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On reducibility of induced representations
of odd unitary groups: the depth zero case

Subha Sandeep Repaka

Abstract. We study a problem concerning parabolic induction in certain
𝑝-adic unitary groups. More precisely, for 𝐸∕𝐹 a quadratic extension of 𝑝-
adic fields the associated unitary group 𝐺 = U(𝑛, 𝑛 + 1) contains a parabolic
subgroup 𝑃 with Levi component 𝐿 isomorphic to GL𝑛(𝐸) × U1(𝐸). Let 𝜋 be
an irreducible supercuspidal representation of 𝐿 of depth zero. We use Hecke
algebramethods to determinewhen the parabolically induced representation
𝜄𝐺𝑃𝜋 is reducible.
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1. Introduction
Let 𝐺 = U(𝑛, 𝑛 + 1) be the odd unitary group over non-Archimedean local

field 𝐸 and 𝜋 is an irreducible supercuspidal depth zero representation of the
Siegel Levi component 𝐿 ≅ GL𝑛(𝐸) × U1(𝐸) of the Siegel parabolic subgroup
𝑃 of 𝐺. The terms 𝑃, 𝐿, 𝜋,U(𝑛, 𝑛 + 1) are described in much detail later in the
paper. We use Hecke algebra methods to determine when the parabolically
induced representation 𝜄𝐺𝑃𝜋 is reducible. Harish-Chandra tells us to look not at
an individual 𝜄𝐺𝑃𝜋 but at the family 𝜄𝐺𝑃 (𝜋𝜈) as 𝜈 varies through the unramfied
characters of 𝐿 ≅ GL𝑛(𝐸) × U1(𝐸). The unramified characters of 𝐿 and the
functor 𝜄𝐺𝑃 are also described in greater detail later in the paper.
Before going any further, let us describe how the groupU(𝑛, 𝑛+1) over non-

Archimedean local fields looks like. Let 𝐸∕𝐹 be a quadratic Galois extension
of non-Archimedean local fields where char 𝐹 ≠ 2. Write − for the non-trivial
element of Gal(𝐸∕𝐹). The group 𝐺 = U(𝑛, 𝑛 + 1) is given by
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U(𝑛, 𝑛 + 1) = {𝑔 ∈ GL2𝑛+1(𝐸) ∣ 𝑡𝑔𝐽𝑔 = 𝐽}
for

𝐽 =
⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
,

where each block is of size 𝑛 and for 𝑔 = (𝑔𝑖𝑗)we write 𝑔 = (𝑔𝑖𝑗). We also write
𝔒𝐸 and𝔒𝐹 for the ring of integers in 𝐸 and 𝐹 respectively. Similarly, 𝐩𝐸 and 𝐩𝐹
denote the maximal ideals in 𝔒𝐸 and 𝔒𝐹 and 𝑘𝐸 = 𝔒𝐸∕𝐩𝐸 and 𝑘𝐹 = 𝔒𝐹∕𝐩𝐹
denote the residue class fields of𝔒𝐸 and𝔒𝐹 . Let |𝑘𝐹| = 𝑞 = 𝑝𝑟 for some odd
prime 𝑝 and some integer 𝑟 ⩾ 1.
There are two kinds of extensions of 𝐸 over 𝐹. One is the unramified ex-

tension and the other one is the ramified extension. In the unramified case,
we can choose uniformizers 𝜛𝐸 ,𝜛𝐹 in 𝐸, 𝐹 such that 𝜛𝐸 = 𝜛𝐹 so that we
have [𝑘𝐸 ∶ 𝑘𝐹] = 2, Gal(𝑘𝐸∕𝑘𝐹) ≅ Gal(𝐸∕𝐹). As 𝜛𝐸 = 𝜛𝐹 , so 𝜛𝐸 = 𝜛𝐸
since 𝜛𝐹 ∈ 𝐹. As 𝑘𝐹 = 𝔽𝑞, so 𝑘𝐸 = 𝔽𝑞2 in this case. In the ramified case, we
can choose uniformizers 𝜛𝐸 ,𝜛𝐹 in 𝐸, 𝐹 such that 𝜛2

𝐸 = 𝜛𝐹 so that we have
[𝑘𝐸 ∶ 𝑘𝐹] = 1, Gal(𝑘𝐸∕𝑘𝐹) = 1. As𝜛2

𝐸 = 𝜛𝐹 , we can further choose𝜛𝐸 such
that𝜛𝐸 = −𝜛𝐸 . As 𝑘𝐹 = 𝔽𝑞, so 𝑘𝐸 = 𝔽𝑞 in this case.
We write 𝑃 for the Siegel parabolic subgroup of 𝐺. Write 𝐿 for the Siegel Levi

component of 𝑃 and 𝑈 for the unipotent radical of 𝑃. Thus 𝑃 = 𝐿 ⋉𝑈 with

𝐿 = {
⎡
⎢
⎣

𝑎 0 0
0 𝜆 0
0 0 𝑡𝑎−1

⎤
⎥
⎦
∣ 𝑎 ∈ GL𝑛(𝐸), 𝜆 ∈ 𝐸×, 𝜆𝜆 = 1}

and

𝑈 = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐸), 𝑢 ∈ M𝑛×1(𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

Note that 𝐿 ≅ GL𝑛(𝐸) × U1(𝐸) and U1(𝐸) ≅ U1(𝔒𝐸). Let 𝑃 = 𝐿 ⋉ 𝑈 be the
𝐿-opposite of 𝑃 where

𝑈 = {
⎡
⎢
⎣

𝐼𝑑𝑛 0 0
−𝑡𝑢 1 0
𝑋 𝑢 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐸), 𝑢 ∈ M𝑛×1(𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

Let𝐾0 = GL𝑛(𝔒𝐸) and𝐾1 = 𝐼𝑑𝑛+𝜛𝐸M𝑛(𝔒𝐸). Note𝐾1 = 𝐼𝑑𝑛+𝜛𝐸M𝑛(𝔒𝐸)
is the kernel of the surjective group homomorphism

(𝑔𝑖𝑗)⟶ (𝑔𝑖𝑗 + 𝐩𝐄)∶ GL𝑛(𝔒𝐸)⟶ GL𝑛(𝑘𝐸)
As 𝜋 is a depth zero representation of 𝐿 ≅ GL𝑛(𝐸)×U1(𝐸), so 𝜋 = 𝜆𝜒 where

𝜆 is a depth zero representation of GL𝑛(𝐸) and 𝜒 is a depth zero character of
U1(𝐸). We say 𝜋 is a depth zero representation of the Siegel Levi component 𝐿
of 𝑃 if 𝜆𝐾1 ≠ 0 and 𝜒|U1(1+𝑝𝐸) = 1.
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Let (𝜌, 𝑉) be a smooth representation of the group𝐻 which is a subgroup of
𝐾. The smoothly induced representation from𝐻 to𝐾 is denoted by 𝐼𝑛𝑑𝐾𝐻(𝜌, 𝑉)
or 𝐼𝑛𝑑𝐾𝐻(𝜌). Let us denote 𝑐-𝐼𝑛𝑑

𝐾
𝐻(𝜌, 𝑉) or 𝑐-𝐼𝑛𝑑

𝐺
𝑃 (𝜌) for smoothly induced com-

pact induced representation from𝐻 to 𝐾.
The normalized induced representation from 𝑃 to 𝐺 is denoted by 𝜄𝐺𝑃 (𝜌, 𝑉)

or 𝜄𝐺𝑃 (𝜌)where 𝜄
𝐺
𝑃 (𝜌) = 𝐼𝑛𝑑𝐺𝑃 (𝜌⊗𝛿1∕2𝑃 ), 𝛿𝑃 is a character of 𝑃 defined as 𝛿𝑃(𝑝) =

‖𝑑𝑒𝑡(𝐴𝑑 𝑝)|Lie𝑈‖𝐹 for 𝑝 ∈ 𝑃 and Lie𝑈 is the Lie-algebra of 𝑈. In this paper,
we work with normalized induced representations rather than induced repre-
sentations as results look more appealing (for example, such representations
commute with taking duals).
Write 𝐿◦ for the smallest subgroup of 𝐿 containing the compact open sub-

groups of 𝐿. We say a character 𝜈∶ 𝐿⟶ ℂ× is unramified if 𝜈|𝐿◦ = 1. Observe
that if 𝜈 is an unramified character of 𝐿 then 𝜈 = 𝜈′𝛽 where 𝜈′ is an unram-
ified character of GL𝑛(𝐸) and 𝛽 is an unramified character of U1(𝐸). But as
U1(𝐸) = U1(𝔒𝐸), so 𝛽 is trivial. Hence, 𝜈 can be viewed as an unramified
character ofGL𝑛(𝐸). Let the group of unramified characters of 𝐿 be denoted by
X𝑛𝑟(𝐿).

1.1. Question. The questionwe answer in this paper is, given𝜋 an irreducible
supercuspidal representation of 𝐿 of depth zero, we look at the family of repre-
sentations 𝜄𝐺𝑃 (𝜋𝜈) for 𝜈 ∈ 𝑋𝑛𝑟(𝐿) and we want to determine the set of such 𝜈 for
which this induced representation is reducible for both ramified and unrami-
fied extensions. By general theory, this is a finite set.
Recall that 𝜋 = 𝜆𝜒 where 𝜆 is an irreducible supercuspidal depth zero rep-

resentation of GL𝑛(𝐸) and 𝜒 is a supercuspidal depthzero character of U1(𝐸).
Now 𝜆|𝐾0 contains an irreducible representation 𝜏 of 𝐾0 such that 𝜏|𝐾1 is triv-
ial. So 𝜏 can be viewed as an irreducible representation of 𝐾0∕𝐾1 ≅ GL𝑛(𝑘𝐸)
inflated to 𝐾0 = GL𝑛(𝔒𝐸). The representation 𝜏 is cuspidal by (a very special
case of) A.1 Appendix [ML93]. Set 𝜌0 = 𝜏𝜒 which is a cuspidal representation
of 𝐾0 × U1(𝔒𝐸). Further, we can view 𝜌0 = 𝜏𝜒 as a cuspidal representation of
GL𝑛(𝑘𝐸) × U1(𝑘𝐸) inflated to 𝐾0 × U1(𝔒𝐸).
By the work of Green [GJA55] or as a very special case of the Deligne-Lusztig

construction, irreducible cuspidal representations ofGL𝑛(𝑘𝐸) are parametrized
by the regular characters of degree 𝑛 extensions of 𝑘𝐸 . We write 𝜏𝜃 for the irre-
ducible cuspidal representation 𝜏 that corresponds to a regular character 𝜃. Let
𝑙∕𝑘𝐸 be a field extension of degree 𝑛. We set Γ = Gal(𝑙∕𝑘𝐸).
Let

(𝑙×)∨ = Hom(𝑙×, ℂ×).
Clearly, Γ acts on (𝑙×)∨ via

𝜃𝛾(𝑥) = 𝜃(𝛾𝑥), 𝜃 ∈ (𝑙×)∨, 𝛾 ∈ Γ, 𝑥 ∈ 𝑙×.
We write (𝑙×)∨reg for the group of regular characters of 𝑙× with respect to this
action, that is, characters 𝜃 such that StabΓ(𝜃) = {1}. We also write 𝑙×reg for the
regular elements in 𝑙×, that is, elements 𝑥 such that StabΓ(𝑥) = {1}. The set of
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Γ-orbits on (𝑙×)∨reg is then in canonical bijection with the set IrrcuspGL𝑛(𝑘𝐸) of
equivalence classes of irreducible cuspidal representations of GL𝑛(𝑘𝐸):

Γ∖(𝑙×)∨reg ⟷ IrrcuspGL𝑛(𝑘𝐸)
𝜃 ⟷ 𝜏𝜃.

