the nonreciprocal part of 𝑓 ∈

𝑆(𝑑,𝑚) (which is equal to the noncyclotomic part by the above) is irreducible
or there is a positive constant 𝑐2(𝑚) (which given explicitly in [21] and for the
polynomial of the form 𝑥𝑑 − 𝑥𝑏𝑚−1 − ⋯ − 𝑥𝑏1 + 𝑚 depends only on 𝑚) and a
vector (𝛾1, … , 𝛾𝑚) ∈ ℤ𝑚 such that

0 < max
1≤𝑗≤𝑚

|𝛾𝑗| ≤ 𝑐2(𝑚)

and
𝛾1𝑏1 +⋯+ 𝛾𝑚−1𝑏𝑚−1 + 𝛾𝑚𝑑 = 0. (14)

It is clear that at least one 𝛾𝑗, 𝑗 = 1,… ,𝑚 − 1, must be nonzero.
For each nonzero vector (𝛾1, … , 𝛾𝑚) ∈ ℤ𝑚 the number of vectors

(𝑏1, … , 𝑏𝑚−1) ∈ ℤ𝑚−1

satisfying both (11) and (14) is less than 𝑑𝑚−2. Furthermore, there are at most
(2𝑐2(𝑚) + 1))𝑚 possible vectors (𝛾1, … , 𝛾𝑚) ∈ ℤ𝑚. Hence, by (13), at least

𝑐1(𝑚)𝑑𝑚−1 − (2𝑐2(𝑚) + 1)𝑚𝑑𝑚−2 (15)

polynomials from 𝑆(𝑑,𝑚) have irreducible noncyclotomic part.
Now, we will show that no polynomial in 𝑆(𝑑,𝑚) has a cyclotomic factor.

Indeed, 𝑓 ∈ 𝑆(𝑑,𝑚) has a cyclotomic divisor if and only if there is a root of
unity 𝜁 such that 𝜁𝑑 = −1 and

𝜁𝑏𝑚−1 = ⋯ = 𝜁𝑏1 = 1. (16)

Then, in view of (12) there are 𝑢𝑚−1, … , 𝑢1 ∈ ℤ such that

𝑏𝑚−1𝑢𝑚−1 +⋯+ 𝑏1𝑢1 = 1.

Thus, if (16) is true, we obtain

𝜁 = 𝜁𝑏𝑚−1𝑢𝑚−1+⋯+𝑏1𝑢1 = 1,

which contradicts to 𝜁𝑑 = −1. Hence, for every 𝑓 ∈ 𝑆(𝑑,𝑚), the polynomial
𝑓 itself coincides with its noncyclotomic part, which is shown to be irreducible
with at most (2𝑐2(𝑚) + 1)𝑚𝑑𝑚−2 exceptions. Thus, by (15), we arrive at the
required result with the constant, say, 𝑐(𝑚) = 𝑐1(𝑚)∕2. □
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3. Proof of Theorem 1.4 and Proposition 1.5
Proof of Theorem 1.4. To prove the theorem for𝑚 ≥ 3 it suffices to show that
each polynomial as in Lemma 2.4 is expanding. Indeed, it is clear that it has
no roots in |𝑧| < 1. If it has a root of unit modulus then it must be reciprocal,
which is not the case. This means that all the roots of such polynomial must be
in |𝑧| > 1, and hence it is expanding.
In all that follows we will prove the theorem for𝑚 = 2. Let us consider the

polynomials of the form

𝑓𝑎,𝑏,𝑐(𝑥) = (1 + 𝑥𝑎)(1 + 𝑥𝑏)(1 + 𝑥𝑐) + 1,

where 𝑎 ≥ 𝑏 ≥ 𝑐 are three positive integers satisfying 𝑎 + 𝑏 + 𝑐 = 𝑑 and, for
example,

