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On reducibility of induced representations
of odd unitary groups: the depth zero case

Subha Sandeep Repaka

ABSTRACT. We study a problem concerning parabolic induction in certain
p-adic unitary groups. More precisely, for E/F a quadratic extension of p-
adic fields the associated unitary group G = U(n, n + 1) contains a parabolic
subgroup P with Levi component L isomorphic to GL,(E) X U,(E). Let 7 be
an irreducible supercuspidal representation of L of depth zero. We use Hecke
algebra methods to determine when the parabolically induced representation
(7 is reducible.
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1. Introduction

Let G = U(n,n + 1) be the odd unitary group over non-Archimedean local
field E and 7 is an irreducible supercuspidal depth zero representation of the
Siegel Levi component L = GL,(E) X U;(E) of the Siegel parabolic subgroup
P of G. The terms P, L, 7,U(n,n + 1) are described in much detail later in the
paper. We use Hecke algebra methods to determine when the parabolically
induced representation z}(fn is reducible. Harish-Chandra tells us to look not at
an individual lgﬂ but at the family Lg(m/) as v varies through the unramfied
characters of L = GL,(E) X U;(E). The unramified characters of L and the
functor [g are also described in greater detail later in the paper.

Before going any further, let us describe how the group U(n, n + 1) over non-
Archimedean local fields looks like. Let E/F be a quadratic Galois extension
of non-Archimedean local fields where char F # 2. Write — for the non-trivial
element of Gal(E/F). The group G = U(n,n + 1) is given by
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U(n,n+1) ={g € GL,,1(E) | 'glg = J}

0 0 Id,
J = \ 0 1 O ‘ ,
Id, 0 0

where each block is of size n and for g = (g;;) we write g = (g; j). We also write
Of and Of for the ring of integers in E and F respectively. Similarly, p; and pg
denote the maximal ideals in O and Of and kg = O /pg and kr = Or/pr
denote the residue class fields of Oy and Op. Let |kr| = g = p" for some odd
prime p and some integer r > 1.

There are two kinds of extensions of E over F. One is the unramified ex-
tension and the other one is the ramified extension. In the unramified case,
we can choose uniformizers wg, wr in E, F such that wy = wp so that we
have [k : kp| = 2,Gal(kg/kr) = Gal(E/F). As Wy = Wp, SO W = Wg
since wp € F. As kp = Fy, so kg = Fye in this case. In the ramified case, we
can choose uniformizers wy, wr in E, F such that wé = wy so that we have
kg : kp]l = 1,Gal(kg/kr) = 1. As wé = wp, we can further choose wy such
that @y = —wg. Askp = Fg, so kg = [, in this case.

We write P for the Siegel parabolic subgroup of G. Write L for the Siegel Levi
component of P and U for the unipotent radical of P. Thus P = L X U with

for

a 0 0 _
L:{[O A 0 ]|aeGLn(E),/1€EX,/l/1=1}
0 0 ‘gt
and
Id, u X
U=Z 0 1 —IE]|XeMn(E),ueMnxl(E),X+t)_(+utﬂ=0§.
0 0 Id,

Note that L = GL,(E) x U,(E) and U,(E) = U;(Dg). Let P = L X U be the
L-opposite of P where

. Id, 0 0 .
U= i -u 1 0 [|XeME)ueM,E),X+'X+uu= OE.
X wu Id,
Let KO = GLn(DE) and Kl = Idn+wEMn(DE) Note K1 = Idn‘l‘wEMn(DE)
is the kernel of the surjective group homomorphism

(8ij) — (& + Pe) : GL,(Dp) — GLy(kg)

As 7 is a depth zero representation of L = GL,(E) X U;(E), so 7 = 1y where
A is a depth zero representation of GL,(E) and y is a depth zero character of
U, (E). We say 7 is a depth zero representation of the Siegel Levi component L
of Pif A%t # 0 and x|y, q4p,) = 1-
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Let (p, V') be a smooth representation of the group H which is a subgroup of
K. The smoothly induced representation from H to K is denoted by I ndg(p, V)
orl ndfl(p). Letus denote ¢c-I ndfl(p, V)orc-I ndg (p) for smoothly induced com-
pact induced representation from H to K.

The normalized induced representation from P to G is denoted by lg (p,V)

or [g(p) where [g(p) = Indg(p ® 5}1,/2), dp is a character of P defined as 6p(p) =
||det(Ad p)|iievllr for p € P and Lie U is the Lie-algebra of U. In this paper,
we work with normalized induced representations rather than induced repre-
sentations as results look more appealing (for example, such representations
commute with taking duals).

Write L° for the smallest subgroup of L containing the compact open sub-
groups of L. We say a character v : L — C* is unramified if v|;. = 1. Observe
that if v is an unramified character of L then v = v’ B where v’ is an unram-
ified character of GL,(E) and § is an unramified character of U;(E). But as
U,(E) = U (Og), so B is trivial. Hence, v can be viewed as an unramified
character of GL,,(E). Let the group of unramified characters of L be denoted by
an(L)-

1.1. Question. The question we answer in this paper is, given 7 an irreducible
supercuspidal representation of L of depth zero, we look at the family of repre-
sentations lg (mv) forv € X, (L) and we want to determine the set of such v for
which this induced representation is reducible for both ramified and unrami-
fied extensions. By general theory, this is a finite set.

Recall that 7 = Ay where 1 is an irreducible supercuspidal depth zero rep-
resentation of GL,(E) and y is a supercuspidal depthzero character of U;(E).
Now 2|k, contains an irreducible representation 7 of K, such that 7|, is triv-
ial. So 7 can be viewed as an irreducible representation of K,/K; = GL,(kg)
inflated to K, = GL,(Dg). The representation 7 is cuspidal by (a very special
case of) A.1 Appendix [ML93]. Set p, = 7y which is a cuspidal representation
of Ky X U;(Og). Further, we can view p, = Ty as a cuspidal representation of
GL, (kg) x U, (kg) inflated to K, x U;(Op).

By the work of Green [GJAS55] or as a very special case of the Deligne-Lusztig
construction, irreducible cuspidal representations of GL, (k) are parametrized
by the regular characters of degree n extensions of kz. We write 7,4 for the irre-
ducible cuspidal representation 7 that corresponds to a regular character 6. Let
l/kg be a field extension of degree n. We set I' = Gal(l/kg).

Let

(I*)¥ = Hom(I*, CX).
Clearly, T acts on (I*)V via
87(x)=06("x), 6el*),yerl, xelx

We write (l><)}’eg for the group of regular characters of I* with respect to this
action, that is, characters 6 such that Stab(6) = {1}. We also write lfeg for the
regular elements in [%, that is, elements x such that Stabr(x) = {1}. The set of
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I'-orbits on (l><)rveg is then in canonical bijection with the set Irr g, GL,(kg) of
equivalence classes of irreducible cuspidal representations of GL,(kg):

F\(lx)v > Irrcusp GLn(kE)

reg

0 «— 1g.
The bijection is specified by a character relation

To(x) =c D, 6"(x), x €L,
yer

for a certain constant c that is independent of 6 and x. We denote 7 by 7.

Note that we have kg = Fp2. Sol = Fgon.

AsT = Gal(l/kg), T is generated by the Frobenius map & given by ®(1) = A7
for 2 € 1. Note that here 62 = 649°. Also observe that P(A) = 29" =2 (since
I¥ is a cyclic group of order g* — 1) = ®" = 1.

Note that for two regular characters 6 and 6’ we have 7y ~ 75 < there
exists y € I such that 87 = &',

We now define the Siegel parahoric subgroup 8 of G which is given by:

GLn(DE) Mnxl(DE) Mn(DE)
Miun(Pe)  Ui(0p)  Miyxn(Op)
Mn(pE) Mnxl(pE) GLn(DE)

We have g = (P n ﬁ)(’B N L)(P N U)(Iwahori factorization of *PB). Let us
denote (PN U) by P_, (P N U) by P, (P N L) by P,,. Thus

P = U, n+1).

a 0 O _
By = g 0 2 0 |[|laeGL,(Dp),1e€e 0% A= 1},
0 0 ‘gt

Id, u X .
P, = { 0 1 —u||XeM,(Dp),ueMp(Op),X + X +ult = 0;,
0 0 Id,

Id, 0 0 B
S,I}_ = { —fu 1 0 | X e Mn(PE)’“ (S MnXl(pE)’X + ¢ + ulu = 0}
X wu Id,

By Iwahori factorization of 8 we have B = ([ n UYPNL(PNU) =
PB_PoB,. As py is a representation of Ky X U;(Dg), it can also be viewed as
a representation of %3,. This is because B, = K, X U;(Of). We shall see that,
Po can be extended to a representation p of 8 which is given by p(p) = po(po)
where p € P can be factorized as p_pyp, where p_ € B_, py € By, P+ € B,

Let K be a compact open subgroup of G. Let (o, W) be an irreducible smooth
representation of K. The Hecke algebra F((G, p) is given by:
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supp(f) is compact and

fkigky) = p¥ (k1) f(g)p (ko) ¢ -
where k;,k, €eK,g € G

J(G,p) =1f: G — Endc(p”)

Then F((G, p) is a C-algebra with multiplication given by convolution * with
respect to some fixed Haar measure x4 on G. So for elements f,g € H(G, p) we
have

(90 = [ F0)0 w0,
G
Let Z(L) denote the center of L. Hence

ald,

=)

0

Z(L)=§ (U 10 |a € EX,A € EX,A1 = 1L.
0 0 a Id,
Let us set
wrld, 0 0
¢ = 0 1 0

0 0 Ty Id,
Note that Z(L)B, = [, ., PoS", so we can extend p, to a representation g,

of Z(L)P, via go(¢*j) = po(j) for j € Po, k € Z. By standard Mackey theory

arguments, we show in the paper that 7= c-I ndé(L)“B Po is a smooth irreducible
0

supercuspidal depth zero representation of L. Also note that any arbitrary depth
zero irreducible supercuspidal representation of L is an unramified twist of 7.
To that end, we will answer the question which we posed earlier in this paper
and prove the following result.

Theorem 1.1. Let G = U(n,n + 1). Let P be the Siegel parabolic subgroup of
G and L be the Siegel Levi component of P. Let m= c-I ndé(L)%ﬁo be a smooth
irreducible supercuspidal depth zero representation of L = GL,(E)XU,(E) where
Bo(E*j) = po(j) for j € Py, k € Z and p, = T4 for some regular character 6 of

Xwith [l : kg] = nand |kg| = q. Consider the family Lg(m/)forv € X, (L).
(1) For E/F unramified, (§(v) is reducible <= n is odd, 69" = 6=9 and
V(g) € {qn’ q_n5 _1}
(2) For E/F ramified, ($(7rv) is reducible < n is even, 04"* = 07 and
v($) € {g"/?,q7"/2, -1}

In this paper we solve a similar problem as the one which we did in [RSS21].
In [RSS21], we solved the problem for U(n,n) over non-Archimedean local
fields where as in this paper we are solving the same problem for U(n,n + 1)
over non-Archimedean local fields. Refer to the section 1 in [RSS21] for a bet-
ter understanding of what we are doing in this paper. All the representations
in this paper are smooth and complex representations.
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In [GD94], Goldberg computes the reducibility points of [g(ﬂ') by computing
the poles of certain L-functions attached to the representations of GL,(E). Note
however that the base field F is assumed to be of characteristic 0 in [GD9%4],
whereas we assumed characteristic of F # 2. In [GD94] there is no restric-
tion on the depth of the representation 7z, while in this paper we have assumed
depth of the representation 7 to be of zero. The final results obtained in [GD94]
are in terms of matrix coefficents of 7 whereas our results are in terms of the
unramified characters of L.