The bijection is specified by a character relation

𝜏𝜃(𝑥) = 𝑐
∑

𝛾∈Γ
𝜃𝛾(𝑥), 𝑥 ∈ 𝑙×reg,

for a certain constant 𝑐 that is independent of 𝜃 and 𝑥. We denote 𝜏 by 𝜏𝜃.
Note that we have 𝑘𝐸 = 𝔽𝑞2 . So 𝑙 = 𝔽𝑞2𝑛 .
AsΓ = Gal(𝑙∕𝑘𝐸), Γ is generated by the FrobeniusmapΦ given byΦ(𝜆) = 𝜆𝑞2

for 𝜆 ∈ 𝑙. Note that here 𝜃Φ = 𝜃𝑞2 . Also observe that Φ𝑛(𝜆) = 𝜆𝑞2𝑛 = 𝜆 (since
𝑙× is a cyclic group of order 𝑞2𝑛 − 1)⟹Φ𝑛 = 1.
Note that for two regular characters 𝜃 and 𝜃′ we have 𝜏𝜃 ≃ 𝜏𝜃′ ⟺ there

exists 𝛾 ∈ Γ such that 𝜃𝛾 = 𝜃′.
We now define the Siegel parahoric subgroup𝔓 of 𝐺 which is given by:

𝔓 =
⎡
⎢
⎣

GL𝑛(𝔒𝐸) M𝑛×1(𝔒𝐸) M𝑛(𝔒𝐸)
M1×𝑛(𝐩𝐸) U1(𝔒𝐸) M1×𝑛(𝔒𝐸)
M𝑛(𝐩𝐸) M𝑛×1(𝐩𝐸) GL𝑛(𝔒𝐸)

⎤
⎥
⎦

⋂U(𝑛, 𝑛 + 1).

We have 𝔓 = (𝔓 ∩ 𝑈)(𝔓 ∩ 𝐿)(𝔓 ∩ 𝑈)(Iwahori factorization of 𝔓). Let us
denote (𝔓 ∩ 𝑈) by𝔓−, (𝔓 ∩ 𝑈) by𝔓+, (𝔓 ∩ 𝐿) by𝔓0. Thus

𝔓0 = {
⎡
⎢
⎣

𝑎 0 0
0 𝜆 0
0 0 𝑡𝑎−1

⎤
⎥
⎦
∣ 𝑎 ∈ GL𝑛(𝔒𝐸), 𝜆 ∈ 𝔒×

𝐸 , 𝜆𝜆 = 1},

𝔓+ = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝔒𝐸), 𝑢 ∈ M𝑛×1(𝔒𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0},

𝔓− = {
⎡
⎢
⎣

𝐼𝑑𝑛 0 0
−𝑡𝑢 1 0
𝑋 𝑢 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐩𝐸), 𝑢 ∈ M𝑛×1(𝐩𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

By Iwahori factorization of 𝔓 we have 𝔓 = (𝔓 ∩ 𝑈)(𝔓 ∩ 𝐿)(𝔓 ∩ 𝑈) =
𝔓−𝔓0𝔓+. As 𝜌0 is a representation of 𝐾0 × U1(𝔒𝐸), it can also be viewed as
a representation of 𝔓0. This is because 𝔓0 ≅ 𝐾0 × U1(𝔒𝐸). We shall see that,
𝜌0 can be extended to a representation 𝜌 of𝔓 which is given by 𝜌(𝑝) = 𝜌0(𝑝0)
where 𝑝 ∈ 𝔓 can be factorized as 𝑝−𝑝0𝑝+ where 𝑝− ∈ 𝔓−, 𝑝0 ∈ 𝔓0, 𝑝+ ∈ 𝔓+.
Let𝐾 be a compact open subgroup of𝐺. Let (𝜌,𝑊) be an irreducible smooth

representation of 𝐾. The Hecke algebraℋ(𝐺, 𝜌) is given by:
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ℋ(𝐺, 𝜌) =
⎧

⎨
⎩

𝑓∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝜌∨)
||||||||||

supp(𝑓) is compact and
𝑓(𝑘1𝑔𝑘2) = 𝜌∨(𝑘1)𝑓(𝑔)𝜌∨(𝑘2)
where 𝑘1, 𝑘2 ∈ 𝐾, 𝑔 ∈ 𝐺

⎫

⎬
⎭

.

Thenℋ(𝐺, 𝜌) is aℂ-algebra withmultiplication given by convolution ∗with
respect to some fixed Haar measure 𝜇 on 𝐺. So for elements 𝑓, 𝑔 ∈ ℋ(𝐺, 𝜌)we
have

(𝑓 ∗ 𝑔)(𝑥) = ∫
𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥)𝑑𝜇(𝑦).

Let 𝑍(𝐿) denote the center of 𝐿. Hence

𝑍(𝐿) = {
⎡
⎢
⎢
⎣

𝑎𝐼𝑑𝑛 0 0
0 𝜆 0
0 0 𝑎−1𝐼𝑑𝑛

⎤
⎥
⎥
⎦

∣ 𝑎 ∈ 𝐸×, 𝜆 ∈ 𝐸×, 𝜆𝜆 = 1}.

Let us set

𝜁 =
⎡
⎢
⎢
⎣

𝜛𝐸𝐼𝑑𝑛 0 0
0 1 0
0 0 𝜛𝐸

−1𝐼𝑑𝑛

⎤
⎥
⎥
⎦

.

Note that 𝑍(𝐿)𝔓0 =
∐

𝑛∈ℤ𝔓0𝜁𝑛, so we can extend 𝜌0 to a representation 𝜌0
of 𝑍(𝐿)𝔓0 via 𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗) for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ. By standard Mackey theory
arguments, we show in the paper that 𝜋= 𝑐-𝐼𝑛𝑑𝐿𝑍(𝐿)𝔓0

𝜌0 is a smooth irreducible
supercuspidal depth zero representation of𝐿. Also note that any arbitrary depth
zero irreducible supercuspidal representation of 𝐿 is an unramified twist of 𝜋.
To that end, we will answer the question which we posed earlier in this paper
and prove the following result.

Theorem 1.1. Let 𝐺 = U(𝑛, 𝑛 + 1). Let 𝑃 be the Siegel parabolic subgroup of
𝐺 and 𝐿 be the Siegel Levi component of 𝑃. Let 𝜋= 𝑐-𝐼𝑛𝑑𝐿𝑍(𝐿)𝔓0

𝜌0 be a smooth
irreducible supercuspidal depth zero representation of 𝐿 ≅ GL𝑛(𝐸)×U1(𝐸)where
𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗) for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ and 𝜌0 = 𝜏𝜃 for some regular character 𝜃 of
𝑙× with [𝑙 ∶ 𝑘𝐸] = 𝑛 and |𝑘𝐹| = 𝑞. Consider the family 𝜄𝐺𝑃 (𝜋𝜈) for 𝜈 ∈ X𝑛𝑟(𝐿).

(1) For 𝐸∕𝐹 unramified, 𝜄𝐺𝑃 (𝜋𝜈) is reducible⟺ 𝑛 is odd, 𝜃𝑞𝑛+1 = 𝜃−𝑞 and
𝜈(𝜁) ∈ {𝑞𝑛, 𝑞−𝑛, −1}.

(2) For 𝐸∕𝐹 ramified, 𝜄𝐺𝑃 (𝜋𝜈) is reducible ⟺ 𝑛 is even, 𝜃𝑞𝑛∕2 = 𝜃−1 and
𝜈(𝜁) ∈ {𝑞𝑛∕2, 𝑞−𝑛∕2, −1}.

In this paper we solve a similar problem as the one which we did in [RSS21].
In [RSS21], we solved the problem for U(𝑛, 𝑛) over non-Archimedean local
fields where as in this paper we are solving the same problem for U(𝑛, 𝑛 + 1)
over non-Archimedean local fields. Refer to the section 1 in [RSS21] for a bet-
ter understanding of what we are doing in this paper. All the representations
in this paper are smooth and complex representations.
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In [GD94], Goldberg computes the reducibility points of 𝜄𝐺𝑃 (𝜋) by computing
the poles of certain 𝐿-functions attached to the representations ofGL𝑛(𝐸). Note
however that the base field 𝐹 is assumed to be of characteristic 0 in [GD94],
whereas we assumed characteristic of 𝐹 ≠ 2. In [GD94] there is no restric-
tion on the depth of the representation 𝜋, while in this paper we have assumed
depth of the representation𝜋 to be of zero. The final results obtained in [GD94]
are in terms of matrix coefficents of 𝜋 whereas our results are in terms of the
unramified characters of 𝐿.
In [HV11] and [HV17], Heiermann computed the structure of the Hecke al-

gebras which we look at and makes a connection with Langlands parameters.
But his results are not explicit. They do not give the precise values of the pa-
rameters in the relevant Hecke algebras.
In [LS20], Stevens and Lust have calculated the parameters of the affine

Hecke algebras for all the classical groups, so in particular they have also cal-
culated the parameters of affine Hecke algebras of odd unitary groups in the
depth zero setting for both ramified and unramified extensions. However, the
approach taken by them is quite different from our approach.

1.2. Organization of the paper. In section 2, we introduce the preliminaries
required to solve the question posed in the Introduction section. In section 3
we perform the calculations required to undertand the structure of the Hecke
algbera ℋ(𝐺, 𝜌) in both the ramified and unramified cases. In section 4, the
structure of the Hecke algberaℋ(𝐿, 𝜌0) and that of simpleℋ(𝐿, 𝜌0)- modules
are determined and also in this section, further calculations which are required
to prove Theorem 1 are performed. Finally, in section 5 proof of Theorem 1 is
given.
𝐀𝐜𝐤𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐦𝐞𝐧𝐭𝐬: The author wishes to thank Alan Roche from Univer-

sity of Oklahoma, USA for suggesting the problem studied in this work and for
many discussions and insights.

2. Preliminaries
2.1. Bernstein Decomposition. Let𝐺 be the 𝐹-rational points of a reductive
algebraic group defined over a non-Archimedean local field 𝐹. Let (𝜋, 𝑉) be an
irreducible smooth representation of 𝐺. According to Theorem 3.3 in [KP98],
there exists unique conjugacy class of cuspidal pairs (𝐿, 𝜎) with the property
that 𝜋 is isomorphic to a composition factor of 𝜄𝐺𝑃𝜎 for some parabolic subgroup
𝑃 of 𝐺. We call this conjugacy class of cuspidal pairs, the cuspidal support of
(𝜋, 𝑉).
Given two cuspidal supports (𝐿1, 𝜎1) and (𝐿2, 𝜎2) of (𝜋, 𝑉), we say they are

inertially equivalent if there exists 𝑔 ∈ 𝐺 and 𝜒 ∈ X𝑛𝑟(𝐿2) such that 𝐿2 = 𝐿𝑔1
and 𝜎𝑔1 ≃ 𝜎2 ⊗ 𝜒. We write [𝐿, 𝜎]𝐺 for the inertial equivalence class or inertial
support of (𝜋, 𝑉). Let𝔅(𝐺) denote the set of inertial equivalence classes [𝐿, 𝜎]𝐺 .
Let ℜ(𝐺) denote the category of smooth representations of 𝐺. Let ℜ𝑠(𝐺)

be the full sub-category of smooth representations of 𝐺 with the property that
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(𝜋, 𝑉) ∈ 𝑜𝑏(ℜ𝑠(𝐺))⟺ every irreducible sub-quotient of𝜋 has inertial support
𝑠 = [𝐿, 𝜎]𝐺 .
We can now state the Bernstein decomposition:

ℜ(𝐺) =
∏

𝑠∈𝔅(𝐺)
ℜ𝑠(𝐺).

2.2. Types. Let 𝐺 be the 𝐹-rational points of a reductive algebraic group de-
fined over a non-Archimedean local field 𝐹. Let𝐾 be a compact open subgroup
of 𝐺. Let (𝜌,𝑊) be an irreducible smooth representation of 𝐾 and (𝜋, 𝑉) be a
smooth representation of 𝐺. Let 𝑉𝜌 be the 𝜌-isotopic subspace of 𝑉.