𝑏 ≢ 𝑐 (mod 3). (17)
There is an absolute constant 𝑐4 > 0 such that, for 𝑑 large enough, say 𝑑 ≥ 𝑑0,
there are at least 𝑐4𝑑2 of such polynomials. (For 𝑑 ≤ 𝑑0 there is at least one
expanding polynomial 𝑥𝑑+2, so the lower bound 𝑐5𝑑2with some other constant
𝑐5 > 0 also holds for all 𝑑 ∈ ℕ.)
It remains to show that 𝑓𝑎,𝑏,𝑐 has no root in |𝑧| ≤ 1. Indeed, then all roots

of 𝑓𝑎,𝑏,𝑐 are in |𝑧| > 1 and the modulus of their product is 2, so 𝑓𝑎,𝑏,𝑐 is monic
integer irreducible expanding polynomial.
Suppose 𝛼 ∈ ℂ satisfying |𝛼| ≤ 1 is a root of 𝑓𝑎,𝑏,𝑐. The numbers

𝑧𝑎 = 1 + 𝛼𝑎 = |𝑧𝑎|𝑒𝑖𝜑𝑎 , 𝑧𝑏 = 1 + 𝛼𝑏 = |𝑧𝑏|𝑒𝑖𝜑𝑏 , 𝑧𝑐 = 1 + 𝛼𝑐 = |𝑧𝑐|𝑒𝑖𝜑𝑐

all lie in the circle |𝑧 − 1| ≤ 1 and satisfy 𝑧𝑎𝑧𝑏𝑧𝑐 = −1. Therefore, |𝑧𝑎𝑧𝑏𝑧𝑐| = 1
and

𝜑𝑎 + 𝜑𝑏 + 𝜑𝑐 = ±𝜋, 𝜑𝑎, 𝜑𝑏, 𝜑𝑐 ∈ (−𝜋∕2, 𝜋∕2). (18)
Moreover, we must have |𝑧𝑎| ≤ 2| cos(𝜑𝑎)| with equality if |𝛼| = 1. Likewise,
|𝑧𝑏| ≤ 2| cos(𝜑𝑏)| and |𝑧𝑐| ≤ 2| cos(𝜑𝑐)|. Hence,

| cos(𝜑𝑎) cos(𝜑𝑏) cos(𝜑𝑐)| ≥
1
8. (19)

Note that (18) implies that all three numbers𝜑𝑎, 𝜑𝑏, 𝜑𝑐must be positive or all
three negative. Replacing (𝜑𝑎, 𝜑𝑏, 𝜑𝑐) by (−𝜑𝑎, −𝜑𝑏, −𝜑𝑐) if necessary we may
assume that all three numbers are positive. Then, 𝜑𝑎, 𝜑𝑏, 𝜑𝑐 are angles of an
acute triangle. It is an elementary exercise to show that the sum of their cosine
angles cos(𝜑𝑎) + cos(𝜑𝑏) + cos(𝜑𝑐) attains its maximum 3∕2 only if all three
angles are 𝜋∕3. Thus, by (19), we obtain

1
2 ≤

(
cos(𝜑𝑎) cos(𝜑𝑏) cos(𝜑𝑐)

)1∕3
≤
cos(𝜑𝑎) + cos(𝜑𝑏) + cos(𝜑𝑐)

3 ≤ 1
2.

This implies that under assumption (18) inequality (19) only holds when 𝜑𝑎 =
𝜑𝑏 = 𝜑𝑐 = ±𝜋∕3.
Then, we deduce |𝑧𝑎| = 2| cos(𝜑𝑎)| = 1 and, similarly, |𝑧𝑏| = |𝑧𝑐| = 1.