In [HV11] and [HV17], Heiermann computed the structure of the Hecke al-
gebras which we look at and makes a connection with Langlands parameters.
But his results are not explicit. They do not give the precise values of the pa-
rameters in the relevant Hecke algebras.

In [LS20], Stevens and Lust have calculated the parameters of the affine
Hecke algebras for all the classical groups, so in particular they have also cal-
culated the parameters of affine Hecke algebras of odd unitary groups in the
depth zero setting for both ramified and unramified extensions. However, the
approach taken by them is quite different from our approach.

1.2. Organization of the paper. In section 2, we introduce the preliminaries
required to solve the question posed in the Introduction section. In section 3
we perform the calculations required to undertand the structure of the Hecke
algbera H (G, p) in both the ramified and unramified cases. In section 4, the
structure of the Hecke algbera (L, py) and that of simple (L, p,)- modules
are determined and also in this section, further calculations which are required
to prove Theorem 1 are performed. Finally, in section 5 proof of Theorem 1 is
given.

Acknowledgments: The author wishes to thank Alan Roche from Univer-
sity of Oklahoma, USA for suggesting the problem studied in this work and for
many discussions and insights.

2. Preliminaries

2.1. Bernstein Decomposition. Let G be the F-rational points of a reductive
algebraic group defined over a non-Archimedean local field F. Let (7, V') be an
irreducible smooth representation of G. According to Theorem 3.3 in [KP98],
there exists unique conjugacy class of cuspidal pairs (L, o) with the property
that 7 is isomorphic to a composition factor of LgO' for some parabolic subgroup
P of G. We call this conjugacy class of cuspidal pairs, the cuspidal support of
(m, V).

Given two cuspidal supports (L;, ;) and (L,, 05) of (7, V), we say they are
inertially equivalent if there exists g € G and y € X,,,(L,) such that L, = Lf
and c‘f ~ g, ® y. We write [L, o]; for the inertial equivalence class or inertial
support of (77, V). Let B(G) denote the set of inertial equivalence classes [L, o].

Let R(G) denote the category of smooth representations of G. Let R5(G)
be the full sub-category of smooth representations of G with the property that



1106 SUBHA SANDEEP REPAKA

(7, V) € 0b(R5(G)) < everyirreducible sub-quotient of 7 has inertial support
s=|[L,0]g.
We can now state the Bernstein decomposition:

RG) = [ R©.

s€B(G)

2.2. Types. Let G be the F-rational points of a reductive algebraic group de-
fined over a non-Archimedean local field F. Let K be a compact open subgroup
of G. Let (p, W) be an irreducible smooth representation of K and (7,V) be a
smooth representation of G. Let V* be the p-isotopic subspace of V.

ve=>w
w!

where the sum is over all W’ such that (7r|g, W) ~ (p, W).

Let H(G) be the space of all locally constant compactly supported functions
f: G — C. This is a C- algebra under convolution *. So for elements f,g €
F((G) we have

(f * g)(x) = f FOIRO1)duw).

G
Here we have fixed a Haar measure x4 on G. Let (7, V) be a representation of
G. Then H(G) acts on V via

hv = fh(x)n(x)vd,u(x)
G

for h € J((G),v € V. Let e, be the element in ((G) with support K such that
di _
ep(x) = SZliry(p(x ). x € K.

We have e, x e, = ¢, and e,V = V* for any smooth representation (7, V') of
G. Let R ,(G) be the full sub-category of R(G) consisting of all representations
(7, V) where V' is generated by p-isotopic vectors. So (7,V) € R, (G) <= V =
F(G) * e,V. We now state the definition of a type.

Definition 2.1. Let s € B(G). We say that (K, o) is an s-type in G if R,(G) =
R3(G).

2.3. Hecke algebras. Let G be the F-rational points of a reductive algebraic
group defined over a non-Archimedean local field F. Let K be a compact open
subgroup of G. Let (p, W) be an irreducible smooth representation of K. Here
we introduce the Hecke algebra J((G, p).

supp(f) is compact and

H(G,p) =1f: G — Endc(pY) | fkigks) = p" (k1) f(g)p"(ky) ¢ -
where k,,k, € K,g €G
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Then H (G, p) is a C-algebra with multiplication given by convolution * with
respect to some fixed Haar measure 4 on G. So for elements f, g € H(G, p) we
have

(f * §)x) = f FOIRO1X)du).
G

The importance of types is seen from the following result. Let 7 be a smooth
representation in R¥(G). Let H (G, p) — Mod denote the category of F (G, p)-
modules. If (K, p) is an s-type then mg : R¥(G) — H(G, p) — Mod given by
mg(m) = Homg(p, 7r) is an equivalence of categories.

2.4. Covers. Let G be the F-rational points of a reductive algebraic group de-
fined over a non-Archimedean local field F. Let K be a compact open subgroup
of G. Let (p, W) be an irreducible representation of K. Then we say (K, p) is de-
composed with respect to (L, P) if the following hold:

(1) K=(EnU)YKNL)YKNU).
(2) (KNU),(KNU) < kerp.
Suppose (K, p) is decomposed with respect to (L, P). We set K; = K N L and
pr = plk,- We say an element g € G intertwines p if Homggnx (08, p) # 0. Let

Sc(p) = {x € G | xintertwines p}. We have the Hecke algebras H (G, p) and
F(L,pr). We write

H(G, p), ={f € H(G,p) | supp(f) € KLK}.
We recall some results and constructions from pages 606-612 in [BK98]. These
allow us to transfer questions about parabolic induction into questions concern-
ing the module theory of appropriate Hecke algebras.

Proposition 2.2 (Bushnell and Kutzko, Proposition 6.3 [BK98]). Let (K, p) de-
compose with respect to (L, P) .Then

(1) py isirreducible.

2) S1(pr) =JslP) N L.

(3) ThereisanembeddingT : FH (L, p;) — H(G, p)suchthatif f € F (L, p;)
has support K; zK; for some z € L, then T(f) has support K zK.

(4) The map T induces an isomorphism of vector spaces:

"}((La PL) ; :}((Ga P)L
Definition 2.3. An element z € L is called (K, P)-positive element if:

1) zKnU)z ' CKnU.
2) z7' (KNnU)zCKNnU.

Definition 2.4. An element z € L is called strongly (K, P)-positive element if:
(1) zis (K, P) positive.
(2) zliesin center of L.
(3) For any compact open subgroups K and K’ of U there exists m > 0 and
m € Z such that z"Kz™™ C K'.
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(4) For any compact open subgroups K and K’ of U there exists m > 0 and
m € Z such that z7mKz C K'.

Proposition 2.5 (Bushnell and Kutzko, Lemma 6.14 [BK98], Proposition 7.1,
[BK98]). Strongly (K, P)-positive elements exist and given a strongly positive ele-
ment z € L, there exists a unique function ¢, € FH(L, p;) with support K; zK;
such that ¢,(z) is identity function in Endc(p;).

supp(f) is compact and consists

of strongly (K, P)-positive elements
and f(k,lk;) = P\L/(k1)f(l)PZ(k2)
where kl’ k2 S KL,l eL

H*(L,pr) =1f: L — Endc(py)

The isomorphism of vector spaces T : H (L, p;.) — H(G, p);, restricts to an
embedding of algebras:

T+ . -7{+(L:PL) — “}((G’p)L < “}[(Gap)

Proposition 2.6 (Bushnell and Kutzko, Theorem 7.2.i [BK98]). The embedding
T+ extends to an embedding of algebras t : F(L,p;) — H(G,p) < T*(¢,)
is invertible for some strongly (K, P)-positive element z, where ¢, € H (L, p;) has
support K; zK; with ¢,(z) = 1.

Definition 2.7. Let L be a proper Levi subgroup of G. Let K; be a compact open
subgroup of L and p; be an irreducible smooth representation of K;. Let K be
a compact open subgroup of G and p be an irreducible, smooth representation
of K. Then we say (K, p) is a G-cover of (K;, p;) if

(1) The pair (K, p) is decomposed with respect to (L, P) for every parabolic
subgroup P of G with Levi component L.

(2) KNL =K and p|; =~ p;.

(3) The embedding T* : H*(L, p;) — H(G, p) extends to an embedding
of algebras t : H (L, pr) — H(G,p).

Proposition 2.8 (Bushnell and Kutzko, Theorem 8.3 [BK98]). Lets; = [L, 7];,
€ B(L)and s = [L,7]g € B(G). Say (K;,p;) is an s;-type and (K,p) is a
G-cover of (K, 8;). Then (K, p) is an s-type.

Note that in this paper K = B,K; = KNL =PnL = Py and p; = py.
Also note that in this paper, p is defined as p(p) = py(py) for p € P where by
Iwahori Factorization p = p, pop_, p+ € PNU, py € Py, p— € PUU. Observe
that from definition 2.7, we can conclude that (|3, p) is a cover of (3,, o). Also
observe that as (B, o) is s;-type and as (!B, p) is a cover of (By, py), so from
proposition 2.8, it follows that (°[3, p) is a s-type.

Recall the categories R*:(L), R¥(G) where s; = [L, ]y and s = [L, 7];. Note
that 7zv lies in the category R (L) and Lg (7v) lies in R%(G).

Note that F((G,p) — Mod is the category of F((G,p)-modules and
H(L, pr) — Mod is the category of (L, pr)-modules.
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The functor lg was defined earlier. The functor
my . RL(L) — H(L,p;) — Mod

is given by m; (7v) = Homyg, (o, 7v). The representation 7v € R*(L) being
irreducible, it corresponds to a simple (L, py)-module under the functor m;.
Let f € my(nv),y € H(L,p,) and w € V. The action of F((L, p,) on m(7v)
is given by (y.f)(w) = J; (Dv()f(yY(I"Hw)dl. Here yV is defined on L by
YA =y forl € L.
The functor mg : R*(G) — H(G, p) — Mod is given by:
ma(S(v)) = Homg (p, G (7).

Further the functor (Tp),. : H(L, p;) —Mod — H(G, p) — Mod is given by,
for M an H (L, py)-module,

(Tp).(M) = Homye(r, o, (H(G, p), M)

where F((G, p) is viewed as a H (L, py)-module via Tp. The action of F (G, p)
on (Tp),(M) is given by

h'y(hy) = P(hyh')

where w € (TP)*(M)a h'l’ h', € }((G’ p)'
The importance of covers is seen from the following commutative diagram
which we will use in answering the question which we posed earlier in this

paper:

RI(G) —s (G, p) — Mod

g .|

RE(L) ——s H(L, ) — Mod.
Let us denote the set of strongly (|, P)-positive elements by 7*. Thus

Jt={xeL|xPx' TP, x " P_x CP_},

where P, = PN U, P_ = PN U. Let V be the vector space corresponding to
po- We shall show in section 4 that F(L, py) = Cla, a™'] where a € F (L, py)
has support PB,¢*B, and a(¢) = 1,v. We will also show that a”(¢") = (a(¢))"
for n € Z and supp(a™) = Py Py = Peé" = P, forn € Z.