𝑉𝜌 =
∑

𝑊′
𝑊′

where the sum is over all𝑊′ such that (𝜋|𝐾 ,𝑊′) ≃ (𝜌,𝑊).
Letℋ(𝐺) be the space of all locally constant compactly supported functions

𝑓∶ 𝐺 → ℂ. This is a ℂ- algebra under convolution ∗. So for elements 𝑓, 𝑔 ∈
ℋ(𝐺) we have

(𝑓 ∗ 𝑔)(𝑥) = ∫
𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥)𝑑𝜇(𝑦).

Here we have fixed a Haar measure 𝜇 on 𝐺. Let (𝜋, 𝑉) be a representation of
𝐺. Thenℋ(𝐺) acts on 𝑉 via

ℎ𝑣 = ∫
𝐺
ℎ(𝑥)𝜋(𝑥)𝑣𝑑𝜇(𝑥)

for ℎ ∈ ℋ(𝐺), 𝑣 ∈ 𝑉. Let 𝑒𝜌 be the element inℋ(𝐺) with support 𝐾 such that

𝑒𝜌(𝑥) =
dim𝜌
𝜇(𝐾)

𝑡𝑟𝑊(𝜌(𝑥−1)), 𝑥 ∈ 𝐾.

We have 𝑒𝜌 ∗ 𝑒𝜌 = 𝑒𝜌 and 𝑒𝜌𝑉 = 𝑉𝜌 for any smooth representation (𝜋, 𝑉) of
𝐺. Letℜ𝜌(𝐺) be the full sub-category ofℜ(𝐺) consisting of all representations
(𝜋, 𝑉) where 𝑉 is generated by 𝜌-isotopic vectors. So (𝜋, 𝑉) ∈ ℜ𝜌(𝐺)⟺ 𝑉 =
ℋ(𝐺) ∗ 𝑒𝜌𝑉. We now state the definition of a type.

Definition 2.1. Let 𝑠 ∈ 𝔅(𝐺). We say that (𝐾, 𝜌) is an 𝑠-type in 𝐺 ifℜ𝜌(𝐺) =
ℜ𝑠(𝐺).

2.3. Hecke algebras. Let 𝐺 be the 𝐹-rational points of a reductive algebraic
group defined over a non-Archimedean local field 𝐹. Let 𝐾 be a compact open
subgroup of 𝐺. Let (𝜌,𝑊) be an irreducible smooth representation of 𝐾. Here
we introduce the Hecke algebraℋ(𝐺, 𝜌).

ℋ(𝐺, 𝜌) =
⎧

⎨
⎩

𝑓∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝜌∨)
||||||||||

supp(𝑓) is compact and
𝑓(𝑘1𝑔𝑘2) = 𝜌∨(𝑘1)𝑓(𝑔)𝜌∨(𝑘2)
where 𝑘1, 𝑘2 ∈ 𝐾, 𝑔 ∈ 𝐺

⎫

⎬
⎭

.
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Then ℋ(𝐺, 𝜌) is a ℂ-algebra with multiplication given by convolution ∗ with
respect to some fixed Haar measure 𝜇 on 𝐺. So for elements 𝑓, 𝑔 ∈ ℋ(𝐺, 𝜌)we
have

(𝑓 ∗ 𝑔)(𝑥) = ∫
𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥)𝑑𝜇(𝑦).

The importance of types is seen from the following result. Let 𝜋 be a smooth
representation in ℜ𝑠(𝐺). Letℋ(𝐺, 𝜌) − 𝑀𝑜𝑑 denote the category ofℋ(𝐺, 𝜌)-
modules. If (𝐾, 𝜌) is an 𝑠-type then 𝑚𝐺 ∶ ℜ𝑠(𝐺) ⟶ ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑 given by
𝑚𝐺(𝜋) = Hom𝐾(𝜌, 𝜋) is an equivalence of categories.

2.4. Covers. Let 𝐺 be the 𝐹-rational points of a reductive algebraic group de-
fined over a non-Archimedean local field 𝐹. Let𝐾 be a compact open subgroup
of𝐺. Let (𝜌,𝑊) be an irreducible representation of𝐾. Then we say (𝐾, 𝜌) is de-
composed with respect to (𝐿, 𝑃) if the following hold:

(1) 𝐾 = (𝐾 ∩ 𝑈)(𝐾 ∩ 𝐿)(𝐾 ∩ 𝑈).
(2) (𝐾 ∩ 𝑈), (𝐾 ∩ 𝑈) ⩽ ker𝜌.
Suppose (𝐾, 𝜌) is decomposed with respect to (𝐿, 𝑃). We set 𝐾𝐿 = 𝐾 ∩ 𝐿 and

𝜌𝐿 = 𝜌|𝐾𝐿 . We say an element 𝑔 ∈ 𝐺 intertwines 𝜌 if Hom𝐾𝑔∩𝐾(𝜌𝑔, 𝜌) ≠ 0. Let
ℑ𝐺(𝜌) = {𝑥 ∈ 𝐺 ∣ 𝑥 intertwines 𝜌}. We have the Hecke algebrasℋ(𝐺, 𝜌) and
ℋ(𝐿, 𝜌𝐿). We write

ℋ(𝐺, 𝜌)𝐿 = {𝑓 ∈ ℋ(𝐺, 𝜌) ∣ supp(𝑓) ⊆ 𝐾𝐿𝐾}.
Werecall some results and constructions frompages 606-612 in [BK98]. These

allowus to transfer questions about parabolic induction into questions concern-
ing the module theory of appropriate Hecke algebras.

Proposition 2.2 (Bushnell and Kutzko, Proposition 6.3 [BK98]). Let (𝐾, 𝜌) de-
compose with respect to (𝐿, 𝑃) .Then

(1) 𝜌𝐿 is irreducible.
(2) ℑ𝐿(𝜌𝐿) = ℑ𝐺(𝜌) ∩ 𝐿.
(3) There is an embedding𝑇∶ ℋ(𝐿, 𝜌𝐿)⟶ℋ(𝐺, 𝜌) such that if𝑓 ∈ ℋ(𝐿, 𝜌𝐿)

has support 𝐾𝐿𝑧𝐾𝐿 for some 𝑧 ∈ 𝐿, then 𝑇(𝑓) has support 𝐾𝑧𝐾.
(4) The map 𝑇 induces an isomorphism of vector spaces:

ℋ(𝐿, 𝜌𝐿)
≃
,→ ℋ(𝐺, 𝜌)𝐿.

Definition 2.3. An element 𝑧 ∈ 𝐿 is called (𝐾, 𝑃)-positive element if:
(1) 𝑧(𝐾 ∩ 𝑈)𝑧−1 ⊆ 𝐾 ∩ 𝑈.
(2) 𝑧−1(𝐾 ∩ 𝑈)𝑧 ⊆ 𝐾 ∩ 𝑈.

Definition 2.4. An element 𝑧 ∈ 𝐿 is called strongly (𝐾, 𝑃)-positive element if:
(1) 𝑧 is (𝐾, 𝑃) positive.
(2) 𝑧 lies in center of 𝐿.
(3) For any compact open subgroups 𝐾 and 𝐾′ of𝑈 there exists𝑚 ⩾ 0 and

𝑚 ∈ ℤ such that 𝑧𝑚𝐾𝑧−𝑚 ⊆ 𝐾′.
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(4) For any compact open subgroups 𝐾 and 𝐾′ of𝑈 there exists𝑚 ⩾ 0 and
𝑚 ∈ ℤ such that 𝑧−𝑚𝐾𝑧 ⊆ 𝐾′.

Proposition 2.5 (Bushnell and Kutzko, Lemma 6.14 [BK98], Proposition 7.1,
[BK98]). Strongly (𝐾, 𝑃)-positive elements exist and given a strongly positive ele-
ment 𝑧 ∈ 𝐿 , there exists a unique function 𝜙𝑧 ∈ ℋ(𝐿, 𝜌𝐿) with support 𝐾𝐿𝑧𝐾𝐿
such that 𝜙𝑧(𝑧) is identity function in 𝐸𝑛𝑑ℂ(𝜌∨𝐿 ).

ℋ+(𝐿, 𝜌𝐿) =
⎧

⎨
⎩

𝑓∶ 𝐿 → 𝐸𝑛𝑑ℂ(𝜌∨𝐿 )

|||||||||||||

supp(𝑓) is compact and consists
of strongly (𝐾, 𝑃)-positive elements
and 𝑓(𝑘1𝑙𝑘2) = 𝜌∨𝐿 (𝑘1)𝑓(𝑙)𝜌

∨
𝐿 (𝑘2)

where 𝑘1, 𝑘2 ∈ 𝐾𝐿, 𝑙 ∈ 𝐿

⎫

⎬
⎭

.

The isomorphism of vector spaces 𝑇∶ ℋ(𝐿, 𝜌𝐿)⟶ℋ(𝐺, 𝜌)𝐿 restricts to an
embedding of algebras:

𝑇+∶ ℋ+(𝐿, 𝜌𝐿)⟶ℋ(𝐺, 𝜌)𝐿 ↪ℋ(𝐺, 𝜌).

Proposition 2.6 (Bushnell andKutzko, Theorem 7.2.i [BK98]). The embedding
𝑇+ extends to an embedding of algebras 𝑡 ∶ ℋ(𝐿, 𝜌𝐿) ⟶ ℋ(𝐺, 𝜌) ⟺ 𝑇+(𝜙𝑧)
is invertible for some strongly (𝐾, 𝑃)-positive element 𝑧, where 𝜙𝑧 ∈ ℋ(𝐿, 𝜌𝐿) has
support 𝐾𝐿𝑧𝐾𝐿 with 𝜙𝑧(𝑧) = 1.

Definition 2.7. Let 𝐿 be a proper Levi subgroup of𝐺. Let𝐾𝐿 be a compact open
subgroup of 𝐿 and 𝜌𝐿 be an irreducible smooth representation of 𝐾𝐿. Let 𝐾 be
a compact open subgroup of 𝐺 and 𝜌 be an irreducible, smooth representation
of 𝐾. Then we say (𝐾, 𝜌) is a 𝐺-cover of (𝐾𝐿, 𝜌𝐿) if

(1) The pair (𝐾, 𝜌) is decomposed with respect to (𝐿, 𝑃) for every parabolic
subgroup 𝑃 of 𝐺 with Levi component 𝐿.

(2) 𝐾 ∩ 𝐿 = 𝐾𝐿 and 𝜌|𝐿 ≃ 𝜌𝐿.
(3) The embedding 𝑇+∶ ℋ+(𝐿, 𝜌𝐿)⟶ℋ(𝐺, 𝜌) extends to an embedding

of algebras 𝑡 ∶ ℋ(𝐿, 𝜌𝐿)⟶ℋ(𝐺, 𝜌).

Proposition 2.8 (Bushnell and Kutzko, Theorem 8.3 [BK98]). Let 𝑠𝐿 = [𝐿, 𝜋]𝐿
∈ 𝔅(𝐿) and 𝑠 = [𝐿, 𝜋]𝐺 ∈ 𝔅(𝐺) . Say (𝐾𝐿, 𝜌𝐿) is an 𝑠𝐿-type and (𝐾, 𝜌) is a
𝐺-cover of (𝐾𝐿, 𝑠𝐿). Then (𝐾, 𝜌) is an 𝑠-type.