Hence,
𝛼𝑎 = 𝛼𝑏 = 𝛼𝑐 = −1 + 𝑒±𝜋𝑖∕3 = 𝑒±2𝜋𝑖∕3.
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This can only happen if |𝛼| = 1. Moreover, 𝛼 must be a root of unity, since
𝛼3𝑎 = 1. Set 𝛼 = 𝑒2𝜋𝑘𝑖∕𝑁 with some 𝑁 ∈ ℕ and 𝑘 ∈ {0, … ,𝑁 − 1}, where
gcd(𝑘,𝑁) = 1. Then, 2𝜋𝑖𝑘𝑎∕𝑁 = ±2𝜋𝑖∕3 + 2𝜋𝑖𝑠 with 𝑠 ∈ ℤ, which implies
𝑘𝑎∕𝑁∓1∕3 ∈ ℤ. Multiplying by𝑁we see that𝑁must be divisible by 3. Hence,
𝑘 is not divisible by 3. Similarly, 𝑘𝑏∕𝑁 ∓ 1∕3 ∈ ℤ and 𝑘𝑐∕𝑁 ∓ 1∕3 ∈ ℤ, which
by subtracting implies 𝑘(𝑏 − 𝑐)∕𝑁 ∈ ℤ. Hence, 𝑏 − 𝑐 must be divisible by 𝑁,
and so by 3, which is impossible because of (17). This completes the proof of
the theorem. □

Proof of Proposition 1.5. Assume that 𝑘 ≥ 1 and for some 𝑗 ∈ {1, … , 𝑘} the
polynomial 𝑔 = 𝑓𝑗 ∈ ℤ[𝑥] of positive degree is not as claimed in the proposi-
tion. If 𝑔 has no roots on |𝑧| = 1 and 𝑔 is not as claimed in the proposition, then
it must have a root in |𝑧| < 1 and a root in |𝑧| > 1. We will show the same is
true if 𝑔 has a root on |𝑧| = 1. Indeed, then, as not all roots of 𝑔 are on |𝑧| = 1,
𝑔must have a root 𝛼 of modulus distinct from 1. Note that 𝛼 is reciprocal, since
it has a conjugate on |𝑧| = 1. So 𝛼 and 𝛼−1 are conjugate over ℚ. This implies
that 𝑔 has a root in |𝑧| < 1 and a root in |𝑧| > 1 as claimed.
Therefore, if 𝑔 = 𝑓𝑗 is not as claimed in the proposition, it must have a root

in 0 < |𝑧| < 1 and a root in |𝑧| > 1. This implies 𝑠 ≤ 𝑑 − 2. Assume that
the nonzero roots of 𝑓 defined in (6) are 𝛼1, … , 𝛼𝑑−𝑠. Without restriction of
generality we can label them as

|𝛼1| ≥ ⋯ ≥ |𝛼𝑞| > 1 ≥ |𝛼𝑞+1| ≥ ⋯ ≥ |𝛼𝑑−𝑠|,

where 1 ≤ 𝑞 ≤ 𝑑−𝑠−1 because |𝛼1| > 1 and |𝛼𝑑−𝑠| < 1. Then, by the definition
of Mahler’s measure,

𝑚 = |𝑎|𝑏𝛼1…𝛼𝑞
with some (possibly negative) nonzero integer 𝑏. Here, the product 𝛼1…𝛼𝑞 is a
real number, because if 𝛼 is a nonreal root of 𝑓 then its complex conjugate 𝛼 is
also its root with the same multiplicity.
Take an automorphism 𝜎 of the splitting field of 𝑓 that maps the root 𝛼𝑖 of

𝑔 to its another root 𝛼𝑡, where 1 ≤ 𝑖 ≤ 𝑞 < 𝑡 ≤ 𝑑 − 𝑠. Then, as 𝜎(𝛼𝑖) = 𝛼𝑡,
𝜎(𝑚) = 𝑚 and 𝜎(|𝑎|𝑏) = |𝑎|𝑏, we obtain

𝑚 =
|𝑎|𝑏𝛼𝑡
𝜎(𝛼𝑖)

𝑞∏

𝑗=1
𝜎(𝛼1) …𝜎(𝛼𝑞).