We have

FHH(L, po) = {f € H(L,po) | suppf € PoT* Py}

Note ¢ € I, so Ht(L, py) = Cla]. The following discussion is taken from
pages 612-619 in [BK98]. Let W be space of p,. Let f € FH (L, p,) with support
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of f being Py x*P, for x € I*. The map F € H (G, p) is supported on PxP and
f(x) = F(x). The algebra embedding

T*: H*(L, py) — H(G,p)
is given by T*(f) = F, where F is invertible.
Recall support of « € H*(L, py) is Py¢. Let Tt () = 3, where ¢ € F((G, p)

has support &P and a(¢) = (&) = 1yv. As Tt (a) = 9 is invertible, so from
Proposition 2.6 we can conclude that T* extends to an embedding of algebras

t: H(L, py) — H(G, p).
Let¢ € H(L, py) and m € Nis chosen such that a™¢ € H*(L, py). The map
t is then given by t(¢) = p~"T*(a™¢). For ¢ € H(L, p,), the map
tp 1 H(L, py) — H(G,p)
is given by tp(¢) = t(¢pdp), where ¢pdp € H (L, py) and is the map
$6p: L —> Endc (o))
given by (¢8p)(1) = ¢(1)dp(l) forl € L. As a € H (L, py) we have

tp(a)(§) = t(adp)(§)
= T*(adp)($)
= 5p(HTT()($)
= 5p(OP()
= 5p(H .

Let H (L, py)-Mod denote the category of H (L, py)-modules and H (G, p)-
Mod denote the category of F((G, p)-modules. The map ¢p induces a functor

(tp), given by

(tP)* : }((L’ pO) —Mod — :}((G’ P) — Mod.
For M an # (L, py)-module,

(tp)«(M) = Homy(y, ,)(H(G, p), M)
where (G, p) is viewed as a F((L, p,)-module via tp. The action of (G, p) on
(tp).(M) is given by

h,¢(h1) = ¢(h1hl)
where Y € (tp).(M), hy, h' € F((G, p).

Let 7 € RIL7(L) then functor my : RI7T(L) — FH (L, py) —Mod is given
by m;(z) = Homg (0o, 7). The functor m; is an equivalence of categories. Let
fem(r),y € H(L,py) and w € W. The action of H (L, py) on m;(7) is given
by (y./)w) = f; T f¥A~w)dl. Here y" is defined on L by y¥(I™) = y(1)¥
forl € L. Let 7’ € RIL7le(G) then the functor mg : Rl (G) — H(G, p) —
Mod is given by ms(t") = Homg(p, 7). The functor my is an equivalence of
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categories. From Corollary 8.4 in [BK98], the functors m, mg, [ ndg, (tp), fit
into the following commutative diagram:

mg

RIL7le(G) —— H(G, p) — Mod

ind| .|

R (L) "y (L, py) — Mod
If 7 € RIL7I(L) then from the above commutative diagram, we see that
(tp)(mp (7)) = mg(I l’ldgT) as H (G, p)-modules. Replacing 7 by (t ® 5;,/ 2) in
the above expression, (tp),(m,(t ® 85/)) = mg(IndS(r ® §5/%)) as H(G, p)-

modules. As Indg(f ® 511,/2) = tg(f), we have (tp),(m; (T ® 5}1,/2)) = mG(Lg(r))
as H (G, p)-modules.

Our aim is to find an algebra embedding Tp : F((L, pg) — H(G, p) such
that the following diagram commutes:

R (G) —2 F(G, p) — Mod

i T (MT

R (L) —— F(L, py) — Mod
Let t € RIL7(L) then my (1) € H(L, py)- Mod. The functor (Tp), is defined
as below:

(Tp)lm (@) = {2 #(G.p) — my(@) | L) = P IS,
From the above commutative diagram, we see that
(Tp)o(my(1)) = mg (15 (7))
as #(G, p)-modules. Recall that
(tp)(m(x ® 8,/) = ma(E(r))
as H (G, p)-modules. Hence we have to find an algebra embedding
Tp: H(L, po) — H(G,p)

such that '
(Tp)y(my (D)) = (tp),(my (z ® 5)/%)
as H(G, p)-modules.

Proposition 2.9. The map Tp is given by

To(d) = tp($8,"), ¢ € H(L, po),

so that we have s
(Tp).(m (D)) = (tp).(my(z ® 85/
as H(G, p)- modules.
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Proof. Let W be space of p,. The vector spaces for mL(TS;/ 2) and m;(7) are
the same. Let f € m;(7) = Homg (00, 7),¥ € H(L, pg) and w € W. Recall the
action of #((L, po) on my(7) is given by

)W) = f OOV Dwd
L

Let f' € mL(Téll,/z) = Hom;‘po(po,rcﬁ/z),y € H(L,py) and w € W. Recall
the action of H (L, py) on mL(TS;,/ 2) is given by

G fw) = f (8D F GV w)dl
L

= f 08> f (Y (I~ Hw)dL.

L
Now f” is a linear transformation from space of p,, to space of 15;,/ % As 5;,/ 2(l) €
€%, 50 812 () f" (¥ (I7Yw) = f'(8,*(Dy” (I )w). Hence we have
(. fw) = f 6y wydl

L

- [wse orwwa
L

Further as 5;,/2(1) e C*,s0 5;,/2(1)()/(1))\’ = (511,/2)/)(1)\/. Therefore

7.f(w) = f W) f (@G DY w)dl = (83 ). (w).
L

Hence we can conclude that the action of y € F((L,p,) on f' € mL(T5}1)/ 2) is
/27/ € H(L,py)on f" € my(r). Sowe have (Tp),(m; (7)) =
(tp).(my(z ® 8;/%)) as (G, p)- modules. .

. 1
same as the action of § P

From Proposition 2.9, Tp(a) = tp(océ;l/z). So we have,

Tp(a) = tp(ad; %)
= t(a8,"*8p)
= t(@&)?)
= T*(a8)/?).
Hence

Tp(@)(¢) = T*ady *)(¢)
=5, 2(OT*@)©)
=52 (a0
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Thus Tp()(§) = 85/ ()1 with supp(Tp(a)) = supp(tp(a)) = P¢P.

2.5. Depth zero supercuspidal representations. Suppose 7 isanirreducible
cuspidal representation of GL,(ky) inflated to a representation of GL,(Oy) =
K,. Then let K, = ZK, where Z = Z(GL,(E)) = {11, | 1 € EX}. As any
element of EX can be written as uw}; for some u € O} and m € Z. So in fact,
K, =< wgl, > K,.

Let (4,V) be a smooth irreducible supercuspidal representation of GL,(E)
such that |, = 7. Set 1y, to be the identity linear transformation of V. As
wgl, € Z, so /l(wEl ) = w;(wgl,)1l, where w; : Z —> C* is the central
character of 4.

Let 7 be a representation of K, such that:

1) ?(wEln) = a)/l(wEln)ll/a
() Tlg, =7
Say w;(wg1,) = z where z € C*. Now call T = 7,. We have extended 7 to
7, which is a representation of K,, so that Z acts by w;. Hence 4| g, 2 Tz Which
implies that Homg (7;, 1|g,) # 0.
By Frobenius reciprocity for induction from open subgroups,

Homg (73, 4|g,) ~ Homgy (E)(C-IndGL (E)?Z,/l).

(E)~

Thus Homgy, (gy(c-1 nd = 2, A4) # 0. So there exists a non-zero GL,(E)-map

from c-I ndg Tz to A. As 7 is cuspidal representation, using Cartan decompos-

GLn(E)~

tion and Mackey s criteria we can show that c-I nd T, is irreducible. So

O
A ~cI nd~ "(E)~ . AscI nd~ En(E )rz is irreducible supercuspidal representa-
0

tion of GL (E) of depth zero, so 1 is irreducible supercuspidal representation
of GL,(E) of depth zero.

Conversely, let 4 is a irreducible, supercuspidal, depth zero representation
of GL,(E). So A%t # {0}. Hence 1| k, 2 lg,, where 1g is trivial representa-
tion of K. This means 4|g, 2 7, where 7 is an irreducible representation of
Ky such that 7|g, 2 1g,. So 7 is trivial on K;. So 4|k, contains an irreducible
representation 7 of K, such that 7| is trivial. So 7 can be viewed as an irre-
ducible representation of K,/K; = GL,(kg) inflated to K, = GL,(Og). The
representation 7 is cuspidal by (a very special case of) A.1 Appendix [ML93].

So we have the following bijection of sets:

Isomorphism classes
of irreducible

} X C* «— {supercuspidal
representations of
GL,,(E) of depth zero

Isomorphism classes of irreducible
cuspidal representations of GL,(kg)
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GL,(E)~

(1,2) c— IndIZO T,

(T’ w/l(wEln)) A
Recall that 7 is an irreducible supercuspidal depth zero representation of
L =~ GL,(E)x Uy(E). So m = Ay where 4 is an irreducible supercuspidal depth
zero representation of GL,,(E) and y is an irreducible supercuspidal depth zero
character of U;(E). From now on we denote the representation 7y by p,. So py
is an irreducible cuspidal representation of GL,(kg) X U;(kg) inflated to K, X
U;(Og) where K, = GL,(Og). Recall that we can extend p, to a representation

Po of ZWPy = [T, Bol" via Zo(¢ ) = po(j) for j € Pok € Z. Also

_ _ GLn(E)"" j— ~ - L o
observe thatas 1 =¢ Indlzo T,S0mT =Ay ~c I”dz(L)SBOPO'

3. Structure of 7 (G, p)

3.1. Representation p of . Let V' be the vector space associated with py.
Now p, is extended to a map p from P8 to GL(V) as follows. By Iwahori fac-
torization, if j € ‘P then j can be written as j_j,j,, where j_ € B_,j, €
B, jo € Po. Now the map p on P is defined as p(j) = po(jo)-

Proposition 3.1. p is a homomorphism from P to GL(V). So p becomes a rep-
resentation of .

Proof. The proof goes in similar lines as Proposition 5 in [RSS21]. O

3.2. Calculation of No(*B,). We set G = U(n,n+1). To describe H (G, p) we
need to determine N (o) which is given by

Ng(po) ={m € Ns(Bo) | po = py'}-

Further, to find out Ng(p,) we need to determine Ng(*3,). To that end we
shall calculate Ny, (5)(Ko)- Let Z = Z(GL,4(E)). So Z = {11, | 4 € E*}.