Note that in this paper 𝐾 = 𝔓,𝐾𝐿 = 𝐾 ∩ 𝐿 = 𝔓 ∩ 𝐿 = 𝔓0 and 𝜌𝐿 = 𝜌0.
Also note that in this paper, 𝜌 is defined as 𝜌(𝑝) = 𝜌0(𝑝0) for 𝑝 ∈ 𝔓 where by
Iwahori Factorization𝑝 = 𝑝+𝑝0𝑝−, 𝑝+ ∈ 𝔓∩𝑈, 𝑝0 ∈ 𝔓0, 𝑝− ∈ 𝔓∪𝑈. Observe
that from definition 2.7, we can conclude that (𝔓, 𝜌) is a cover of (𝔓0, 𝜌0). Also
observe that as (𝔓⦑, 𝜌0) is 𝑠𝐿-type and as (𝔓, 𝜌) is a cover of (𝔓0, 𝜌0), so from
proposition 2.8, it follows that (𝔓, 𝜌) is a 𝑠-type.
Recall the categoriesℜ𝑠𝐿(𝐿),ℜ𝑠(𝐺)where 𝑠𝐿 = [𝐿, 𝜋]𝐿 and 𝑠 = [𝐿, 𝜋]𝐺 . Note

that 𝜋𝜈 lies in the categoryℜ𝑠𝐿(𝐿) and 𝜄𝐺𝑃 (𝜋𝜈) lies inℜ𝑠(𝐺).
Note that ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑 is the category of ℋ(𝐺, 𝜌)-modules and

ℋ(𝐿, 𝜌𝐿) − 𝑀𝑜𝑑 is the category ofℋ(𝐿, 𝜌𝐿)-modules.
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The functor 𝜄𝐺𝑃 was defined earlier. The functor

𝑚𝐿 ∶ ℜ𝑠𝐿(𝐿)⟶ℋ(𝐿, 𝜌𝐿) − 𝑀𝑜𝑑

is given by 𝑚𝐿(𝜋𝜈) = Hom𝐾𝐿(𝜌𝐿, 𝜋𝜈). The representation 𝜋𝜈 ∈ ℜ𝑠𝐿(𝐿) being
irreducible, it corresponds to a simpleℋ(𝐿, 𝜌0)-module under the functor𝑚𝐿.
Let 𝑓 ∈ 𝑚𝐿(𝜋𝜈), 𝛾 ∈ ℋ(𝐿, 𝜌0) and 𝑤 ∈ 𝑉. The action ofℋ(𝐿, 𝜌0) on 𝑚𝐿(𝜋𝜈)
is given by (𝛾.𝑓)(𝑤) = ∫𝐿 𝜋(𝑙)𝜈(𝑙)𝑓(𝛾∨(𝑙−1)𝑤)𝑑𝑙. Here 𝛾∨ is defined on 𝐿 by
𝛾∨(𝑙−1) = 𝛾(𝑙)∨ for 𝑙 ∈ 𝐿.
The functor𝑚𝐺 ∶ ℜ𝑠(𝐺)⟶ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑 is given by:

𝑚𝐺(𝜄𝐺𝑃 (𝜋𝜈)) = Hom𝐾(𝜌, 𝜄𝐺𝑃 (𝜋𝜈)).

Further the functor (𝑇𝑃)∗∶ ℋ(𝐿, 𝜌𝐿)−𝑀𝑜𝑑⟶ℋ(𝐺, 𝜌)−𝑀𝑜𝑑 is given by,
for𝑀 anℋ(𝐿, 𝜌0)-module,

(𝑇𝑃)∗(𝑀) = Homℋ(𝐿,𝜌0)(ℋ(𝐺, 𝜌),𝑀)
whereℋ(𝐺, 𝜌) is viewed as aℋ(𝐿, 𝜌0)-module via 𝑇𝑃. The action ofℋ(𝐺, 𝜌)
on (𝑇𝑃)∗(𝑀) is given by

ℎ′𝜓(ℎ1) = 𝜓(ℎ1ℎ′)
where 𝜓 ∈ (𝑇𝑃)∗(𝑀), ℎ1, ℎ′ ∈ ℋ(𝐺, 𝜌).
The importance of covers is seen from the following commutative diagram

which we will use in answering the question which we posed earlier in this
paper:

ℜ𝑠(𝐺)
𝑚𝐺,,,,,,→ ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑

𝜄𝐺𝑃
↑⏐⏐⏐⏐⏐⏐⏐ (𝑇𝑃)∗↑⏐⏐⏐⏐⏐⏐⏐

ℜ𝑠𝐿(𝐿)
𝑚𝐿,,,,,,→ ℋ(𝐿, 𝜌0) − 𝑀𝑜𝑑.

Let us denote the set of strongly (𝔓, 𝑃)-positive elements by ℐ+. Thus

ℐ+ = {𝑥 ∈ 𝐿 ∣ 𝑥𝔓+𝑥−1 ⊆ 𝔓+, 𝑥−1𝔓−𝑥 ⊆ 𝔓−},
where𝔓+ = 𝔓 ∩ 𝑈,𝔓− = 𝔓 ∩ 𝑈. Let 𝑉 be the vector space corresponding to
𝜌0. We shall show in section 4 thatℋ(𝐿, 𝜌0) = ℂ[𝛼, 𝛼−1] where 𝛼 ∈ ℋ(𝐿, 𝜌0)
has support 𝔓0𝜁𝔓0 and 𝛼(𝜁) = 1𝑉∨ . We will also show that 𝛼𝑛(𝜁𝑛) = (𝛼(𝜁))𝑛
for 𝑛 ∈ ℤ and supp(𝛼𝑛) = 𝔓0𝜁𝑛𝔓0 = 𝔓0𝜁𝑛 = 𝜁𝑛𝔓0 for 𝑛 ∈ ℤ.

We have

ℋ+(𝐿, 𝜌0) = {𝑓 ∈ ℋ(𝐿, 𝜌0) ∣ supp𝑓 ⊆ 𝔓0ℐ+𝔓0}.

Note 𝜁 ∈ ℐ+, soℋ+(𝐿, 𝜌0) = ℂ[𝛼]. The following discussion is taken from
pages 612-619 in [BK98]. Let𝑊 be space of 𝜌0. Let 𝑓 ∈ ℋ+(𝐿, 𝜌0)with support
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of 𝑓 being𝔓0𝑥𝔓0 for 𝑥 ∈ ℐ+. The map 𝐹 ∈ ℋ(𝐺, 𝜌) is supported on𝔓𝑥𝔓 and
𝑓(𝑥) = 𝐹(𝑥). The algebra embedding

𝑇+∶ ℋ+(𝐿, 𝜌0)⟶ℋ(𝐺, 𝜌)
is given by 𝑇+(𝑓) = 𝐹, where 𝐹 is invertible.
Recall support of 𝛼 ∈ ℋ+(𝐿, 𝜌0) is𝔓0𝜁. Let 𝑇+(𝛼) = 𝜓, where 𝜓 ∈ ℋ(𝐺, 𝜌)

has support𝔓𝜁𝔓 and 𝛼(𝜁) = 𝜓(𝜁) = 1𝑊∨ . As 𝑇+(𝛼) = 𝜓 is invertible, so from
Proposition 2.6 we can conclude that 𝑇+ extends to an embedding of algebras

𝑡 ∶ ℋ(𝐿, 𝜌0)⟶ℋ(𝐺, 𝜌).
Let 𝜙 ∈ ℋ(𝐿, 𝜌0) and𝑚 ∈ ℕ is chosen such that 𝛼𝑚𝜙 ∈ ℋ+(𝐿, 𝜌0). Themap

𝑡 is then given by 𝑡(𝜙) = 𝜓−𝑚𝑇+(𝛼𝑚𝜙). For 𝜙 ∈ ℋ(𝐿, 𝜌0), the map
𝑡𝑃 ∶ ℋ(𝐿, 𝜌0)⟶ℋ(𝐺, 𝜌)

is given by 𝑡𝑃(𝜙) = 𝑡(𝜙𝛿𝑃), where 𝜙𝛿𝑃 ∈ ℋ(𝐿, 𝜌0) and is the map
𝜙𝛿𝑃 ∶ 𝐿⟶ 𝐸𝑛𝑑ℂ(𝜌∨0 )

given by (𝜙𝛿𝑃)(𝑙) = 𝜙(𝑙)𝛿𝑃(𝑙) for 𝑙 ∈ 𝐿. As 𝛼 ∈ ℋ(𝐿, 𝜌0) we have
𝑡𝑃(𝛼)(𝜁) = 𝑡(𝛼𝛿𝑃)(𝜁)

= 𝑇+(𝛼𝛿𝑃)(𝜁)
= 𝛿𝑃(𝜁)𝑇+(𝛼)(𝜁)
= 𝛿𝑃(𝜁)𝜓(𝜁)
= 𝛿𝑃(𝜁)1𝑊∨ .

Let ℋ(𝐿, 𝜌0)-Mod denote the category of ℋ(𝐿, 𝜌0)-modules and ℋ(𝐺, 𝜌)-
Mod denote the category of ℋ(𝐺, 𝜌)-modules. The map 𝑡𝑃 induces a functor
(𝑡𝑃)∗ given by

(𝑡𝑃)∗∶ ℋ(𝐿, 𝜌0) −Mod⟶ℋ(𝐺, 𝜌) −Mod.
For𝑀 anℋ(𝐿, 𝜌0)-module,

(𝑡𝑃)∗(𝑀) = Homℋ(𝐿,𝜌0)(ℋ(𝐺, 𝜌),𝑀)
whereℋ(𝐺, 𝜌) is viewed as aℋ(𝐿, 𝜌0)-module via 𝑡𝑃. The action ofℋ(𝐺, 𝜌) on
(𝑡𝑃)∗(𝑀) is given by

ℎ′𝜓(ℎ1) = 𝜓(ℎ1ℎ′)
where 𝜓 ∈ (𝑡𝑃)∗(𝑀), ℎ1, ℎ′ ∈ ℋ(𝐺, 𝜌).
Let 𝜏 ∈ ℜ[𝐿,𝜋]𝐿(𝐿) then functor𝑚𝐿 ∶ ℜ[𝐿,𝜋]𝐿(𝐿)⟶ℋ(𝐿, 𝜌0)−𝑀𝑜𝑑 is given

by𝑚𝐿(𝜏) = Hom𝔓0(𝜌0, 𝜏). The functor𝑚𝐿 is an equivalence of categories. Let
𝑓 ∈ 𝑚𝐿(𝜏), 𝛾 ∈ ℋ(𝐿, 𝜌0) and 𝑤 ∈ 𝑊. The action ofℋ(𝐿, 𝜌0) on𝑚𝐿(𝜏) is given
by (𝛾.𝑓)(𝑤) = ∫𝐿 𝜏(𝑙)𝑓(𝛾∨(𝑙−1)𝑤)𝑑𝑙. Here 𝛾∨ is defined on 𝐿 by 𝛾∨(𝑙−1) = 𝛾(𝑙)∨
for 𝑙 ∈ 𝐿. Let 𝜏′ ∈ ℜ[𝐿,𝜋]𝐺 (𝐺) then the functor𝑚𝐺 ∶ ℜ[𝐿,𝜋]𝐺 (𝐺)⟶ℋ(𝐺, 𝜌) −
𝑀𝑜𝑑 is given by 𝑚𝐺(𝜏′) = Hom𝔓(𝜌, 𝜏′). The functor 𝑚𝐺 is an equivalence of
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categories. From Corollary 8.4 in [BK98], the functors 𝑚𝐿, 𝑚𝐺 , 𝐼𝑛𝑑𝐺𝑃 , (𝑡𝑃)∗ fit
into the following commutative diagram:

ℜ[𝐿,𝜋]𝐺 (𝐺)
𝑚𝐺,,,,,,→ ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑

𝐼𝑛𝑑𝐺𝑃
↑⏐⏐⏐⏐⏐⏐⏐ (𝑡𝑃)∗↑⏐⏐⏐⏐⏐⏐⏐

ℜ[𝐿,𝜋]𝐿(𝐿)
𝑚𝐿,,,,,,→ ℋ(𝐿, 𝜌0) − 𝑀𝑜𝑑

If 𝜏 ∈ ℜ[𝐿,𝜋]𝐿(𝐿) then from the above commutative diagram, we see that
(𝑡𝑃)∗(𝑚𝐿(𝜏)) ≅ 𝑚𝐺(𝐼𝑛𝑑𝐺𝑃 𝜏) asℋ(𝐺, 𝜌)-modules. Replacing 𝜏 by (𝜏 ⊗ 𝛿1∕2𝑃 ) in
the above expression, (𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 )) ≅ 𝑚𝐺(𝐼𝑛𝑑𝐺𝑃 (𝜏 ⊗ 𝛿1∕2𝑃 )) asℋ(𝐺, 𝜌)-
modules. As 𝐼𝑛𝑑𝐺𝑃 (𝜏 ⊗ 𝛿1∕2𝑃 ) = 𝜄𝐺𝑃 (𝜏), we have (𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 )) ≅ 𝑚𝐺(𝜄𝐺𝑃 (𝜏))
asℋ(𝐺, 𝜌)-modules.
Our aim is to find an algebra embedding 𝑇𝑃 ∶ ℋ(𝐿, 𝜌0) ⟶ ℋ(𝐺, 𝜌) such

that the following diagram commutes:

ℜ[𝐿,𝜋]𝐺 (𝐺)
𝑚𝐺,,,,,,→ ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑

𝜄𝐺𝑃
↑⏐⏐⏐⏐⏐⏐⏐ (𝑇𝑃)∗↑⏐⏐⏐⏐⏐⏐⏐

ℜ[𝐿,𝜋]𝐿(𝐿)
𝑚𝐿,,,,,,→ ℋ(𝐿, 𝜌0) − 𝑀𝑜𝑑

Let 𝜏 ∈ ℜ[𝐿,𝜋]𝐿(𝐿) then𝑚𝐿(𝜏) ∈ ℋ(𝐿, 𝜌0)- Mod. The functor (𝑇𝑃)∗ is defined
as below:

(𝑇𝑃)∗(𝑚𝐿(𝜏)) = {𝜓∶ ℋ(𝐺, 𝜌) → 𝑚𝐿(𝜏)
|||||||
ℎ𝜓(ℎ1) = 𝜓(𝑇𝑃(ℎ)ℎ1) where
ℎ ∈ ℋ(𝐿, 𝜌0), ℎ1 ∈ ℋ(𝐺, 𝜌) } .

From the above commutative diagram, we see that

(𝑇𝑃)∗(𝑚𝐿(𝜏)) ≅ 𝑚𝐺(𝜄𝐺𝑃 (𝜏))
asℋ(𝐺, 𝜌)-modules. Recall that

(𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 )) ≅ 𝑚𝐺(𝜄𝐺𝑃 (𝜏))
asℋ(𝐺, 𝜌)-modules. Hence we have to find an algebra embedding

𝑇𝑃 ∶ ℋ(𝐿, 𝜌0)⟶ℋ(𝐺, 𝜌)
such that

(𝑇𝑃)∗(𝑚𝐿(𝜏)) ≅ (𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 ))
asℋ(𝐺, 𝜌)-modules.
Proposition 2.9. The map 𝑇𝑃 is given by

𝑇𝑃(𝜙) = 𝑡𝑃(𝜙𝛿
−1∕2
𝑃 ), 𝜙 ∈ ℋ(𝐿, 𝜌0),

so that we have
(𝑇𝑃)∗(𝑚𝐿(𝜏)) = (𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 ))

asℋ(𝐺, 𝜌)- modules.



1112 SUBHA SANDEEP REPAKA

Proof. Let 𝑊 be space of 𝜌0. The vector spaces for 𝑚𝐿(𝜏𝛿
1∕2
𝑃 ) and 𝑚𝐿(𝜏) are

the same. Let 𝑓 ∈ 𝑚𝐿(𝜏) = Hom𝔓0(𝜌0, 𝜏), 𝛾 ∈ ℋ(𝐿, 𝜌0) and𝑤 ∈ 𝑊. Recall the
action ofℋ(𝐿, 𝜌0) on𝑚𝐿(𝜏) is given by

(𝛾.𝑓)(𝑤) = ∫
𝐿
𝜏(𝑙)𝑓(𝛾∨(𝑙−1)𝑤)𝑑𝑙.

Let 𝑓′ ∈ 𝑚𝐿(𝜏𝛿
1∕2
𝑃 ) = Hom𝔓0(𝜌0, 𝜏𝛿

1∕2
𝑃 ), 𝛾 ∈ ℋ(𝐿, 𝜌0) and 𝑤 ∈ 𝑊. Recall

the action ofℋ(𝐿, 𝜌0) on𝑚𝐿(𝜏𝛿
1∕2
𝑃 ) is given by

(𝛾.𝑓′)(𝑤) = ∫
𝐿
(𝜏𝛿1∕2𝑃 )(𝑙)𝑓′(𝛾∨(𝑙−1)𝑤)𝑑𝑙

= ∫
𝐿
𝜏(𝑙)𝛿1∕2𝑃 (𝑙)𝑓′(𝛾∨(𝑙−1)𝑤)𝑑𝑙.

Now𝑓′ is a linear transformation from space of 𝜌0 to space of 𝜏𝛿
1∕2
𝑃 . As 𝛿1∕2𝑃 (𝑙) ∈

ℂ×, so 𝛿1∕2𝑃 (𝑙)𝑓′(𝛾∨(𝑙−1)𝑤) = 𝑓′(𝛿1∕2𝑃 (𝑙)𝛾∨(𝑙−1)𝑤). Hence we have

(𝛾.𝑓′)(𝑤) = ∫
𝐿
𝜏(𝑙)𝑓′(𝛿1∕2𝑃 (𝑙)𝛾∨(𝑙−1)𝑤)𝑑𝑙

= ∫
𝐿
𝜏(𝑙)𝑓′(𝛿1∕2𝑃 (𝑙)𝛾(𝑙)∨𝑤)𝑑𝑙.

Further as 𝛿1∕2𝑃 (𝑙) ∈ ℂ×, so 𝛿1∕2𝑃 (𝑙)(𝛾(𝑙))∨ = (𝛿1∕2𝑃 𝛾)(𝑙)∨. Therefore

(𝛾.𝑓′)(𝑤) = ∫
𝐿
𝜏(𝑙)𝑓′((𝛿1∕2𝑃 𝛾)(𝑙)∨𝑤)𝑑𝑙 = (𝛿1∕2𝑃 𝛾).𝑓′(𝑤).

Hence we can conclude that the action of 𝛾 ∈ ℋ(𝐿, 𝜌0) on 𝑓′ ∈ 𝑚𝐿(𝜏𝛿
1∕2
𝑃 ) is

same as the action of 𝛿1∕2𝑃 𝛾 ∈ ℋ(𝐿, 𝜌0) on𝑓′ ∈ 𝑚𝐿(𝜏). Sowehave (𝑇𝑃)∗(𝑚𝐿(𝜏)) =
(𝑡𝑃)∗(𝑚𝐿(𝜏 ⊗ 𝛿1∕2𝑃 )) asℋ(𝐺, 𝜌)- modules. □

From Proposition 2.9, 𝑇𝑃(𝛼) = 𝑡𝑃(𝛼𝛿
−1∕2
𝑃 ). So we have,

𝑇𝑃(𝛼) = 𝑡𝑃(𝛼𝛿
−1∕2
𝑃 )

= 𝑡(𝛼𝛿−1∕2𝑃 𝛿𝑃)

= 𝑡(𝛼𝛿1∕2𝑃 )

= 𝑇+(𝛼𝛿1∕2𝑃 ).
Hence

𝑇𝑃(𝛼)(𝜁) = 𝑇+(𝛼𝛿1∕2𝑃 )(𝜁)

= 𝛿1∕2𝑃 (𝜁)𝑇+(𝛼)(𝜁)

= 𝛿1∕2𝑃 (𝜁)𝛼(𝜁)
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= 𝛿1∕2𝑃 (𝜁)1𝑊∨ .

Thus 𝑇𝑃(𝛼)(𝜁) = 𝛿1∕2𝑃 (𝜁)1𝑊∨ with supp(𝑇𝑃(𝛼)) = supp(𝑡𝑃(𝛼)) = 𝔓𝜁𝔓.

2.5. Depthzero supercuspidal representations. Suppose 𝜏 is an irreducible
cuspidal representation of GL𝑛(𝑘𝐸) inflated to a representation of GL𝑛(𝔒𝐸) =
𝐾0. Then let 𝐾0 = 𝑍𝐾0 where 𝑍 = 𝑍(GL𝑛(𝐸)) = {𝜆 1𝑛 ∣ 𝜆 ∈ 𝐸×}. As any
element of 𝐸× can be written as 𝑢𝜛𝑛

𝐸 for some 𝑢 ∈ 𝔒×
𝐸 and 𝑚 ∈ ℤ. So in fact,

𝐾0 =< 𝜛𝐸1𝑛 > 𝐾0.
Let (𝜆, 𝑉) be a smooth irreducible supercuspidal representation of GL𝑛(𝐸)

such that 𝜆|𝐾0 = 𝜏. Set 1𝑉 to be the identity linear transformation of 𝑉. As
𝜛𝐸1𝑛 ∈ 𝑍, so 𝜆(𝜛𝐸1𝑛) = 𝜔𝜆(𝜛𝐸1𝑛)1𝑉 where 𝜔𝜆 ∶ 𝑍 ⟶ ℂ× is the central
character of 𝜆.
Let 𝜏̃ be a representation of 𝐾0 such that:
(1) 𝜏̃(𝜛𝐸1𝑛) = 𝜔𝜆(𝜛𝐸1𝑛)1𝑉 ,
(2) 𝜏̃|𝐾0 = 𝜏.
Say 𝜔𝜆(𝜛𝐸1𝑛) = 𝑧 where 𝑧 ∈ ℂ×. Now call 𝜏̃ = 𝜏̃𝑧. We have extended 𝜏 to

𝜏̃𝑧 which is a representation of 𝐾0, so that 𝑍 acts by 𝜔𝜆. Hence 𝜆|𝐾0 ⊇ 𝜏̃𝑧 which
implies that Hom𝐾0(𝜏̃𝑧, 𝜆|𝐾0) ≠ 0.
By Frobenius reciprocity for induction from open subgroups,

Hom𝐾0(𝜏̃𝑧, 𝜆|𝐾0) ≃ HomGL𝑛(𝐸)(𝑐-𝐼𝑛𝑑
GL𝑛(𝐸)
𝐾0

𝜏̃𝑧, 𝜆).