Hence,

|𝛼1…𝛼𝑞| =
𝑚
|𝑎𝑏|

=
|𝛼𝑡|

|𝜎(𝛼𝑖)|
|𝜎(𝛼1) …𝜎(𝛼𝑞)| ≤ |𝛼𝑡| ⋅ |𝛼1…𝛼𝑞−1|,

where the last inequality holds by the definition of 𝛼1, … , 𝛼𝑞 (these are the only
roots of 𝑓 outside the unit circle). This implies |𝛼𝑡| ≥ |𝛼𝑞|, which is impossible
due to |𝛼𝑡| ≤ 1 and |𝛼𝑞| > 1. □
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4. Proof of Theorem 1.1
For any𝐰 = (𝑤1, … , 𝑤𝑑) ∈ ℂ𝑑 and any 𝑘 ∈ ℕ we set

𝑆𝑘(𝐰) =
𝑑∑

𝑗=1
𝑤𝑘
𝑗 .

In the same fashion, for a polynomial

𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 +⋯+ 𝑎0 = 𝑎𝑑(𝑥 − 𝛼1) … (𝑥 − 𝛼𝑑) ∈ ℝ[𝑥],

where 𝑎𝑑 ≠ 0, we denote by

𝑆𝑘(𝑓) =
𝑑∑

𝑗=1
𝛼𝑘𝑗

the sum of 𝑘th powers of its 𝑑 roots.
Recall that, by the Newton identities, we have

𝑎𝑑𝑆𝑘(𝑓) + 𝑎𝑑−1𝑆𝑘−1(𝑓) +⋯+ 𝑎𝑑−𝑘+1𝑆1(𝑓) + 𝑎𝑑−𝑘𝑘 = 0 (20)

for 𝑘 = 1, 2, … , 𝑑. For any𝑚 ∈ ℕ and any two distinct polynomials

𝑓(𝑥) = 𝑚𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 +⋯+ 𝑎0 ∈ ℤ[𝑥]

and
𝑔(𝑥) = 𝑚𝑥𝑑 + 𝑏𝑑−1𝑥𝑑−1 +⋯+ 𝑏0 ∈ ℤ[𝑥],

where 𝑎𝑑 = 𝑏𝑑 = 𝑚, there is a unique index 𝑘 ∈ {1, 2, … , 𝑑} such that 𝑎𝑑−𝑗 =
𝑏𝑑−𝑗 for 𝑗 = 0, 1, … , 𝑘 − 1 and 𝑎𝑑−𝑘 ≠ 𝑏𝑑−𝑘. This yields 𝑆𝑗(𝑓) = 𝑆𝑗(𝑔) for
𝑗 = 1,… , 𝑘 − 1. Thus, by (20), we deduce

𝑚(𝑆𝑘(𝑓) − 𝑆𝑘(𝑔)) + 𝑘(𝑎𝑑−𝑘 − 𝑏𝑑−𝑘) = 0.

Since 𝑎𝑑−𝑘 − 𝑏𝑑−𝑘 is a nonzero integer, this implies

|𝑆𝑘(𝑓) − 𝑆𝑘(𝑔)| ≥
𝑘
𝑚 (21)

for this integer 𝑘 ∈ {1, 2, … , 𝑑}.
We now prove the bound

𝐵 = 𝐵(𝑚, 𝑑) < exp
(
10.4(𝑚𝑑)

2
3
(
log(𝑚𝑑)

) 4
3
)

(22)

for the number 𝐵(𝑚, 𝑑) of polynomials 𝑓 ∈ ℤ[𝑥] of sufficiently large degree 𝑑
with leading coefficient𝑚 ∈ ℕ and all 𝑑 roots in |𝑧| ≤ 1.
Fix

𝑋 ∶= 6𝑚𝑑. (23)
For each complex number 𝑧 = 𝑥 + 𝑖𝑦 satisfying |𝑧| ≤ 1 we define

𝑧̂ ∶=
⌊𝑋|𝑥|⌋ sign(𝑥) + 𝑖⌊𝑋|𝑦|⌋ sign(𝑦)