Lemma 3.2. NGLn(E)(KO) = KOZ

Proof. This follows from the Cartan decomposition by a direct matrix calcula-

tion. ([

0 0 Id,
Now let us calculate Ng(3y). NotethatJ = | 0 1 O | € G. Indeed,

Id, 0 0
J € Ng(*By). The center Z(*B,) of *B, is given by
uld, O 0 _
ZPB)=j[ © 4 0 JueDpieOnua= 1}.
0 0 u Id,
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Recall the center Z(L) of L is given by

ald, 0 0
Z(L) = 0o 4 10 |a € EX,1 € EX,AA = 1}.
0 0 a Id,

Proposition 3.3. N;(By) = (PoZ(L),J) = PoZ(L) X {J).

Proof. We use Lemma 3.2 to prove this Proposition. The proof goes in the
similar lines as Proposition 6 in [RSS21]. O

3.3. Calculation of N;(pg)-

3.4. Unramified case. We have the following conclusion about N;(p,) for
the unramified case:

If nis even, then N;(py) = Z(L)B,. If nis odd, then Ng(po) = Z(L)Py X{J).
For details refer to section 5.1 in [RSS21].

3.5. Ramified case: We have the following conclusion about N;(p,) for ram-
ified case:

If nis odd, then Ng(py) = Z(L)P,. If nis even, then N;(pg) = Z(L)Po X ).
For details refer to section 5.2 in [RSS21].

Lemma 3.4. When n is odd in the unramified case or when n is even in the ram-
ified case, we have N;(p,) = (By, Wy, Wy ), where wy, = J and

0 0 @y Id,
w=| 0o 1 o0

Proof. The proof goes in the similar lines as Lemma 2 in [RSS21]. (]
3.6. Calculation of 7((G, p).

3.6.1. Unramified case: In this section, we will determine the structure of
H(G, p) for the unramified case when n is odd. Using cuspidality of p, it can be
shown by Theorem 4.15 in [ML93], that S5(p) = *BNg(p)PB. But from Lemma
3.4, Ng(po) = (Bo, wo, wy). So Sg(p) = P (Po, wo, w1) P = P (wp, wy) P, as
B, is a subgroup of *B. Let V' be the vector space corresponding to p. Let us
recall that (G, p) consists of maps f: G — Endc(V") such that support of
f is compact and f(pgp’) = p"(p)f(g)p"(p’) for p,p" € P,g € G. In fact
H(G, p) consists of C-linear combinations of maps f : G — Endc(V") such
that f is supported on PxP where x € J;(p) and f(pxp’) = p¥(p)f(x)p¥(p")
for p, p’ € P. We shall now show there exists ¢, € H (G, p) with support
Puw,P and satisfies ¢5 = g" + (q" — 1)¢,. Let

K(0) = U(n,n + 1) N GLy,41 (D) = {g € GLy,11(Op) | 'glg =T},
K;(0) ={g € Id11 + wpM,,.1(Dp) | 'g7g = T},
G ={g € GLyy1(kg) | 'glg = J}.
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d

The map r from K(0) to G given by r : K(0) P Gisa surjective group

homomorphism with kernel K;(0). So by the first isomorphism theorem of
groups we have:

K(©)
K0) —
\GLn(kE) Mnxl(kE) Mn(kE) ]
r(p) =P = 0 Ui(kg)  Miyxn(kp) | () G= Siegel parabolic sub-
0 0 GL, (kp)

group of G.

Now P = L X U, where L is the Siegel Levi component of P and U is the
unipotent radical of P. Here

t~—1

a O 0 _
L={ 0 A 0 | aeGLn(kE),/lekX,/l/1= 1},
0 0 ‘a

Id, u X .
U= { 0 1 —-"ul|XeM,kg)uecMyky),X +'X+uu= Og.
0 0 Id,

Let V be the vector space corresponding to p. Then the Hecke algebra
FH(K(0), p) is a sub-algebra of F (G, p).

Let p be the representation of P which when inflated to B is given by p and
V is also the vector space corresponding to p. The Hecke algebra (G, p) looks
as follows:

H(G,p) = { £1G— Endo(vV)| /(P8P = Ev(p)f(g)ﬁv(p’)§.

where p,p’ €P,g€G

Now the homomorphism r: K(0) — G extends to a map from
H(K(0), p) to H(G, p) which we again denote by r. Thus

is given by r(¢)(r(x)) = ¢(x) for ¢ € FH(K(0), p) and x € K(0).
Proposition 3.5. The map r : H(K(0),p) — H(G,p) is an algebra isomor-

phism.
Proof. Refer to Proposition 17 in [RSS21] O
Let
0 0 Id, 0 0 Id,
w=r(wy)=r(|] 0 1 0]PD=|]0 1 0 |eC.
Id, 0 0 Id, 0 0

Observe that K(0) 2 B LI Pwy*P and G D P LI Pw,P.
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The induced representation I ndgﬁ is a sum of two irreducible subrepresen-
tations (by general theory). The ratio of the dimensions of these subrepresen-
tations gives a parameter in the Hecke algebra. This is part of Howlett-Lehrer’s
general theory. Kutzko-Morris reworks this key observation. Hence we have
I ndgﬁ = m, @ m,, where 7, 7, are distinct irreducible representations of G

with dimz, > dimz;. Let A = %. By Proposition 3.2 in [KMO06], there exists
immy

a unique ¢ in F(G, p) with support PwP such that ¢> = 1 + (1 —1)¢. By Propo-
sition 3.5, there is a unique element ¢, in F(K(0), p) such that r(¢,) = ¢. Thus
supp(¢o)=PwoP and ¢; = 1 + (1 — 1y. As support of ¢y = Puw,P € K(0) C
G, so ¢, can be extended to G and viewed as an element of H(G, p). Thus ¢,
satisfies the following relation in #((G, p):

qbg =1+ (1 —-1)¢,.

We shall now show that 4 = g". Recall that as p, is an irreducible cuspidal
representation of GL,(kg) X U,(kg), so py = Tg), Where 74 is an irreducible
cuspidal representation of GL,,(kg) and y is a cuspidal representation of U, (kg).
Note that here 6 is a regular charcter of I* where [l kp] = nand kg = Fp so
that [ = Fg2n. Recall that 6% = 649°. Hence, from Proposition 8 in [RSS21] we
have, 689" = 671 .

As G = U(n, n+1)(kg), so the dual group G* is given by G* =~ U(n,n+1)(kg)
(i.e G* = G). Note that 6 corresponds to a semi-simple element s* € L* in G*.
Then by Theorems 8.4.8 and 8.4.9 in [CR92], we have 1 = |cg:(s™)| -

Note that L* = L. So s* corresponds to s in L. Hence, we have 41 = [cg(s)] .

a 0 O
We writes = |0 4 0 e Observe that A1 = 1,1 € ki, a € [F;(m- More
0 0 ‘a

precisely, a is in the image of [Fz;z" under a fixed embedding [F>q<2n < GL,(Fg2).

This embedding arises when we let [ act on the basis of | over kg via multipli-
cation. We can thus embed [ in M,,(kg) and I* in GL,,(kg) which we call the
usual embedding. Note that 6 is regular implies that Fgon = Fga(a). Our goal is
to compute |cg(s)|p-

By Proposition 3.19 in [DFM91], we have Sylow p-subgroups of c;(s) are the
sets of [Fg.-points of the Unipotent radicals of the Borel subgroups of cg(s). By
Proposition 2.2 in [DFM91], we have Borel subgroups of cg(s) are of the form
Bncg(s), where B is a Borel subgroup of G. As Siegel parabolic subgroup P of G
contains a Borel subgroup of G, so cp(s) = PNcg(s) contains a Sylow p-subgroup
of cg(s).

Lemma 3.6. cp(s) = ¢ (s) X cy(s).

Proof. RecallthatP =L X U. HenceLNU=@gand U<LP. AsLNU =@ =
cL(8) N cy(s) = @. Note that cy(s) < (¢ (s) X cy(s)). So it makes sense to talk of
cL(s) X cy(s).
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Let x € P(s) => x € P,sxs~! = x. Note that as x € P so x = lu for some
l € L,u € U. Therefore,

1

slus™ =lu

= sls~lsus™! = lu.

Let sls™! = mand sus™! = n. Nowass € L, so sls™! = m € L. Note that
sus™! = n € Uas U< P. Therefore, we have mn = lu or m~ !l = nu~!. But
m~ 1 e Landnu~! € U,sowe have m™l,nu~! € LNU. Recall thatLNU = e, so
m = I,n = u. Therefore, sls™! = I, sus™! = u. So we have 7 € ¢/ (s),u € cy(s).
Hence, x € ¢ (s) X cy(8). So cp(s) C ¢ (s) X cy(s).

Conversely, let x € ¢ (s) X cy(s). So x = lu where |l € ¢ (s) and u € cy(s).
Hence sls™! = land sus™! = u. Therefore, sxs™ = slus™ = sls~lsus™! = lu =

x. Sox € cp(s). Hence ¢y (s)Xcy(s) C cp(s). Therefore, cp(s) = ¢ (s)Xcy(s). O

From Lemma 3.6, we get |cp(s)l, = [eL(s)lpley(s)|,- Note that
leL($)|p = 1. Therefore, |cp(s)|, = e ()] pleu($)]p = ley(s)]p-

Lemma 3.7. |cy(s)| = |ey(s)l, = g™

Proof. Recall that the elements of U are of form

Id, u X
m=|0 1 —-'u
0 0 Id,

where x € M,(kg), u € M1 (kg), X+'X+u't = 0. If m € cy(s) then ms = sm.
So we have,

a 0 0 Id, u X Id, u X ]J|a 0 0
01 O 0o 1 -uwl=]l0 1 =m||0 4 O
o0 |Lo o Id, 0 0 Id,]J|lo o &'

From the above matrix relation, it follows that cu = Au,aX = X tE_l, Au =
%'w . Recall that X + X +u'si = 0,A1 = 1. Alsorecall thatu € M,,,.;(kg),a €
[F;‘z,l, kg(a) = 1. Asau = Au, soifu # 0 then 1 € kg is an eigen value of a. So 4
isaroot of the minimal polynomial of « over k. But as the minimal polynomial
is irreducible over kg[x], so this is a contradiction. So u = 0.

Sowe have to find X such that X +'X = 0,aX = X'@ . LetE = M, (kp) and

— ty _ty
set 2, = {X € E | 'X = eX}. Note that X € E can be written as =X, )%, SO
E = E‘l @ E—l' . .

Letusset Z(a) = {X € E | aX'a = X}and E.(a) = {X € E, | aX'a = X}.
Thenwe have, E(a) = E;(ax)DE_;(a). Letuschoose y € kg such thaty # 0and

y = —y. Note that, if X € E,(a) then X = ‘X and aX'a = X. So!(yX) = —(yX)
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and a(yX)'a = yX. Therefore, yX € E_;(a). We also have a bijection from

cy(s) — E;(a) given by:
Id, 0 X
0O 1 0 |—X.