Thus HomGL𝑛(𝐸)(𝑐-𝐼𝑛𝑑
GL𝑛(𝐸)
𝐾0

𝜏̃𝑧, 𝜆) ≠ 0. So there exists a non-zero GL𝑛(𝐸)-map
from 𝑐-𝐼𝑛𝑑𝐺𝐾0 𝜏̃𝑧 to 𝜆. As 𝜏 is cuspidal representation, using Cartan decompos-

tion and Mackey’s criteria we can show that 𝑐-𝐼𝑛𝑑GL𝑛(𝐸)𝐾0
𝜏̃𝑧 is irreducible. So

𝜆 ≃ 𝑐-𝐼𝑛𝑑GL𝑛(𝐸)𝐾0
𝜏̃𝑧. As 𝑐-𝐼𝑛𝑑

GL𝑛(𝐸)
𝐾0

𝜏̃𝑧 is irreducible supercuspidal representa-
tion of GL𝑛(𝐸) of depth zero, so 𝜆 is irreducible supercuspidal representation
of GL𝑛(𝐸) of depth zero.
Conversely, let 𝜆 is a irreducible, supercuspidal, depth zero representation

of GL𝑛(𝐸). So 𝜆𝐾1 ≠ {0}. Hence 𝜆|𝐾1 ⊇ 1𝐾1 , where 1𝐾1 is trivial representa-
tion of 𝐾1. This means 𝜆|𝐾0 ⊇ 𝜏, where 𝜏 is an irreducible representation of
𝐾0 such that 𝜏|𝐾1 ⊇ 1𝐾1 . So 𝜏 is trivial on 𝐾1. So 𝜆|𝐾0 contains an irreducible
representation 𝜏 of 𝐾0 such that 𝜏|𝐾1 is trivial. So 𝜏 can be viewed as an irre-
ducible representation of 𝐾0∕𝐾1 ≅ GL𝑛(𝑘𝐸) inflated to 𝐾0 = GL𝑛(𝔒𝐸). The
representation 𝜏 is cuspidal by (a very special case of) A.1 Appendix [ML93].
So we have the following bijection of sets:

{Isomorphism classes of irreducible
cuspidal representations of GL𝑛(𝑘𝐸)

} × ℂ× ⟷

⎧
⎪
⎨
⎪
⎩

Isomorphism classes
of irreducible
supercuspidal
representations of
GL𝑛(𝐸) of depth zero

⎫
⎪
⎬
⎪
⎭

.
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(𝜏, 𝑧) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,→ 𝑐 − 𝐼𝑛𝑑GL𝑛(𝐸)𝐾0
𝜏̃𝑧

(𝜏, 𝜔𝜆(𝜛𝐸1𝑛)) ←,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 𝜆
Recall that 𝜋 is an irreducible supercuspidal depth zero representation of

𝐿 ≅ GL𝑛(𝐸) ×U1(𝐸). So 𝜋 = 𝜆𝜒 where 𝜆 is an irreducible supercuspidal depth
zero representation ofGL𝑛(𝐸) and 𝜒 is an irreducible supercuspidal depth zero
character ofU1(𝐸). From now on we denote the representation 𝜏𝜒 by 𝜌0. So 𝜌0
is an irreducible cuspidal representation of GL𝑛(𝑘𝐸) × U1(𝑘𝐸) inflated to 𝐾0 ×
U1(𝔒𝐸)where𝐾0 = GL𝑛(𝔒𝐸). Recall that we can extend 𝜌0 to a representation
𝜌0 of 𝑍(𝐿)𝔓0 = ∐

𝑛∈ℤ𝔓0𝜁𝑛 via 𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗) for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ. Also
observe that as 𝜆 = 𝑐-𝐼𝑛𝑑GL𝑛(𝐸)𝐾0

𝜏̃, so 𝜋 = 𝜆𝜒 ≃ 𝑐-𝐼𝑛𝑑𝐿𝑍(𝐿)𝔓0
𝜌0.

3. Structure ofℋ(𝑮, 𝝆)
3.1. Representation 𝝆 of 𝕻. Let 𝑉 be the vector space associated with 𝜌0.
Now 𝜌0 is extended to a map 𝜌 from 𝔓 to 𝐺𝐿(𝑉) as follows. By Iwahori fac-
torization, if 𝑗 ∈ 𝔓 then 𝑗 can be written as 𝑗−𝑗0𝑗+, where 𝑗− ∈ 𝔓−, 𝑗+ ∈
𝔓+, 𝑗0 ∈ 𝔓0. Now the map 𝜌 on𝔓 is defined as 𝜌(𝑗) = 𝜌0(𝑗0).

Proposition 3.1. 𝜌 is a homomorphism from𝔓 to 𝐺𝐿(𝑉). So 𝜌 becomes a rep-
resentation of𝔓.

Proof. The proof goes in similar lines as Proposition 5 in [RSS21]. □

3.2. Calculation of𝑵𝑮(𝕻𝟎). We set 𝐺 = U(𝑛, 𝑛+1). To describeℋ(𝐺, 𝜌)we
need to determine 𝑁𝐺(𝜌0) which is given by

𝑁𝐺(𝜌0) = {𝑚 ∈ 𝑁𝐺(𝔓0) ∣ 𝜌0 ≃ 𝜌𝑚0 }.

Further, to find out 𝑁𝐺(𝜌0) we need to determine 𝑁𝐺(𝔓0). To that end we
shall calculate 𝑁GL𝑛(𝐸)(𝐾0). Let 𝑍 = 𝑍(GL𝑛(𝐸)). So 𝑍 = {𝜆1𝑛 ∣ 𝜆 ∈ 𝐸×}.

Lemma 3.2. 𝑁GL𝑛(𝐸)(𝐾0) = 𝐾0𝑍.

Proof. This follows from the Cartan decomposition by a direct matrix calcula-
tion. □

Now let us calculate 𝑁𝐺(𝔓0). Note that 𝐽 =
⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
∈ 𝐺. Indeed,

𝐽 ∈ 𝑁𝐺(𝔓0). The center 𝑍(𝔓0) of𝔓0 is given by

𝑍(𝔓0) = {
⎡
⎢
⎢
⎣

𝑢𝐼𝑑𝑛 0 0
0 𝜆 0
0 0 𝑢−1𝐼𝑑𝑛

⎤
⎥
⎥
⎦

∣ 𝑢 ∈ 𝔒×
𝐸 , 𝜆 ∈ 𝔒×

𝐸 , 𝜆𝜆 = 1}.
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Recall the center 𝑍(𝐿) of 𝐿 is given by

𝑍(𝐿) = {
⎡
⎢
⎢
⎣

𝑎𝐼𝑑𝑛 0 0
0 𝜆 0
0 0 𝑎−1𝐼𝑑𝑛

⎤
⎥
⎥
⎦

∣ 𝑎 ∈ 𝐸×, 𝜆 ∈ 𝐸×, 𝜆𝜆 = 1}.

Proposition 3.3. 𝑁𝐺(𝔓0) = ⟨𝔓0𝑍(𝐿), 𝐽⟩ = 𝔓0𝑍(𝐿) ⋊ ⟨𝐽⟩.
Proof. We use Lemma 3.2 to prove this Proposition. The proof goes in the
similar lines as Proposition 6 in [RSS21]. □

3.3. Calculation of𝑵𝑮(𝝆𝟎).
3.4. Unramified case. We have the following conclusion about 𝑁𝐺(𝜌0) for
the unramified case:
If 𝑛 is even, then𝑁𝐺(𝜌0) = 𝑍(𝐿)𝔓0. If 𝑛 is odd, then𝑁𝐺(𝜌0) = 𝑍(𝐿)𝔓0⋊⟨𝐽⟩.

For details refer to section 5.1 in [RSS21].

3.5. Ramified case: We have the following conclusion about𝑁𝐺(𝜌0) for ram-
ified case:
If 𝑛 is odd, then𝑁𝐺(𝜌0) = 𝑍(𝐿)𝔓0. If 𝑛 is even, then𝑁𝐺(𝜌0) = 𝑍(𝐿)𝔓0⋊⟨𝐽⟩.

For details refer to section 5.2 in [RSS21].

Lemma 3.4. When 𝑛 is odd in the unramified case or when 𝑛 is even in the ram-
ified case, we have𝑁𝐺(𝜌0) = ⟨𝔓0, 𝑤0, 𝑤1⟩, where 𝑤0 = 𝐽 and

𝑤1 =
⎡
⎢
⎢
⎣

0 0 𝜛𝐸
−1𝐼𝑑𝑛

0 1 0
𝜛𝐸𝐼𝑑𝑛 0 0

⎤
⎥
⎥
⎦

.

Proof. The proof goes in the similar lines as Lemma 2 in [RSS21]. □

3.6. Calculation ofℋ(𝑮, 𝝆).
3.6.1. Unramified case: In this section, we will determine the structure of
ℋ(𝐺, 𝜌) for the unramified casewhen 𝑛 is odd. Using cuspidality of 𝜌0, it can be
shown by Theorem 4.15 in [ML93], thatℑ𝐺(𝜌) = 𝔓𝑁𝐺(𝜌0)𝔓. But fromLemma
3.4, 𝑁𝐺(𝜌0) = ⟨𝔓0, 𝑤0, 𝑤1⟩. So ℑ𝐺(𝜌) = 𝔓 ⟨𝔓0, 𝑤0, 𝑤1⟩𝔓 = 𝔓 ⟨𝑤0, 𝑤1⟩𝔓, as
𝔓0 is a subgroup of 𝔓. Let 𝑉 be the vector space corresponding to 𝜌. Let us
recall that ℋ(𝐺, 𝜌) consists of maps 𝑓∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝑉∨) such that support of
𝑓 is compact and 𝑓(𝑝𝑔𝑝′) = 𝜌∨(𝑝)𝑓(𝑔)𝜌∨(𝑝′) for 𝑝, 𝑝′ ∈ 𝔓, 𝑔 ∈ 𝐺. In fact
ℋ(𝐺, 𝜌) consists of ℂ-linear combinations of maps 𝑓∶ 𝐺 ⟶ 𝐸𝑛𝑑ℂ(𝑉∨) such
that 𝑓 is supported on𝔓𝑥𝔓where 𝑥 ∈ ℑ𝐺(𝜌) and 𝑓(𝑝𝑥𝑝′) = 𝜌∨(𝑝)𝑓(𝑥)𝜌∨(𝑝′)
for 𝑝, 𝑝′ ∈ 𝔓. We shall now show there exists 𝜙0 ∈ ℋ(𝐺, 𝜌) with support
𝔓𝑤0𝔓 and satisfies 𝜙20 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙0. Let

𝐾(0) = U(𝑛, 𝑛 + 1) ∩ GL2𝑛+1(𝔒𝐸) = {𝑔 ∈ GL2𝑛+1(𝔒𝐸) ∣ 𝑡𝑔𝐽𝑔 = 𝐽},
𝐾1(0) = {𝑔 ∈ 𝐼𝑑𝑛+1 +𝜛𝐸M2𝑛+1(𝔒𝐸) ∣ 𝑡𝑔𝐽𝑔 = 𝐽},

𝖦 = {𝑔 ∈ GL2𝑛+1(𝑘𝐸) ∣ 𝑡𝑔𝐽𝑔 = 𝐽}.
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The map 𝑟 from 𝐾(0) to 𝖦 given by 𝑟∶ 𝐾(0)
mod𝑝𝐸,,,,,,→ 𝖦 is a surjective group

homomorphism with kernel 𝐾1(0). So by the first isomorphism theorem of
groups we have:

𝐾(0)
𝐾1(0)

≅ 𝖦.

𝑟(𝔓) = 𝖯 =
⎡
⎢
⎣

GL𝑛(𝑘𝐸) 𝑀𝑛×1(𝑘𝐸) M𝑛(𝑘𝐸)
0 U1(𝑘𝐸) 𝑀1×𝑛(𝑘𝐸)
0 0 GL𝑛(𝑘𝐸)

⎤
⎥
⎦

⋂𝖦= Siegel parabolic sub-

group of 𝖦.

Now 𝖯 = 𝖫 ⋉ 𝖴, where 𝖫 is the Siegel Levi component of 𝖯 and 𝖴 is the
unipotent radical of 𝖯. Here

𝖫 = {
⎡
⎢
⎣

𝑎 0 0
0 𝜆 0
0 0 𝑡𝑎−1

⎤
⎥
⎦
∣ 𝑎 ∈ GL𝑛(𝑘𝐸), 𝜆 ∈ 𝑘×𝐸 , 𝜆𝜆 = 1},

𝖴 = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝑘𝐸), 𝑢 ∈ M𝑛×1(𝑘𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

Let 𝑉 be the vector space corresponding to 𝜌. Then the Hecke algebra
ℋ(𝐾(0), 𝜌) is a sub-algebra ofℋ(𝐺, 𝜌).
Let 𝜌 be the representation of 𝖯 which when inflated to𝔓 is given by 𝜌 and

𝑉 is also the vector space corresponding to 𝜌. The Hecke algebraℋ(𝖦, 𝜌) looks
as follows:

ℋ(𝖦, 𝜌) = {𝑓∶ 𝖦 → 𝐸𝑛𝑑ℂ(𝑉∨)
||||||||
𝑓(𝑝𝑔𝑝′) = 𝜌∨(𝑝)𝑓(𝑔)𝜌∨(𝑝′)
where 𝑝, 𝑝′ ∈ 𝖯, 𝑔 ∈ 𝖦

} .