𝑋 .
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Here, sign(𝑥) = 1 for 𝑥 > 0, sign(𝑥) = −1 for 𝑥 < 0 and sign(0) = 0. It is clear

that |𝑧̂| ≤ 1 and |𝑧 − 𝑧̂| <
√
2
𝑋
. Hence,

|𝑧𝑘 − 𝑧̂𝑘| = |𝑧 − 𝑧̂| ⋅ |𝑧𝑘−1 +⋯+ 𝑧̂𝑘−1| <
√
2𝑘
𝑋 . (24)

Since each 𝑧̂ is of the form ℤ+𝑖ℤ
𝑋

, the distance between two distinct 𝑧̂ is at least
1∕𝑋. Consider a union of open circles at distinct 𝑧̂ with radii 1∕(2𝑋). They are
not intersecting and are all in the circle with radius 1 + 1∕(2𝑋). If there are 𝑁
of them, then

𝜋
( 1
2𝑋

)2
𝑁 < 𝜋

(
1 + 1

2𝑋

)2
,

which, by (23), for 𝑑 large enough, implies

𝑁 < (2𝑋 + 1)2 ≤ 145𝑚2𝑑2. (25)

Likewise, for each vector (𝛼1, … , 𝛼𝑑) ∈ ℂ𝑑, where |𝛼𝑗| ≤ 1, we can define
another vector (𝛼̂1, … , 𝛼̂𝑑) ∈ ℂ𝑑. Accordingly, for 𝑓 ∈ ℤ[𝑥] of degree 𝑑 with
leading coefficient𝑚 and roots 𝛼1, … , 𝛼𝑑 we define

𝑓(𝑥) = 𝑚(𝑥 − 𝛼̂1) … (𝑥 − 𝛼̂𝑑).

By the definition of 𝑧̂, the set {𝛼̂1, … , 𝛼̂𝑑} is symmetric with respect to complex
conjugation, since so is the initial set {𝛼1, … , 𝛼𝑑}. Hence, 𝑓 ∈ ℝ[𝑥] which im-
plies 𝑆𝑘(𝑓) ∈ ℝ for 𝑘 = 1,… , 𝑑.
Assume that some two integer polynomials 𝑓, 𝑔 of degree 𝑑 with leading co-

efficient𝑚 are distinct. For each 𝑘 = 1,… , 𝑛, by (23), (24), we have

|𝑆𝑘(𝑓) − 𝑆𝑘(𝑓)| < 𝑑
√
2𝑘
𝑋 < 𝑘

4𝑚.

Choosing 𝑘 as in (21) we obtain

|𝑆𝑘(𝑓) − 𝑆𝑘(𝑔̂)| ≥ |𝑆𝑘(𝑓) − 𝑆𝑘(𝑔)| − |𝑆𝑘(𝑓) − 𝑆𝑘(𝑓)| − |𝑆𝑘(𝑔) − 𝑆𝑘(𝑔̂)|

> 𝑘
𝑚 − 𝑘

4𝑚 − 𝑘
4𝑚 = 𝑘

2𝑚.

This implies that 𝑓 and 𝑔̂ are distinct and that the 𝑙∞-distance between any
distinct vectors of the form

(
2𝑚𝑆1(𝑓), … ,

2𝑚𝑆𝑘(𝑓)
𝑘

, … ,
2𝑚𝑆𝑑(𝑓)

𝑑

)
∈ ℝ𝑑 (26)

is at least 1. Note that there are 𝐵 distinct vectors as in (26), since 𝑓 runs over
𝐵 distinct polynomials.
Let 𝐴 be the convex hull of the vectors

(
2𝑚𝑑ℜ(𝑢), … ,

2𝑚𝑑ℜ(𝑢𝑘)
𝑘

, … ,
2𝑚𝑑ℜ(𝑢𝑑)

𝑑

)
∈ ℝ𝑑, (27)

where𝑢 runs over all possible (atmost𝑁) images of the unit circle |𝑧| ≤ 1under
themap 𝑧 → 𝑧̂. Each vector in (26) belongs to𝐴, since it is the arithmetic mean



POLYNOMIALS WITH INTEGRAL MAHLER MEASURES 839

of some 𝑑 vectors as defined in (27). Since the distance between any vectors as
in (26) is at least one, their number 𝐵 is bounded above by the volume of the
set 𝐹(𝐴) defined in (8), namely,

𝐵 ≤ Vol
(
𝐹(𝐴)

)
.