0 0 Id,

Hence we have, |cy(s)| = |E1(a)| = |E_;(a)|. Let us now compute |E(x)|.
So we want to find the cardinality of X € E such that aX‘a = X for a fixed
a e [F;‘2n. Let ¢ @ Fgon & M, (Fg2) be the usual embedding take 8 to mg. Let
[qu[x]

f(x) be the minimal polynomial of « over kr = F,2. So we have F 2 = .
q q <f(x)>

Hence, a polynomial p(a) € kg(«) is mapped to p(m,).
|Fq2 [x]
<f(x)>
by ¢,(ax) = ‘ﬁ;l. We must show that ¢, is well-defined. That is, we have to
show that f(‘m, ) = 0. But observe that, f(‘m, ) = ‘f(mzY) = Lf(m?) =
{(f(my))4" = 09" = 0. In the above relations, we have used the fact that 8! =
67" which follows from Proposition 8 in [RSS21]. Therefore, ¢, is well-defined.

Hence we have two different embeddings ¢, and ¢, of [ in M, (g?). Recall
that, we want to compute the cardinality of X € E such that aX‘a = X for a
fixed a € [FZZW. That is, we want to compute the cardinality of X € E such that
X¢y(1) = 1 (D)X for 2 € | = Fay.

Note that, we canmake V = k}’; into a [-module in two different ways. Namely,
for A € l and v € V we have,

Let us consider an another embedding ¢, : Fgon < M, (Fg2) given

AU =¢d(1).v
Axv=¢p,1).v

Let us denote the two [-modules by 1ky and ;kp. So X¢,(1) = (D)X <=
X € Hom(y k3, .k;) & Homy(l,I) = I. Therefore, we have |E(a)| = [Hom; (4 kg,
1l = g*".

Note that |E(a)| = |E1(a)].|E_1(@)]. As|E ()| = |E_1(a)|, we have |E(a)| =
|E_1(@)|* = ¢*". Thus |E_;(a)| = ¢". Therefore, |cy(s)|, = ley(s)| = |E_; ()| =
q". O

From Lemmas 3.7 and 3.6 we have,
A= ley®p = lec®lp-lec(®l, = 1.9" = g".

Recall that ¢, € H(G, p) has support Pw,P and satisfies the relation qb(z) =
A+ (A —1gy. Sowe have ¢ = q" + (¢" — D¢, in F(G, p).

Now we shall now show that there exists ¢, € F(G, p) with support Pw;
satisfying the same relation as ¢,. Letn € U(n, n+1) be such thatywyn™! = w,

and Py~ = P.

2kp)l =
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As 3 C K(0) and wy € K(0), 50 K(0) 2 P I PupP = nK©O)~" 2
7Py~ U nPw,Pn~. But observe that nPn~' = P and

nPwePn~! = Py~ HOwen HHPy ™) = Pw,P

(since nwyn~! = wy). So nK(0)n~! 2 P U Pw,P.

Let ¥’ be homomorphism of groups given by the map ' : 7K(0)p~! — G
such that r'(x) = (n~'xn)modpy, for x € nK(0)n~!. Observe that r’ is a surjec-
tive homomorphism of groups because

'K~ = (7" '9K(0)n~'n)modpg = K(0)modpg = G.
The kernel of group homomorphism is 7K;(0)p~!. Now by the first isomor-
nK@Opt KO ' -1y _
KOy T K0 G. Alsor(mPn™) =
(™ 'nPn~'n)modpy = Pmodpg = P. Let p be representation of P which when
inflated to %P is given by p. The Hecke algebra of nK(0)n~! which we denote by
F(nK(0)n~1, p) is a sub-algebra of F (G, p).

The map r' : nK(0)n~! — G extends to a map from F(nK(0)n~!, p) to
F((G, p) which we gain denote by r’. Thus r' : H(nK(0)n~L, 0) — F(G,p) is
given by r'(¢)(r'(x)) = ¢(x) for ¢ € H(HK(0)n~', p) and x € nK(0)n~".

The proof that r’ is an isomorphism goes in the similar lines as Proposition
3.5. We can observe that r'(w;) = w € G, where w is defined as before in this
section. As we know from our previous discussion in this section, that there
exists a unique ¢ in 7((G, p) with support PwP such that ¢*> = g" + (¢" — 1)¢.
Hence there is a unique element ¢; € FH(nK(0)n~!, o) such that r'(¢;) = ¢.
Thus supp(¢;)=Pw;*P and ¢f = q" + (q" — 1)¢;. Now ¢, can be extended to
G and viewed as an element in (G, p) as Pw;P C nK(O0)n~! C G. Thus ¢,
satisfies the following relation in #((G, p):

phism theorem of groups we have

¢1=q"+ (" - D¢y
Thus we have shown there exists ¢; € F(G, p) with supp(¢;)="Pw;*P satis-
fying ¢7 = ¢" + (q" — )¢ fori = 0, 1.

Lemma 3.8. ¢, and ¢, are units in (G, p).

Proof. As ¢” = ¢q" + (¢" — 1)¢; fori = 0,1. So qMW) = 1 for i=0,1.
Hence ¢, and ¢, are units in H (G, p). O
Lemma 3.9. Let ¢,y € H(G, p) with support of ¢,y being PxP, Py*P respec-

tively. Then supp(¢ * )=supp(¢) C (supp($))(supp(y))="PxPy*P.

Proof. The proof is same as that of Lemma 5 in [RSS21]. O
Let { = wywy, So
¢= o 1 o |
0 0 w;'ld,
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Lemma 3.10. supp(¢, * ¢;) = PP = Pwyw, *P.

Proof. It follows from Lemma 3.9 that supp(¢y * ¢1) C PwyPw,*P. Now let
us recall %y, P, P_.

t7—-1

a 0 O _
By = g 0 4 0 ||aeGL,(Dg)Ae D= 1},
00

a
Id, u X .
S,B_'_ = { 0 1 -'u |X (S Mn(DE),u S Mnxl(DE)ﬂX +'X +ulu= Oz,
0 0 Id,

Id, 0 o0 B
P_ = % -u 1 0 [|XeM,(pp)u€M,uPpp),X +'X+uu= 0}.
X u Id,

It is easy observe that wyB_w;' € P, wePow," = Po, w ' Pw; C P_.
Now we have

PBwoPw P = PwoP_Po*P,w, P
= PwoP_w;  woPow,  wow; w; P w; P
C PP, Powow P_P
= Pwow, P
= PIP.

So PwPw;P C Pwoew; P = PE&P. On the contrary, as 1 € P, so PP =
Pwow,P C PwoPw;P. Hence we have PwPw,PB = Pwow,P = PIP.
Therefore supp(¢y * ¢1) C PwePwP = Pwow;*P = PE&P. This implies
supp(¢o * ¢1) = @ or PIP. But if supp(dy * ¢;) = & then (¢ * ¢1) = 0
which is a contradiction. Thus supp(¢, * ¢;) = P¢P. O

We shall now show that ¢, and ¢, generate the Hecke algebra (G, p). To
this end, recall that (G, p) consists of C-linear combinationsof maps f : G —
Endc(VY) such that f is supported on BxP where x € J5(p) and f(pxp’) =
p'(p)f(x)p¥(p") for p,p" € P. Also note that Fg(p) = P < Po, wp, w; >
B. Observe that as w, normalizes 3, and as 3, being a subgroup of P, so
H(G, p) consists of C-linear combinations of maps f : G — Endc(V") such
that f is supported on LEx*P where x is a word in wy, w; with wé = w% =1Id
and f(pxp") = pY(p)f(x)pV(p') for p,p’ € P. Recall that support of ¢, is
PBw,y*P and support of ¢, is Pw;*P. Also note that from Lemma 3.10, we have
supp(¢y * ¢1) = Pwow,*P. So any f: G —> Endc(VY) such that f is sup-
ported on PxP where x is a word in wy, w; and f(pxp’) = p¥(p)f(x)p¥(p")
for p, p’ € P can be written as word in ¢, and ¢,. Therefore, F((G, p) consists
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of C-linear combinations of words in ¢, and ¢,. Hence, ¢, and ¢, generate
H(G, p). Let us denote the Hecke algebra (G, p) by A. So we have

¢; is supported on Pw;*P
and ¢i(pwip') = p"(P)i (WP ()

A =3(G,p) = ($:: G Bndc(e")
where p,p’ € P, i =0,1

where ¢; satisfies the relation:
¢? =q" +(¢" — 1)¢; fori = 0,1.
As ¢, ¢, are units in algebra A, sop = ¢y¢; is a unit too in A and P! =
¢7'¢;". Now as we have seen before that

supp(pop1) € Pwow P = supp(®) C PP = supp(P) = @ or PLP.

If supp(¥))= @ = ¥ = 0 which is a contradiction as ¥ is a unit in A. So
supp(¥) = PEP. As 9 is a unit in A, we can show as before that supp(y?) =
SB¢2B. Hence by induction on n € N, we can further show that that supp(y")=
SPE™P for n € N.

Now A contains a sub- algebra generated by 1,1~ over C and we denote
this sub-algebra by B. So B = C[, 1] where

_ 1 k 1 Ck,...,CIEC;
B=Cl[),9 ]—{CkEb +oe o) k<l;k,lez}'

Proposition 3.11. The unique algebra homomorphism C[x,x~'] — B given
by x — % is an isomorphism. So B ~ C[x, x!].

Proof. The proof is same as that of Proposition 18 in [RSS21]. O

3.6.2. Ramified case: In this section we determine the structure of H (G, p)
for the ramified case when n is even. Recall Sg(p) = PNg(0p)B. But from
lemma 3.4, Ng(og) = (o, wo, w1). S0 I () = P (Po, wo, w1) P = B (wo, wy)*B,
as B, is a subgroup of *B. Let V be the vector space corresponding to p. Let us
recall that H(G, p) consists of maps f : G — Endc(V") such that support of

[ is compact and f(pgp') = p¥(p)f(g)p"(p") for p,p" € P,g € G. In fact
H (G, p) consists of C-linear combinations of maps f : G — Endc(VY) such

that f is supported on Px*P where x € J;(p) and f(pxp’) = p¥(p)f(x)p¥(p")
for p, p’ € *B. We shall now show there exists ¢, € F(G, p) with support
PwoP and satisfies ¢2 = g/ + (q"/? — 1)¢,. Let

K(0) =U(n,n+ 1) N GLy,41(Op) ={g € GLyp11(Op) | 87g =T},
K;(0) ={g € Idy41 + WMy, 11 (Op) | gJg =T},
G ={g € GLyy1(kg) | gTg = J}.

The map r from K(0) to G given by r : K(0) M G is a surjective group
homomorphism with kernel K;(0). So by the first isomorphism theorem of
groups we have:

K©)
K0 —
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[GLn(kE) Mnxl(kE) Mn(kE) ]

r(p) =P = 0 Uy(kg) Mxn(kg) | () G= Siegel parabolic sub-
0 0 GL, (kg)

group of G.

Now P = L X U, where L is the Siegel Levi component of P and U is the
unipotent radical of P. Here

a 0 O _
ng 0 2 01 |aeGLn(kE),/leEX,/1/1=1},
0 0 '‘a

Id, u X .
U= { 0 1 —ta I X € Mn(kE),u S Mnxl(kE)’X + tX + uta = 0%
0 0 Id,

If V be the vector space corresponding to p, the Hecke algebra (K (0), p) is
a sub-algebra of (G, p). Let p be the representation of P which when inflated
to *B is given by p and V' is also the vector space corresponding to p. Recall the
Hecke algebra #((G, p) has the same structure as was defined earlier in section
3.6.1 for the unramified case.