Now the homomorphism 𝑟∶ 𝐾(0) ⟶ 𝖦 extends to a map from
ℋ(𝐾(0), 𝜌) toℋ(𝖦, 𝜌) which we again denote by 𝑟. Thus

𝑟∶ ℋ(𝐾(0), 𝜌)⟶ℋ(𝖦, 𝜌)
is given by 𝑟(𝜙)(𝑟(𝑥)) = 𝜙(𝑥) for 𝜙 ∈ ℋ(𝐾(0), 𝜌) and 𝑥 ∈ 𝐾(0).

Proposition 3.5. The map 𝑟∶ ℋ(𝐾(0), 𝜌) ⟶ ℋ(𝖦, 𝜌) is an algebra isomor-
phism.

Proof. Refer to Proposition 17 in [RSS21] □

Let

𝑤 = 𝑟(𝑤0) = 𝑟(
⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
) =

⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
∈ 𝖦.

Observe that 𝐾(0) ⊇ 𝔓 ⨿𝔓𝑤0𝔓 and 𝖦 ⊇ 𝖯 ⨿ 𝖯𝑤0𝖯.
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The induced representation 𝐼𝑛𝑑𝖦𝖯 𝜌 is a sum of two irreducible subrepresen-
tations (by general theory). The ratio of the dimensions of these subrepresen-
tations gives a parameter in the Hecke algebra. This is part of Howlett-Lehrer’s
general theory. Kutzko-Morris reworks this key observation. Hence we have
𝐼𝑛𝑑𝖦𝖯 𝜌 = 𝜋1 ⊕ 𝜋2, where 𝜋1, 𝜋2 are distinct irreducible representations of 𝖦
with dim𝜋2 ⩾ dim𝜋1. Let 𝜆 =

dim𝜋2
dim𝜋1

. By Proposition 3.2 in [KM06], there exists

a unique 𝜙 inℋ(𝖦, 𝜌)with support 𝖯𝑤𝖯 such that 𝜙2 = 𝜆+(𝜆−1)𝜙. By Propo-
sition 3.5, there is a unique element 𝜙0 inℋ(𝐾(0), 𝜌) such that 𝑟(𝜙0) = 𝜙. Thus
supp(𝜙0)=𝔓𝑤0𝔓 and 𝜙20 = 𝜆 + (𝜆 − 1)𝜙0. As support of 𝜙0 = 𝔓𝑤0𝔓 ⊆ 𝐾(0) ⊆
𝐺, so 𝜙0 can be extended to 𝐺 and viewed as an element ofℋ(𝐺, 𝜌). Thus 𝜙0
satisfies the following relation inℋ(𝐺, 𝜌):

𝜙20 = 𝜆 + (𝜆 − 1)𝜙0.
We shall now show that 𝜆 = 𝑞𝑛. Recall that as 𝜌0 is an irreducible cuspidal

representation of GL𝑛(𝑘𝐸) × U1(𝑘𝐸), so 𝜌0 = 𝜏𝜃𝜒, where 𝜏𝜃 is an irreducible
cuspidal representation ofGL𝑛(𝑘𝐸) and𝜒 is a cuspidal representation ofU1(𝑘𝐸).
Note that here 𝜃 is a regular charcter of 𝑙× where [𝑙 ∶ 𝑘𝐸] = 𝑛 and 𝑘𝐸 = 𝔽𝑞2 so
that 𝑙 = 𝔽𝑞2𝑛 . Recall that 𝜃Φ = 𝜃𝑞2 . Hence, from Proposition 8 in [RSS21] we
have, 𝜃𝑞𝑛 = 𝜃−1 .
As𝖦 = U(𝑛, 𝑛+1)(𝑘𝐸), so the dual group𝖦∗ is given by𝖦∗ ≅ U(𝑛, 𝑛+1)(𝑘𝐸)

(i.e 𝖦∗ ≅ 𝖦). Note that 𝜃 corresponds to a semi-simple element 𝑠∗ ∈ 𝐿∗ in 𝖦∗.
Then by Theorems 8.4.8 and 8.4.9 in [CR92], we have 𝜆 = |𝑐𝖦∗(𝑠∗)|𝑝.
Note that 𝐿∗ ≅ 𝐿. So 𝑠∗ corresponds to 𝑠 in 𝐿. Hence, we have 𝜆 = |𝑐𝖦(𝑠)|𝑝.

We write 𝑠 =
⎡
⎢
⎢
⎣

𝛼 0 0
0 𝜆 0
0 0 𝑡𝛼−1

⎤
⎥
⎥
⎦

. Observe that 𝜆𝜆 = 1, 𝜆 ∈ 𝑘×𝐸 , 𝛼 ∈ 𝔽×𝑞2𝑛 . More

precisely, 𝛼 is in the image of 𝔽×𝑞2𝑛 under a fixed embedding 𝔽
×
𝑞2𝑛 ↪ GL𝑛(𝔽𝑞2).

This embedding arises when we let 𝑙 act on the basis of 𝑙 over 𝑘𝐸 via multipli-
cation. We can thus embed 𝑙 in 𝑀𝑛(𝑘𝐸) and 𝑙× in GL𝑛(𝑘𝐸) which we call the
usual embedding. Note that 𝜃 is regular implies that 𝔽𝑞2𝑛 = 𝔽𝑞2(𝛼). Our goal is
to compute |𝑐𝖦(𝑠)|𝑝.
By Proposition 3.19 in [DFM91], we have Sylow p-subgroups of 𝑐𝖦(𝑠) are the

sets of 𝔽𝑞2-points of the Unipotent radicals of the Borel subgroups of 𝑐𝖦(𝑠). By
Proposition 2.2 in [DFM91], we have Borel subgroups of 𝑐𝖦(𝑠) are of the form
𝐵∩𝑐𝖦(𝑠), where 𝐵 is a Borel subgroup of 𝖦. As Siegel parabolic subgroup 𝖯 of 𝖦
contains a Borel subgroup of𝖦, so 𝑐𝖯(𝑠) = 𝖯∩𝑐𝖦(𝑠) contains a Sylow p-subgroup
of 𝑐𝖦(𝑠).

Lemma 3.6. 𝑐𝖯(𝑠) = 𝑐𝖫(𝑠) ⋉ 𝑐𝖴(𝑠).

Proof. Recall that 𝖯 = 𝖫 ⋉ 𝖴. Hence 𝖫 ∩ 𝖴 = ∅ and 𝖴 ⊴ 𝖯. As 𝖫 ∩ 𝖴 = ∅⟹
𝑐𝖫(𝑠) ∩ 𝑐𝖴(𝑠) = ∅. Note that 𝑐𝖴(𝑠) ⊴ (𝑐𝖫(𝑠) × 𝑐𝖴(𝑠)). So it makes sense to talk of
𝑐𝖫(𝑠) ⋉ 𝑐𝖴(𝑠).
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Let 𝑥 ∈ 𝖯(𝑠) ⟹ 𝑥 ∈ 𝖯, 𝑠𝑥𝑠−1 = 𝑥. Note that as 𝑥 ∈ 𝖯 so 𝑥 = 𝑙𝑢 for some
𝑙 ∈ 𝖫, 𝑢 ∈ 𝖴. Therefore,

𝑠𝑙𝑢𝑠−1 = 𝑙𝑢
⟹ 𝑠𝑙𝑠−1𝑠𝑢𝑠−1 = 𝑙𝑢.

Let 𝑠𝑙𝑠−1 = 𝑚 and 𝑠𝑢𝑠−1 = 𝑛. Now as 𝑠 ∈ 𝖫, so 𝑠𝑙𝑠−1 = 𝑚 ∈ 𝖫. Note that
𝑠𝑢𝑠−1 = 𝑛 ∈ 𝖴 as 𝖴 ⊴ 𝖯. Therefore, we have 𝑚𝑛 = 𝑙𝑢 or 𝑚−1𝑙 = 𝑛𝑢−1. But
𝑚−1𝑙 ∈ 𝖫 and 𝑛𝑢−1 ∈ 𝖴, sowe have𝑚−1𝑙, 𝑛𝑢−1 ∈ 𝖫∩𝖴. Recall that 𝖫∩𝖴 = 𝑒, so
𝑚 = 𝑙, 𝑛 = 𝑢. Therefore, 𝑠𝑙𝑠−1 = 𝑙, 𝑠𝑢𝑠−1 = 𝑢. So we haveª ∈ 𝑐𝖫(𝑠), 𝑢 ∈ 𝑐𝖴(𝑠).
Hence, 𝑥 ∈ 𝑐𝖫(𝑠) ⋉ 𝑐𝖴(𝑠). So 𝑐𝖯(𝑠) ⊆ 𝑐𝖫(𝑠) ⋉ 𝑐𝖴(𝑠).
Conversely, let 𝑥 ∈ 𝑐𝖫(𝑠) ⋉ 𝑐𝖴(𝑠). So 𝑥 = 𝑙𝑢 where 𝑙 ∈ 𝑐𝖫(𝑠) and 𝑢 ∈ 𝑐𝖴(𝑠).

Hence 𝑠𝑙𝑠−1 = 𝑙 and 𝑠𝑢𝑠−1 = 𝑢. Therefore, 𝑠𝑥𝑠−1 = 𝑠𝑙𝑢𝑠−1 = 𝑠𝑙𝑠−1𝑠𝑢𝑠−1 = 𝑙𝑢 =
𝑥. So𝑥 ∈ 𝑐𝖯(𝑠). Hence 𝑐𝖫(𝑠)⋉𝑐𝖴(𝑠) ⊆ 𝑐𝖯(𝑠). Therefore, 𝑐𝖯(𝑠) = 𝑐𝖫(𝑠)⋉𝑐𝖴(𝑠). □

From Lemma 3.6, we get |𝑐𝖯(𝑠)|𝑝 = |𝑐𝖫(𝑠)|𝑝|𝑐𝖴(𝑠)|𝑝. Note that
|𝑐𝖫(𝑠)|𝑝 = 1. Therefore, |𝑐𝖯(𝑠)|𝑝 = |𝑐𝖫(𝑠)|𝑝|𝑐𝖴(𝑠)|𝑝 = |𝑐𝖴(𝑠)|𝑝.

Lemma 3.7. |𝑐𝖴(𝑠)| = |𝑐𝖴(𝑠)|𝑝 = 𝑞𝑛.

Proof. Recall that the elements of 𝖴 are of form

𝑚 =
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦

where𝑥 ∈ 𝑀𝑛(𝑘𝐸), 𝑢 ∈ 𝑀𝑛×1(𝑘𝐸), 𝑋+𝑡𝑋+𝑢𝑡𝑢 = 0. If𝑚 ∈ 𝑐𝖴(𝑠) then𝑚𝑠 = 𝑠𝑚.
So we have,

⎡
⎢
⎢
⎣

𝛼 0 0
0 𝜆 0
0 0 𝑡𝛼−1

⎤
⎥
⎥
⎦

⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
=
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦

⎡
⎢
⎢
⎣

𝛼 0 0
0 𝜆 0
0 0 𝑡𝛼−1

⎤
⎥
⎥
⎦

.

From the above matrix relation, it follows that 𝛼𝑢 = 𝜆𝑢, 𝛼𝑋 = 𝑋𝑡𝛼−1, 𝜆𝑡𝑢 =
𝑡𝑢𝑡𝛼−1. Recall that𝑋+𝑡𝑋+𝑢𝑡𝑢 = 0, 𝜆𝜆 = 1. Also recall that 𝑢 ∈ 𝑀𝑛×1(𝑘𝐸), 𝛼 ∈
𝔽×𝑞2𝑛 , 𝑘𝐸(𝛼) = 𝑙. As 𝛼𝑢 = 𝜆𝑢, so if 𝑢 ≠ 0 then 𝜆 ∈ 𝑘𝐸 is an eigen value of 𝛼. So 𝜆
is a root of theminimal polynomial of𝛼 over 𝑘𝐸 . But as theminimal polynomial
is irreducible over 𝑘𝐸[𝑥], so this is a contradiction. So 𝑢 = 0.
So we have to find𝑋 such that𝑋+ 𝑡𝑋 = 0, 𝛼𝑋 = 𝑋𝑡𝛼−1. LetΞ = 𝑀𝑛(𝑘𝐸) and

set Ξ𝜖 = {𝑋 ∈ Ξ ∣ 𝑡𝑋 = 𝜖𝑋}. Note that 𝑋 ∈ Ξ can be written as 𝑋+𝑡𝑋
2

+ 𝑋−𝑡𝑋
2

, so
Ξ = Ξ1 ⊕Ξ−1.
Let us set Ξ(𝛼) = {𝑋 ∈ Ξ ∣ 𝛼𝑋𝑡𝛼 = 𝑋} and Ξ𝜖(𝛼) = {𝑋 ∈ Ξ𝜖 ∣ 𝛼𝑋𝑡𝛼 = 𝑋}.