Thus, by Lemma 2.1, we obtain

𝐵 ≤ 1 +
∑

𝐺
Vol

(
Pr𝐺(𝐴)

)
. (28)

where the sum is taken over all nonempty subsets 𝐺 of {1, 2, … , 𝑑}. By (27) and
|ℜ(𝑢𝑘)| ≤ 1, the set 𝐴 is contained in the parallelepiped

𝑃 =
𝑑∏

𝑗=1
[−𝑢𝑗∕2, 𝑢𝑗∕2],

with 𝑢𝑗 = 4𝑚𝑑∕𝑗.
Fix

𝐿 ∶= 10(𝑚𝑑)2∕3
(
log(𝑚𝑑)

)1∕3
. (29)

Fix a nonempty subset 𝐺 of {1, … , 𝑑} with |𝐺| = 𝑔. Assume first that 𝑔 ≥ 𝐿,
where 𝐿 is defined in (29). By (25), Pr𝐺(𝐴) ⊆ 𝑃 is a convex polytope with at
most

145𝑚2𝑑2 < 𝐿3 ≤ 𝑔3

vertices. So, by Lemma 2.2 and 𝜆 ≤ 3, we obtain

Vol
(
Pr𝐺(𝐴)

)
<
(46.44 log 𝑔

𝑔

)𝑔∕2∏

𝑗∈𝐺
𝑢𝑗 ≤

(46.44 log 𝐿
𝐿

)𝑔∕2∏

𝑗∈𝐺
𝑢𝑗.

Inserting 𝐿 from (29) and using the fact that 𝑑 is large enough we obtain

Vol
(
Pr𝐺(𝐴)

)
< (

0.568(𝑚𝑑)1∕3
(
log(𝑚𝑑)

)1∕3 )
−𝑔∏

𝑗∈𝐺
𝑢𝑗. (30)

On the other hand, in case 𝑔 < 𝐿, by (29), we have

(
0.568(𝑚𝑑)1∕3
(
log(𝑚𝑑)

)1∕3 )
𝑔

< exp (103 (𝑚𝑑)
2∕3( log(𝑚𝑑)

)4∕3
).

Hence, using the trivial bound Vol
(
Pr𝐺(𝐴)

)
≤
∏

𝑗∈𝐺 𝑢𝑗, we derive that

Vol
(
Pr𝐺(𝐴)

)

exp ( 10
3
(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3
)
< (

(
log(𝑚𝑑)

)1∕3

0.568(𝑚𝑑)1∕3
)
𝑔∏

𝑗∈𝐺
𝑢𝑗. (31)

By (30), the bound (31) is true for every nonempty 𝐺 ∈ {1, … , 𝑑}, with 𝑔 = |𝐺|.
Also, from (28) it follows that

𝐵 − exp (103 (𝑚𝑑)
2∕3( log(𝑚𝑑)

)4∕3
) < 𝐵 − 1 ≤

∑

𝐺
Vol

(
Pr𝐺(𝐴)

)
.



840 ARTŪRAS DUBICKAS

Dividing this inequality by a corresponding exponent and combining it with
(
log(𝑚𝑑)

)1∕3
𝑢𝑗

0.568(𝑚𝑑)1∕3
=
4𝑚𝑑

(
log(𝑚𝑑)

)1∕3

0.568𝑗(𝑚𝑑)1∕3
<
7.05(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)1∕3

𝑗 ,

from (31) we derive that

𝐵

exp ( 10
3
(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3
)
<

𝑑∏

𝑗=1
(1 +

7.05(𝑚𝑑)2∕3
(
log(𝑚𝑑)

)1∕3

𝑗 ).