Now the homomorphism r : K(0) — G extends to a map from FH(K(0), p) to
H (G, p) which we again denote by r. Thusr : FH(K(0), p) — H(G, p) is given
by

r(@)(r(x)) = (x)
for ¢ € FH(K(0), p) and x € K(0).

As in the unramified case, when n is odd, we can show that (K (0), p) is
isomorphic to F((G, p) as algebras via r.

0 0 Id, 0 0 Id,
Letw = r(wy) = r([ 0 1 0 ‘) = [ 0 1 0 ] € G. Clearly K(0) 2
Id, 0 0 Id, 0 0
B U *Pwy*P and G 2 P LI PwP.
Now G is a finite group. In fact, it is the special orthogonal group consisting
of matrices of size (2n+1)X(2n+1) over finite field kg or Fy. S0 G = SOy,11(Fy).
According to the Theorem 6.3 in [KMO6], there exists a unique ¢ in #((G, p)
with support PwP such that ¢> = g"/? + (q"/? — 1)¢. Hence there is a unique
element ¢, € H(K(0),p) such that r(¢y) = ¢. Thus supp(¢y)="Pwy’P and
¢r = q"? + (¢"/* — 1)¢p. Now ¢, can be extended to G and viewed as an
element in H(G, p) as PwyP C K(0) C G. Thus ¢, satisfies the following
relation in F((G, p):

¢g = 4" +(@"* = Dy
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We shall now show there exists ¢; € H (G, p) with support Pw,*P satisfying

the same relation as ¢,.
0 0 Wpld,| _,
Recall that w; = 0 1 0 ,Wp =-wg'. S0
0 0 -w.'ld,
w,=| 0 1 0

0 0 -Id,
.Letn € U(n,n + 1) besuch thatyw;np'=J'=| 0 1 0 |and
Id, 0 0

GLn(DE) Mnxl(DE) Mn(DE)
Miy(Pp)  Ui(0p)  Mpyuu(Op)
Mn(pE) Mnxl(pE) GLn(DE)
GLn(DE) Mnxl(pE) Mn(pE)
Miy(Op)  Ui(Op) My, (Pr)
M,(0p)  Mpa(Op)  GL(Op)

n nt=

Recall that *P3 looks as follows:

GLn(DE) Mnxl(DE) Mn(DE)
P =[MixnPr) Ui(Op) My, (D) |NG.
Mn(pE) Mnxl(pE) GLn(DE)
Note that
nGn~! =1{g € GLyu(E) ' g/'g = '}
Hence
GLn(DE) Mnxl(pE) Mn(pE)
Pyt = | Mpn(Op)  Ui(0p)  Miy(pe) |Gy~
M,(Op) Mpa(Op) GL,(Op)

Therefore 7Py~ is the opposite of the Siegel Parahoric subgroup of nGn~!.

Let
K'(0) = (P, wy).

And let
G' ={g € GLy1(kp) | 'gl'g =T}

=1{g € GLyy(kg) | 'g'g =J'}
Letr’' : K'(0) — G’ be the group homomorphism given by
r'(x) = (nxn~Y)modpp where x € K'(0).
So we have r'(K(0)) = (nK'(0)n~YYmodpg = (9(*B, w; )~ )modpg. Let

¥ (B) = (3B~ modpy =P .
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We can see that

0 0 -Id,
r'(wy) = qwynYmodpy = 'modpy=w'=| 0 1 0 |[.
d, 0 o0

So
GL,(kg) 0

, 0
P =r'(B) = By~ HHmodpy = \Mlxn(kE) Us(kg) 0 ] ﬂ G
Mn(kE) Mnxl(kE) GLn(kE)

-/

Clearly P is the opposite of Siegel parabolic subgroup of G’. So r'(K’(0)) =
—/ —/ —/
(P,w’y = G/, as P is a maximal subgroup of G’ and w’ does not lie in P . So »’
is a surjective homomorphism of groups.

Let V be the vector space corresponding to p. Note that the Hecke algebra
FH(K'(0), p) is a sub-algebra of #(G, p).

—/

Let EI be the representation of P which when inflated to 7*J3 is given by "p

and V is also the vector space corresponding to E’. Note that the Hecke algebra

H(G, E’) has a similar structure as that of H (G, p) which was defined earlier.
Now the homomorphism r’ : K’(0) — G’ extends to a map

r' 1 HK'(0),0) > H(G,P).
where ' : H(K'(0),p) — }C(G’,E’) is given by:

r'(@)(r'(x)) = $(x)
for ¢ € H(K'(0), p)and x € K'(0).
As in the unramified case when n is odd, we can show that F(K’(0), p) is
isomorphic to H(G/, 5’) as algebras via r’.
-/ -/ -/
Clearly, K’(0) 2 PUPw,;Pand G’ D P LUP w'P.
Now G’ is a finite group over the field K or F,. Note that G" = Sp,,(kg).
According to the Theorem 6.3 in [KMO06], there exists a unique ¢ in F (G’ ,E’)
-/ —/
with support P w’P such that ¢? = ¢"/2 + (¢"/? — 1)¢. Hence there is a unique
element ¢, € F(K'(0), o) such that r'(¢;) = ¢. Thus supp(¢;)=Pw;P and
¢ = q"/? + (¢"/* — 1)¢,. Now ¢, can be extended to G and viewed as an

element in #((G, p) as Pw,;*p C K’(0) C G. Thus ¢, satisfies the following
relation in #((G, p):

¢1 = q"* +(¢"* = )¢y
Thus we have shown there exists ¢; € F((G, p) with supp(¢;)=PBw;*P sat-
isfying ¢7 = ¢"/? + (¢"/* — 1)¢; for i = 0,1. It can be further shown as in



1126 SUBHA SANDEEP REPAKA

the unramified case that ¢, and ¢, generate the Hecke algebra (G, p). Let us
denote the Hecke algebra F(G, p) by A. So
¢; is supported on Pw;’P
A=3(G.p)= (41 G — Endc(e¥) | and ¢i(pwip') = p"(p)i(wi)e (1))
where p,p’ € B,i=0,1
where ¢; has support Pw;*P and ¢; satisfies the relation:
¢2 = q"? + (q"/* — )¢, fori = 0, 1.

Lemma 3.12. ¢, and ¢, are units in A.

+(1—g"/?

Proof. As¢? = q"/?+(q"/>—1)¢; fori =0,1. So ¢i(L/qz)1) = 1 fori=0,1.
qu

Hence ¢, and ¢, are units in A. U

As ¢, ¢, are units in A which is an algebra, so ) = ¢,¢; is a unit too in A
andy~! = ¢ 1¢g . Asin the unramified case when n is odd, we can show that
A contains sub-algebra B = C[, 9] where

_ 1 k 1 Ck,...,CIEC;
B =Cly,p ]—{Ck%b +te oy k<l;k,leZ}'
Further, as in the unramified case when n is odd, we can show that C[, 1] ~
C[x, x!] as C-algebras.

4. Final calculations to answer the question

4.1. Structure of 7(L, py). Inthissection we describe the structure of F(L, o).
Thus we need first to determine

Ni(po) ={m € N(Po) | pg’ = po}-

We know from lemma 3.2 that Ng;, 5)(Ko) = KoZ, so we have N (By) =
Z(L)*B,. Since Z(L) clearly normalizes p, and p, is an irreducible cuspidal rep-
resentation of By, so N1.(09) = Z(L)Bo = [ 1, BoS"-

Define a € H (L, py) by supp(a) = B, and a({) = 1yv. We can show that
a"(¢") = (@) for n € Z and supp(a”) = Pol" Py = Pol" = ¢"Py for
n € Z. Further we can show that 7((L, p,) = Cla,a™!]. For details refer to
section 7 in [RSS21].

Proposition 4.1. The unique algebra homomorphism C[x,x '] — Cla,a™!]
given by x — « is an isomorphism. So Cla,a™ 1] ~ C[x, x7!].

We have already shown before in sections 6.1 and 6.2 that B = C[¥,)]isa
sub-algebra of A = #((G, p), where 1 is supported on PP and B = C[x, x71].
As H(L,py) = Cla,a™] = C[x,x!], so B = F(L, p,) as C-algebras. Hence
H(L, py) can be viewed as a sub-algebra of 7((G, p).

Now we would like to find out how simple #((L, p,)-modules look like. Thus
to understand them we need to find out how simple C[x, x~!]-modules look
like.
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4.2. Calculation of simple H(L,py)-modules.Recall that F(L,p,) =
Cla,a™']. Note that Cla,a™!] = C[x,x~!] as C-algebras. It can be shown
by direct calculation that the simple C[x, x~!]-modules are of the form C, for
A € CX, where C, is the vector space C with the C[x, x~!]-module structure
givenby x.z = Az forz € C,.

So the distinct simple F (L, py)-modules(up to isomorphism) are the various
C, for A € C*. The module structure is determined by a.z = 1z for z € C;.

4.3. Calculation of §p($). Let us recall the modulus character
5P . P -_— Rzo
introduced in section 1. The character Jp is given by

0p(p) = ||det(Ad p)lpieullr

for p € P, where Lie U is the Lie algebra of U. We have

Id, u X .
U= { 0 1 -ul|XeM(E),ueM, E),X+ X+uu= 0},
0 0 Id,

0 u X
LieU = { [0 0 _%‘ | X e M,(E),u € M,;,(E), X +X = 0}.
00

0
4.3.1. Unramified case: Recall{ = 0 1 0 in the unramified
0 0 w;'ld,

case. So

Id, u X Id, u X Id, wpu wpX
Ado)l o 1 “ul=¢l o 1 “wfet=|o0 1 —wglul.
0 0 Id, 0 0 Id, o o0 Id,

Hence

6p($) = ||det(Ad OlricvllF

2n+2n?

=[-w; "l
2
=l - I
—2n—2n2_

=4q
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4.3.2. Ramified case: Recall { = 0 1 0 in the ramified
0 0 -w,'Id,

case. So

Id, u X Id, u X Id, wgu -wpX
AdoHl o 1 “fuf=¢lo 1 “fufet=|o0 1 wg'u|.

0 0 Id, 0 0 Id, 0 0 Id,
Hence

6p($) = ||det(Ad OlricvllF

2
= lw """ |l

n+n? ”

= [lwp

— q—n—nz.
4.4. Calculation of (¢, * ¢;)({). In this section we calculate (¢, * ¢;)(<).
Let g; = g~"/3¢, fori = 0,1 in the unramified case and g; = g~"/*¢, fori = 0,1
in the ramified case. Determining (¢, * ¢;)({) would be useful in showing
go * g1 = Tp(a) in both ramified and unramified cases. From now on, we
assume without loss of generality that vol*}; = vol*_ = vol’B, = 1. Thus we
have vol*3 = 1.

Forr € Z let,

Id, 0
K_,,={ —y 1
u

0
0 | 1X €My}, u € Mpsr (P}), X + X + ulu = 0},
X Id,

Id, u X .
K,,= { 0 1 —u||XeM,O),ueM®p,X+'X+u'u= 0}.
0 0 Id,

Proposition 4.2. (¢, * $1)($) = ¢o(wo)1 (wy).

Proof. From Lemma 3.10, supp(¢, * ¢1) = PP = Pwyw,*P. So now let us
consider

(@0 * $1)($) = (¢o * ¢1)(wow,)
= f b0 (y~1¢)dy
G

= f Go(P1(y~1)dy.
Pw, P

We know that Pw,P = ‘BH‘B/%BZZB' Lety = zp € z*B3. So we have
zePw

P01 = $o(zp)g1(p~'271E)



ON REDUCIBILITY OF INDUCED REPRESENTATIONS 1129

= ¢o(2)p"(P)p (P~ 1 (z71¢)
= ¢o(2)1(z710).
Hence

@ox )= D) ¢ OVOIB = D ¢(2)$1(z )
z€Pw,P/P z€Pw,P/P

Leta: P/woPw;' NP — Pw,P/P be the map given by a(x(wePw, ' N
PB)) = xwyP where x € P. We can observe that the map « is bijective. So

PB/wePw, ! NP is in bijection with Pw,P/P.

Hence
(P @)= D olxwe)di(wy'x71).
x€P/woPwy NP

From Iwahori factorization of  we have B = P_Py*P, = K_1PyK, . There-
fore wePuwy' =0 P =0 KB K o = Kp1PoK_o. S0 Po N wePuwy' =
PP =K, 1PoK_;. Letp: ’,]B/wof,Bwal NP — K, /K, be the map
given by B(x((PN“*P)) = x, K, ; where x € Pand x = x, px_,x; € P,,p €
Po,x_ € P_. We can observe that the map S is bijective. So
P/woPw, ' NP is in bijection with K, o/K . ;.

Therefore

Gox )= D, Golxrwe)dy(wy x;')

x4 €Ky 0/Kya

= 2 PV G)gowop(wy X 1).

x4 €Ky 0/Kya

As pV is trivial on *P, and x, € ., so we have

(¢ * $1)() = )y ¢0(w0)¢1(w51x;1§’).
x4 €Ky o0/Kyn
The terms in above summation which do not vanish are the ones for which
wy'x'¢ € PuP = x7' € wPw P! = x, € Pw'Puw;! =
wy ' x,wy € wiPw; P, Itisclear wy Pw, P = (“1P)(P). As“1P = leL_Ujl o' Kyo=
K_»%BoK, 1,80

wl‘Bwl‘l‘B = (“P)B) = K_,PoK 1 —1PoK_ 1
o xwy € K_,PoK 1 PoK_ ; which implies that w ' x., wy
= k_pok,k. where k_ € K_,,k, € K, _1,k_ € K_;,p, € P,. Hence we
have pok; = kZ'wj'x,wok~'. Now as wj'x,wy € K_o,k=! € K_,,k ! €
K_;, 50 kZ'wilx wok ™! € K_g and pok; € PoK, ;. But we know that
K oNPoKy 1 =1= poky, =1 = wy'x,wy =k k. e K_; = x, €

woK_ 1wy ! = K,,. Asx,; € K, 1, so only the trivial coset contributes to the

above summation. Hence

(@0 * $)(&) = po(wo)s (w5 ') = Po(wo)s (wy)-

Hence we have w
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4.5. Relation between g, g; and Tp(cx).

4.5.1. Unramified case: Recall that H(G, p) = (¢,, $;) Where ¢, is supported
on Pwy*P and ¢, is supported on Pw; P respectively with ¢l.2 =q"+(q"—1)¢;
for i = 0,1. In this section we show that g, * g; = Tp(), where g; = q~"/2¢;
fori=0,1.

Proposition 4.3. g,g, = Tp(x).

Proof. Let us choose ; € H(G,p) fori = 0,1 such that supp(y;) = Pw;*P
fori = 0,1. So ¢; is a scalar multiple of 3); fori = 0,1. Hence ¢; = 1;3;
where 4; € C* fori = 0,1. Let ;(w;) = A € Homgpnusp(Y1p0",p¥) fori = 0,1
and W be the space of p. So A®> = 1y,v. From Propostion 4.2, we have (3, *
1)(&) = Po(we)h; (wy) = A% = 1yv. Now let 3; satisfies the quadratic relation
given by %> = ay; + b where a,b € Rfori = 0,1. As¢? = ah + b =
(=9)? = (—a)(=;) + b, so a can be arranged such that a > 0. We can see that
1 € H(G, p) is defined as below:

1(x) = {0’ e
pV(x) ifxeP.

Let us consider 1pl.2(1) = /s (), (y~Hdy fori = 0,1. Now let y = pw;p’
where p, p’ € P fori =0, 1. So we have

P2(1) = ¥i(pw;p")i(p "tw pHd(pw;p")
Pw;P

= f PV (p)i(w)e" (p)eY (P Hi(w eV (p~Hd(pw;p’)
Pw;’P
_ / PP wIP WD (p)d(pwip)
Pw;’P
_ f P (P (Wi w)e” (pVd(pwip’)
Pw;’P
= f pV(p)A%pY(p~Hd(pw;p’)
‘Bw,-’l?

=f A%p¥(p)pY¥(p~Hd(pw;p")
Pw;P

= A*vol(Pw;P)
= 1yvvol(Pw;*P).

So (1) = 1yvol(Puw;P) for i = 0,1. We already know that 3 = ay; + b
where a,b € R and for i = 0,1. Now evaluating the expression z,bl.z =ay;, +b
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at 1, we have z,bl.z(l) = ay;(1) + b1(1). We can see that 1;(1) = 0 as support of
Y; is Pw;*P for i = 0,1. We have seen before that gbiz(l) = 1y vol(Pw;*P) for
i=01andasl € P,1(1) = pY(1) = Iyv. So P>(1) = ay;(1) + b1(1) =
1yvvol(Pw;*P) = 1yvb for i = 0,1. Comparing coefficients of 1y on both
sides of the equation 1y vol(®Pw;*P) = 1yvb fori = 0,1 we get

b = vol(*Pw;*P).

As ¢; = A;; fori = 0,1, hence ¢7 = 279> = AX(ay; + b) = (Lha)A;) +
A2b = (La)g; + A2b for i = 0,1. But ¢? = (¢" — 1)¢; + q" fori = 0,1. So
¢? = (La)g; + A’b = (¢" — D¢; + q" for i = 0,1. As ¢; and 1 are linearly
independent, hence 1;a = (g" — 1) fori = 0, 1. Therefore 4; = ? fori =0,1.
Asa>0,a eR,s04; >0,4; € Rfori =0,1. Similarly, as ¢; and 1 are linearly
independent, hence A°b = ¢" = 17 = % fori =0,1.

Now Pw;P = 1 xwP = vol(Pw;P) = [Pw;P : PJvolP =

xeP/Pn 1P
[BwP : Pl =[P : P ¥ P]fori = 0,1. Hence b = vo}g‘,Bwi‘,B) =/2[‘,B :
) . 2 _ 92 _ 9" _ _ g9t _ q"
PPl fori =0,1. Nowas A = 4] = g =4 = V7 = PR

Therefore

Pop1 = (Aoo)(A1%1)
= /13%@01
q" o1
[B : P nwo Pl
We have seen before that, P = K_;BoK, o and PN P = K_*PoK, ;. So

Ko
(B B p] = 1)

= {X € M, (kg),u € My (kg) | X +' X + u'u = 0}

(n)(n—-1)

=(g*")(q) -

= (*)(g"™)

— qn2+n.

Hence
_ _4"@ep))
Gob©) = o

_ G
- qn2+n

= q_nzlwv.
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Recall g; = q~"/?¢; for i = 0,1. We know that ¢ = (¢" — 1)¢; + ¢" for
i=0,1. Sofori = 0,1 we have

g =q7"¢;
=q (" — D¢ +q")
=(1-qg"¢+1

=(1-g g g +1
=(@"?—q " Pg + 1.
So gog1 = (q~"/*¢1)(q™"/*¢,) = "¢, ¢, implies that
(8081)($) = ¢7"($192)() = q‘"q‘”zlwv = q_"z‘”lwv.

From the earlier discussion in this section we have Tp(a)({) = 5113/ z(g” My

From section 4.3, we have §p(¢) = g~2"~2". Hence 5}1,/2@') = q~""~". There-

fore (g81)(¢) = Tp(@)(§). So (gg)() = Tp(@)¢). We have
supp(Tp(a)) = °‘P&P. As supp(g)) = Pw;P, Lemma 3.10 then gives
supp(gog1) = P¢*P. Therefore gog, = Tp(a). O

4.5.2. Ramified case: We know that H(G,p) = (¢o,$;) Where ¢, is sup-
ported on PwyP and ¢, is supported on Pw; P respectively with ¢12 =q"? 4+
(q"/? — 1)¢; for i = 0,1. In this section we show that g, * g; = Tp(a), where
g =q "*; fori=0,1.

Proposition 4.4. g,g, = Tp(x).

Proof. Let us choose ; € H(G,p) fori = 0,1 such that supp(y;) = Pw;*P
fori = 0,1. So ¢; is a scalar multiple of 3; fori = 0,1. Hence ¢; = 1;3;
where 4; € C* fori = 0,1. Let ¢;(w;) = A; € Homgpusp(Y1pY,0") fori =
0,1 and W be the space of p. So Al.2 = 1y fori = 0,1. From section 5.1 on
page 24 in [KMO06], we can say that A; = A;. From Proposition 4.2, we have
(o * 1)) = Po(w)hy(wy) = AgA; = A = 1yv. Now let ¢, satisfies the
quadratic relation given by z,bl.z = a;9; + b; where a;,b; € Rfori = 0,1. As
zpl.z = a;¥; + by = (—9;)? = (=a;)(—¥;) + b;, so a; can be arranged such that
a; > 0fori =0,1. We can see that 1 € F(G, p) is defined as below:

0, if x & B;
pV(x) ifxeP.

Let us consider ng(l) = S5 0oo(y 1dy. Now let y = pwyp’ where
p,p’ € *B. So we have

1(x) = {

91 = f Bo(pwor Wo(p'~ w3 p~H)d(pwop')
Pw,P
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) fzn P PV (PXo(wolp (PR (p ™ o(wy e (p~"d(pwop”)
- [m PO P o)
- fm P PR @0R (i purp)
- f p¥(P)AzeY(p~Hd(pwop’)
Pw, P

=f Ap" (p)p" (P~ Hd(pwop”)
Puw,P

= A2vol(PuyP)
= lyvvol(Pwy*P).

So gbg(l) = 1yvvol(PwyP). We already know that z,bg = agyy + by where
ag, by € R. Now evaluating the expression 3} = agihy+bg at 1, we have p3(1) =
ayPo(1) + by1(1). We can see that 1,(1) = 0 as support of P, is Pw,P. We have
seen before that zl)g(l) = lyvvol(PwyP) and as 1 € P, 1(1) = p¥(1) = 1yv. So

l;bé(l) = ao;(1) + by1(1) = 1yvvol(Pwy*P) = Ly by.
Comparing coefficients of 1y,v on both sides of the equation
Lyvbg = 1yvvol(PwoP),
we get by = vol((PBwy*P).