Now, applying the inequalities
∏𝑑

𝑗=1(1 + 𝑦𝑗) < exp(𝑦1 +⋯+ 𝑦𝑑) and

𝑑∑

𝑗=1

1
𝑗 ≤ log 𝑑 + 1 ≤ log(𝑚𝑑) + 1,

we can further bound
𝑑∏

𝑗=1
(1 +

7.05(𝑚𝑑)2∕3
(
log(𝑚𝑑)

)1∕3

𝑗 ) < exp (7.06(𝑚𝑑)2∕3
(
log(𝑚𝑑)

)4∕3
).

This, by the above upper bound on 𝐵 and by 10∕3 + 7.06 < 10.4, implies the
upper bound on 𝐵 as claimed in (22).
Now, we will estimate the number 𝐷 = 𝐷(𝑚, 𝑑) of distinct integer polyno-

mials of degree 𝑑 and Mahler measure𝑚. More precisely, we proceed to show
that

𝐷 = 𝐷(𝑚, 𝑑) < exp
(
10.5(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3)
. (32)

In case 𝑚 = 1 the result follows by Proposition 1.2. In the case when 𝑚 ≥
𝑑1∕2, we have 𝑑 ≤ (𝑚𝑑)2∕3 and log𝑚 ≤ log(𝑚𝑑) ≤

(
log(𝑚𝑑)

)4∕3
, so in view of

(3) the required bound (32) follows by

𝐷(𝑚, 𝑑) ≤ 𝑚𝑑(1+𝜀) < exp
(
2(𝑚𝑑)2∕3

(
log(𝑚𝑑)

)4∕3)
.

So, from now on, we assume that

2 ≤ 𝑚 ≤ 𝑑1∕2. (33)

Assume that 𝑓 ∈ ℤ[𝑥] is a polynomial of degree 𝑑 and Mahler’s measure
𝑚 ≥ 2. By Proposition 1.5 (see (6) and (7)), we can write 𝑓 in the form

𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥),

where 𝑓1 ∈ ℤ[𝑥] has the leading coefficient ±𝑚1, degree 𝑑1 and all roots in
|𝑧| ≤ 1, and 𝑓2 ∈ ℤ[𝑥] has the constant coefficient±𝑚2, degree 𝑑2 = 𝑑−𝑑1 and
all roots in |𝑧| > 1. Here,𝑚1 and𝑚2 are positive integers such that𝑚1𝑚2 = 𝑚,
𝑀(𝑓1) = 𝑚1,𝑀(𝑓2) = 𝑀(𝑓∗2 ) = 𝑚2.
The number of such polynomials with 𝑑2 = 0 is bounded above by 2𝐵(𝑚, 𝑑),

where 𝐵(𝑚, 𝑑) has been defined in (22). If 𝑑2 > 0 then 𝑚2 > 1. The number
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of such polynomials with 𝑑1 = 0 is bounded above by 2𝐵(𝑚, 𝑑) as well. If
𝑚1 = 1 then 𝑓 has all roots in |𝑧| ≥ 1, so the number of such polynomials can
be bounded by 2𝐵(𝑚, 𝑑) too. Thus,