As ¢O = /10@00, hence ¢(2) = A(Z)lpg = /‘l(z)(aolpo + bo) = (Aoao)(iolpo) + /‘l(z)bo =
(Aoao)%"‘l(z)bo- But ¢§ = (q"?=1D¢o+q"/%. So ¢(2) = (Aoao)do +/13b0 = (q"/?*-
1)¢o + q"/%. As ¢, and 1 are linearly independent, hence 1ya, = (¢"/? — 1).

qn/z_l
Therefore 4, =

.Asay > 0,05 € R,s01; > 0,1; € R. Similarly, as ¢,
Qo

n/2

and 1 are linearly independent, hence A2b = q? = A= qb )

Now PwyP = A Xwe = vol(Pw*P) = [‘,Bw(;)‘,B : PBlvolP =

x€P/Pn*roP
[Bwy’B : BJ = [*B : P no /‘;B]- Hencembo = vol(PBwyP) = [*B : P n® PJ.
2 _ 9" R
Now as /10 = = A 72 P

0
We have seen before that, P = K_ ;"BoK, o and PN P = K_ 1 PoK, ;. So

K
[ Pt Pl = I

= |{X € M, (kg),u € My (kp) | X +' X + u'u = 0}
(n)(n—1)

=(q@"Qq 2 )
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n“+n

I
Q
[ 8]

So

qn/4 qn/4

A’O = = 5] .
[B:Propp/z e

Let us consider gbf(l) = J; 1Y, (y~Hdy. Now let y = pw;p’ where
p,p’ € *B. So we have

$2(1) = f By (pwy Yy (p ~ wT p V) (pwy p')

Pw; P

= f PV (P (w)p"(P"pY (P iy (wi eV (p~H)d(pw, p')
Pw; P

= f p¥ (p)y (W), (w;HeY(p~Hd(pw, p’)
Pw; P

= f eV (p)P (WP, (—wy)pe¥(p~Hd(pw; p)
Pw, P

- f (P (WP (= (w)p¥ (V) (pwy )
Pw; P

=p'(-D f AtpY(p)p¥(p~Hd(pw:p")
Pw, P

= pY(—=1DA}vol(Pw;P)
= p(=D1yvvol(Pw, P).

So 92(1) = 1yvvol(Pw,*P). We already know that 1> = a;3; + b; where
a;, b, € R. Now evaluating the expression 1,bf = a9, +b; at 1, we have z,bf(l) =
a;¥,(1) +b;1(1). We can see that 1;(1) = 0 as support of ¢, is Pw;P. We have
seen before that 17(1) = 1yvvol(Pw,;P) and as 1 € P, 1(1) = p¥(1) = 1yv. So

1) = ar9;(1) + by 1(1) = p"(=Dlyvvol(Pw;P) = lyvb;.

Comparing coefficients of 1yv on both sides of the equation
Lyvby = 1yvpY(=1)vol(Pw, P),

we get by = pY(—1)vol(Pw,*P).

As ¢; = 419, hence 4’% = Afﬁbf = /1%(6111/’1 + by) = (haph¥y) + lfbl =
(Aoa1)¢1 ‘Hlfbl- But ¢f = (q"?—=1)¢, +q"/%. So ¢f = (ha)é: +/1%b1 = (q"/*-
1)¢; + g"/2. As ¢; and 1 are linearly independent, hence A,a; = (g"/? — 1).
Therefore 4; = qn/z_l. Asa; > 0,a; € R,s04; > 0,4; € R. Similarly, as ¢;

a

and 1 are linearly independent, hence Afb =q? = /lf =

qn/z
by
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Now Pw,;P = LI xwP = vol(Pw;P) = [Pw,P : PlvolP =

xeP/Pn1P
[Pw*B : Pl = [P : P /‘;B]- Hen06/4b1 = vol(Pw,P) = [P : P 1 P].
2 47 49"
Now as 4] = b =1, = 7 T PRI

We have seen before that p = K_ *BoK, 0, P = K_,PoK,; 1. So P ™
B =K_,PoK, . Hence

K.,
B : B 0 B = |

= [{X € M, (kp),u € My (kp) | X = X — u'u = 0}]

n%+n

—q 2.
So

qn/4 qn/4
M= e '
g (D)

Hence

(¢0®1)() = (AoPo)(A1%1)(£)

= (Ao1)(@o¥1)($)
n/4 n/4
= qn2+n n2+n 1 1VW
g+ g+ (p(=1)2
- ﬂ
(p(=1)M/2

As —1 € Z(*P) and p" is a representation of B, so p¥(—1) = w,v(—1) where
w,v is the central character of PB. Now 1 = w,v(1) = (CUpv(—l))z, so p¥(-1) =

n/2_1
w,v(—1) = £1. We have seen before that 4, = 1 and a; € R,a; > 0, so
a
qn/4 (]1"/4

A; > 0. Butwe know that 1, = ,hence p¥(-1) = 1.

. w - n2 n
BRBAERIVE S ey

Recall g; = ¢~"/*¢; for i = 0,1. We know that ¢? = (¢"/? — 1)¢; + q"/? for
i=0,1. Sofori = 0,1 we have

g =q7"¢;
=g "((¢"* - D)¢; + ¢"/?)
=(1—q ") +1
=1 —-q)qV4g +1
= (qV*—q g + 1.
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So gog1 = q~"?¢1¢,, which implies that

1Y —n2_n
(008 = Q) = g = Ty

From the earlier discussion in this section we have Tp(a)({) = 5113/ 2(§ Myv.

—n“—n

From Section 4.3, we have 8p({) = q‘”z‘”. Hence 6113/2@ )=gq 2 . Therefore

(8og)() = Tp(a)Q), (gg)&) = Tp(a@)(), and supp(Tp(a))
= PLP. As supp(g;) = Pw;*P, Lemma 3.10 gives supp(gog;) = P¢*P. There-
fore gog, = Tp(a). O

4.6. Calculation of m;(7v). Recall that 7 = Ay where 1 is an irreducible
supercuspidal depth zero representation of GL,,(E) and y is a supercuspidal
depthzero character of U;(E). Note that v lies in RIL7l.(L). Recall m is an
equivalence of categories. As 7v is an irreducible representation of L, it follows
that my (7v) is a simple # (L, py)-module. In this section, we identify the simple
FH (L, py)-module corresponding to m; (rv). Calculating m; (7v) will be useful
in answering the question in next section.
From Section 2.5, we know that 7 = c-I nd% 0o, Where
0

Po = ()Bo, Lo(§* 1) = po())

for j € Py, k € Z. Let us recall that v is unramified character of L from section
1. Let V be space of 7v and W be space of p,. Recall m;(7v) = Homg (09, 77v).
Let f € Homg (09, 7v). As B, is a compact open subgroup of L and v is an
unramified character of L, so v(j) = 1 for j € B,. We already know that
a € H(L, py) with support of a being *By¢ and a({) = 1yv. Letw € W and we
have seen in section 2.4 that the way J((L, p,) acts on Homg (00, 7rv) is given
by:

(a.f)w) = f (@)D f (¥ (" Hw)dl
L

= / (@v)(Df (D) w)dl
L

= | @)(POf((apd))’w)dp
Bo

= | @) (e (P)a($))w)dp
Po

= | @)@ f ey (P)lwv) w)dp
Po

- / )P f (o) (p) w)dp

0
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_ f (PO (oY (p) w)dp

0

_ f (V) (Y (p))" w)dp.

0

Now (,): W x WY — C is given by: (w, oy (p)w") = (po(p~Hw, w") for
p € By, w € W. So we have (,o0 (p))Y = po(p_l) for p € *B,. Hence

(@.f)w) = f (PO (po(pw)dp.

0

As f € Homg, (0o, 7v), 50 (Tv)(p)f (W) = f(po(p)w) for p € Po,w € W.
Hence

(@ )W) = 9(O) f 7 (p0)(ev)(p~1)f (w)dp

(1]

—vQ) | 2R () fw)dp
Bo

=v() | 7(p$Ha(p™)f(w)dp.
%Bo

Now as 77 = c- I”d Po and s~Bo = ($)Bo, Po(¢*j) = po(j) for j € Po.k € Z,
so m(p$) = ”(P)Po(g) = m(p)po(1) = m(p)lyv. Therefore

(@.fHw)=v¢) | =(p)a(p™)f(w)dp
PBo

= v(§)f(w)Vol(*Po)
= v(§)f(w)

So (a.f)(w) = v(&)f(w) forw € W. So a acts on f by multiplication by
V(). Recall for A € C*, we write C; for the F((L, py)-module with underlying
abelian group C such that a.z = Az for z € C,. Therefore m; (7v) = C, ).

5. Proof of Theorem 1.1
Recall the following commutative diagram which we have described earlier.

G

RILT6(G) —<s F(G, p) — Mod
LgT (TP)*T (CD)

R (L)~ (L, py) — Mod
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Recall that in the unramified case when n is even or in the ramified case
when n is odd we have Ng(pg) = Z(L)'By. Thus Sg(p) = PEZIL)Py)P =
BZ(L)B.

From Corollary 6.5 in [KP98] it follows that if F5(p) C *BL®PB then

TP . ‘(}((Lap()) I %(Ga P)

is an isomorphism of C-algebras. As we have S;(p) = *BZ(L)P in the unram-
ified case when n is even or in the ramified case when n is odd, so F((L, p,)
=~ H(G, p) as C-algebras. So from the commutative diagram (CD), we can con-
clude that Lg(m/) is irreducible for any unramified character v of L.

Recall that 77v lies in RIL7l(L). Note that from the above commutative di-
agram, it follows that tg(m/) lies in R1E-7l6(G) and mG(tg(m/)) is an F(G, p)-
module. Recall m;(7v) = C, ¢y as H(L, pp)-modules. From the commutative
diagram (CD), we have

mg(i§ (7v)) = (Tp).(Cyey)
as J((G, p)-modules. Thus to determine the unramified characters v for which
tg (7v)isirreducible, we have to understand when (T'p)..(C, ¢)) is a simple H(G, p)-
module.

Using notation on page 438 in [KM09], we have y; = y, = ¢"/? for un-
ramified case when 7 is odd and y; = y, = g"/* for ramified case when n is
even. As in Proposition 1.6 of [KM09], let T = {y,y,, =y17; ", —v{ 72 172) ™'}
So by Proposition 1.6 in [KM09], (T)..(C,)) is a simple F((G, p)-module <
() ¢ T. Recall 7 = c—Indé(Lmoﬁo where gy(¢%j) = po(j) for j € Py, k € Z
and p, = 14 for some regular character 6 of I* with [l : kg] = n. Hence we
can conclude that Lg(m/) is irreducible for the unramified case when n is odd
= v ¢{q" q", -1}, 04" = 6=¢ and Lg(m/) is irreducible for the ramified

n/2

case when n is even < v(¢) ¢ {q"/2,q7"/2,-1}, 677" = 6~1. That proves

Theorem 1.1.
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