𝐷(𝑚, 𝑑) ≤ 6𝐵(𝑚, 𝑑) + 𝐸(𝑚, 𝑑), (34)

where 𝐵(𝑚, 𝑑) has been defined in (22) and 𝐸(𝑚, 𝑑) stands for the number of
polynomials with Mahler’s measure 𝑚 representable in the form 𝑓1𝑓2, where
𝑓1 ∈ ℤ[𝑥] of degree 𝑑1 ≥ 1 has all roots in |𝑧| ≤ 1 andMahler measure𝑚1 ≥ 2,
and 𝑓2 ∈ ℤ[𝑥] of degree 𝑑2 = 𝑑 − 𝑑1 ≥ 1 has all roots in |𝑧| > 1 and Mahler
measure 𝑚2 ≥ 2. (Of course, the part 𝐸(𝑚, 𝑑) only appears for composite 𝑚.)
Here, the leading coefficient of 𝑓1 (with all roots in |𝑧| ≤ 1) is ±𝑚1, and the
leading coefficient of 𝑓∗2 (with all roots in |𝑧| < 1) is ±𝑚2. Consequently,

𝐸(𝑚, 𝑑) ≤ 4
∑

𝑚1𝑚2=𝑚,⟩𝑚1,𝑚2≥2
⟩𝑑1+𝑑2=𝑑

𝐵(𝑚1, 𝑑1)𝐵(𝑚2, 𝑑2).

Note that there are at most 𝑚 pairs of positive integers (𝑚1, 𝑚2) satisfying
𝑚1𝑚2 = 𝑚 and exactly 𝑑 pairs of positive integers (𝑑1, 𝑑2) for which 𝑑1+𝑑2 = 𝑑.
Thus,

𝐸(𝑚, 𝑑) ≤ 4𝑚𝑑 max
𝑚1𝑚2=𝑚,⟩𝑚1,𝑚2≥2

⟩𝑑1+𝑑2=𝑑

𝐵(𝑚1, 𝑑1)𝐵(𝑚2, 𝑑2). (35)

Take a positive integer 𝑑0 for which the bound (22) on 𝐵(𝑚, 𝑑) is true for all
𝑑 ≥ 𝑑0. For 𝑑 < 𝑑0 we will use the trivial bound

𝐵(𝑚, 𝑑) < 𝑐6𝑚𝑑+1, (36)

where 𝑐6 is a constant depending on 𝑑0 only (see (3)).
Now, we are ready to show the required bound (32) for 𝑑 large enough. With-

out loss of generality, we may assume that 𝑑 ≥ 2𝑑0. Also, from 𝑑1 + 𝑑2 = 𝑑 we
see that at least one of the numbers 𝑑1, 𝑑2 is greater than or equal to 𝑑0. If both
𝑑1 and 𝑑2 are at least 𝑑0 then the product 𝐵(𝑚1, 𝑑1)𝐵(𝑚2, 𝑑2) is less than

exp
(
10.4(𝑚1𝑑1)2∕3

(
log(𝑚1𝑑1)

)4∕3
+ 10.4(𝑚2𝑑2)2∕3

(
log(𝑚2𝑑2)

)4∕3)

by (22). This implies the required bound (32) by Lemma 2.3 with 𝑘 = 2 due to
𝑚1, 𝑚2 ≥ 2, and (22), (34), (35).
Otherwise, we must have either 𝑑1 < 𝑑0 ≤ 𝑑2 or 𝑑2 < 𝑑0 ≤ 𝑑1. In the first

case, 𝑑1 < 𝑑0 ≤ 𝑑2, by (22) and (36), we obtain

𝐵(𝑚1, 𝑑1)𝐵(𝑚2, 𝑑2) < 𝑐6𝑚
𝑑1+1
1 exp

(
10.4(𝑚2𝑑2)2∕3

(
log(𝑚2𝑑2)

)4∕3)
.

Here, the factor 𝑐6𝑚
𝑑1+1
1 is very small, since from (33) it follows that

log 𝑐6 + (𝑑1 + 1) log𝑚1 ≤ log 𝑐6 + (𝑑1 + 1) log𝑚 < 𝑐7 log 𝑑.

This immediately yields the desired bound (32) by 𝑚2𝑑2 ≤ 𝑚𝑑, (22), (34) and
(35). It is clear that the second case, 𝑑2 < 𝑑0 ≤ 𝑑1, is symmetric to that above
and can be treated analogously. This completes the proof of Theorem 1.1.
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