Thenwehave,Ξ(𝛼) = Ξ1(𝛼)⊕Ξ−1(𝛼). Let us choose 𝛾 ∈ 𝑘𝐸 such that 𝛾 ≠ 0 and
𝛾 = −𝛾. Note that, if𝑋 ∈ Ξ1(𝛼) then𝑋 = 𝑡𝑋 and 𝛼𝑋𝑡𝛼 = 𝑋. So 𝑡(𝛾𝑋) = −(𝛾𝑋)
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and 𝛼(𝛾𝑋)𝑡𝛼 = 𝛾𝑋. Therefore, 𝛾𝑋 ∈ Ξ−1(𝛼). We also have a bijection from
𝑐𝖴(𝑠)⟶ Ξ1(𝛼) given by:

⎡
⎢
⎣

𝐼𝑑𝑛 0 𝑋
0 1 0
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
⟶ 𝑋.

Hence we have, |𝑐𝖴(𝑠)| = |Ξ1(𝛼)| = |Ξ−1(𝛼)|. Let us now compute |Ξ(𝛼)|.
So we want to find the cardinality of 𝑋 ∈ Ξ such that 𝛼𝑋𝑡𝛼 = 𝑋 for a fixed
𝛼 ∈ 𝔽×𝑞2𝑛 . Let 𝜙1∶ 𝔽𝑞2𝑛 ↪ 𝑀𝑛(𝔽𝑞2) be the usual embedding take 𝛽 to 𝑚𝛽 . Let

𝑓(𝑥) be the minimal polynomial of 𝛼 over 𝑘𝐸 = 𝔽𝑞2 . So we have 𝔽𝑞2𝑛 ≅
𝔽𝑞2 [𝑥]
<𝑓(𝑥)>

.
Hence, a polynomial 𝑝(𝛼) ∈ 𝑘𝐸(𝛼) is mapped to 𝑝(𝑚𝛼).
Let us consider an another embedding 𝜙2∶ 𝔽𝑞2𝑛 ≅

𝔽𝑞2 [𝑥]
<𝑓(𝑥)>

↪ 𝑀𝑛(𝔽𝑞2) given

by 𝜙2(𝛼) = 𝑡𝑚−1
𝛼 . We must show that 𝜙2 is well-defined. That is, we have to

show that 𝑓(𝑡𝑚−1
𝛼 ) = 0. But observe that, 𝑓(𝑡𝑚−1

𝛼 ) = 𝑡𝑓(𝑚−1
𝛼 ) = 𝑡𝑓(𝑚𝑞𝑛

𝛼 ) =
𝑡(𝑓(𝑚𝛼))𝑞𝑛 = 0𝑞𝑛 = 0. In the above relations, we have used the fact that 𝜃−1 =
𝜃𝑞𝑛 which follows from Proposition 8 in [RSS21]. Therefore, 𝜙2 is well-defined.
Hence we have two different embeddings 𝜙1 and 𝜙2 of 𝑙 in 𝑀𝑛(𝑞2). Recall

that, we want to compute the cardinality of 𝑋 ∈ Ξ such that 𝛼𝑋𝑡𝛼 = 𝑋 for a
fixed 𝛼 ∈ 𝔽×𝑞2𝑛 . That is, we want to compute the cardinality of 𝑋 ∈ Ξ such that
𝑋𝜙2(𝜆) = 𝜙1(𝜆)𝑋 for 𝜆 ∈ 𝑙 = 𝔽𝑞2𝑛.
Note that, we canmake𝑉 = 𝑘𝑛𝐸 into a 𝑙-module in twodifferentways. Namely,

for 𝜆 ∈ 𝑙 and 𝑣 ∈ 𝑉 we have,

𝜆.𝑣 = 𝜙1(𝜆).𝑣
𝜆 ∗ 𝑣 = 𝜙2(𝜆).𝑣

Let us denote the two 𝑙-modules by 1𝑘𝑛𝐸 and 2𝑘𝑛𝐸 . So 𝑋𝜙2(𝜆) = 𝜙1(𝜆)𝑋 ⟺
𝑋 ∈ Hom𝑙(1𝑘𝑛𝐸 , 2𝑘

𝑛
𝐸) ≅ Hom𝑙(𝑙, 𝑙) ≅ 𝑙. Therefore, wehave |Ξ(𝛼)| = |Hom𝑙(1𝑘𝑛𝐸 , 2𝑘

𝑛
𝐸)| =

|𝑙| = 𝑞2𝑛.
Note that |Ξ(𝛼)| = |Ξ1(𝛼)|.|Ξ−1(𝛼)|. As |Ξ1(𝛼)| = |Ξ−1(𝛼)|, wehave |Ξ(𝛼)| =

|Ξ−1(𝛼)|2 = 𝑞2𝑛. Thus |Ξ−1(𝛼)| = 𝑞𝑛. Therefore, |𝑐𝖴(𝑠)|𝑝 = |𝑐𝖴(𝑠)| = |Ξ−1(𝛼)| =
𝑞𝑛. □

From Lemmas 3.7 and 3.6 we have,

𝜆 = |𝑐𝖴(𝑠)|𝑝 = |𝑐𝖫(𝑠)|𝑝.|𝑐𝖫(𝑠)|𝑝 = 1.𝑞𝑛 = 𝑞𝑛.

Recall that 𝜙0 ∈ ℋ(𝐺, 𝜌) has support 𝔓𝑤0𝔓 and satisfies the relation 𝜙20 =
𝜆 + (𝜆 − 1)𝜙0. So we have 𝜙20 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙0 inℋ(𝐺, 𝜌).
Now we shall now show that there exists 𝜙1 ∈ ℋ(𝐺, 𝜌) with support𝔓𝑤1𝔓

satisfying the same relation as 𝜙0. Let 𝜂 ∈ U(𝑛, 𝑛+1) be such that 𝜂𝑤0𝜂−1 = 𝑤1
and 𝜂𝔓𝜂−1 = 𝔓.



1120 SUBHA SANDEEP REPAKA

As 𝔓 ⊆ 𝐾(0) and 𝑤0 ∈ 𝐾(0), so 𝐾(0) ⊇ 𝔓 ⨿ 𝔓𝑤0𝔓 ⟹ 𝜂𝐾(0)𝜂−1 ⊇
𝜂𝔓𝜂−1 ⨿ 𝜂𝔓𝑤0𝔓𝜂−1. But observe that 𝜂𝔓𝜂−1 = 𝔓 and

𝜂𝔓𝑤0𝔓𝜂−1 = (𝜂𝔓𝜂−1)(𝜂𝑤0𝜂−1)(𝜂𝔓𝜂−1) = 𝔓𝑤1𝔓
(since 𝜂𝑤0𝜂−1 = 𝑤1). So 𝜂𝐾(0)𝜂−1 ⊇ 𝔓⨿𝔓𝑤1𝔓.
Let 𝑟′ be homomorphism of groups given by the map 𝑟′∶ 𝜂𝐾(0)𝜂−1 ⟶ 𝖦

such that 𝑟′(𝑥) = (𝜂−1𝑥𝜂)𝑚𝑜𝑑𝑝𝐸 for 𝑥 ∈ 𝜂𝐾(0)𝜂−1. Observe that 𝑟′ is a surjec-
tive homomorphism of groups because

𝑟′(𝜂𝐾(0)𝜂−1) = (𝜂−1𝜂𝐾(0)𝜂−1𝜂)𝑚𝑜𝑑𝑝𝐸 = 𝐾(0)𝑚𝑜𝑑𝑝𝐸 = 𝖦.
The kernel of group homomorphism is 𝜂𝐾1(0)𝜂−1. Now by the first isomor-
phism theorem of groups we have 𝜂𝐾(0)𝜂−1

𝜂𝐾1(0)𝜂−1
≅ 𝐾(0)

𝐾1(0)
≅ 𝖦. Also 𝑟′(𝜂𝔓𝜂−1) =

(𝜂−1𝜂𝔓𝜂−1𝜂)𝑚𝑜𝑑𝑝𝐸 = 𝔓𝑚𝑜𝑑𝑝𝐸 = 𝖯. Let 𝜌 be representation of 𝖯which when
inflated to𝔓 is given by 𝜌. The Hecke algebra of 𝜂𝐾(0)𝜂−1 which we denote by
ℋ(𝜂𝐾(0)𝜂−1, 𝜌) is a sub-algebra ofℋ(𝐺, 𝜌).
The map 𝑟′ ∶ 𝜂𝐾(0)𝜂−1 ⟶ 𝖦 extends to a map from ℋ(𝜂𝐾(0)𝜂−1, 𝜌) to

ℋ(𝖦, 𝜌) which we gain denote by 𝑟′. Thus 𝑟′∶ ℋ(𝜂𝐾(0)𝜂−1, 𝜌)⟶ ℋ(𝖦, 𝜌) is
given by 𝑟′(𝜙)(𝑟′(𝑥)) = 𝜙(𝑥) for 𝜙 ∈ ℋ(𝜂𝐾(0)𝜂−1, 𝜌) and 𝑥 ∈ 𝜂𝐾(0)𝜂−1.
The proof that 𝑟′ is an isomorphism goes in the similar lines as Proposition

3.5. We can observe that 𝑟′(𝑤1) = 𝑤 ∈ 𝖦, where 𝑤 is defined as before in this
section. As we know from our previous discussion in this section, that there
exists a unique 𝜙 inℋ(𝖦, 𝜌) with support 𝖯𝑤𝖯 such that 𝜙2 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙.
Hence there is a unique element 𝜙1 ∈ ℋ(𝜂𝐾(0)𝜂−1, 𝜌) such that 𝑟′(𝜙1) = 𝜙.
Thus supp(𝜙1)=𝔓𝑤1𝔓 and 𝜙21 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙1. Now 𝜙1 can be extended to
𝐺 and viewed as an element inℋ(𝐺, 𝜌) as 𝔓𝑤1𝔓 ⊆ 𝜂𝐾(0)𝜂−1 ⊆ 𝐺. Thus 𝜙1
satisfies the following relation inℋ(𝐺, 𝜌):

𝜙21 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙1.
Thus we have shown there exists 𝜙𝑖 ∈ ℋ(𝐺, 𝜌) with supp(𝜙𝑖)=𝔓𝑤𝑖𝔓 satis-

fying 𝜙2𝑖 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙𝑖 for 𝑖 = 0, 1.

Lemma 3.8. 𝜙0 and 𝜙1 are units inℋ(𝐺, 𝜌).

Proof. As 𝜙2𝑖 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙𝑖 for 𝑖 = 0, 1. So 𝜙𝑖(
𝜙𝑖+(1−𝑞𝑛)1

𝑞𝑛
) = 1 for i=0,1.

Hence 𝜙0 and 𝜙1 are units inℋ(𝐺, 𝜌). □

Lemma 3.9. Let 𝜙, 𝜓 ∈ ℋ(𝐺, 𝜌) with support of 𝜙, 𝜓 being𝔓𝑥𝔓,𝔓𝑦𝔓 respec-
tively. Then supp(𝜙 ∗ 𝜓)=supp(𝜙𝜓) ⊆ (supp(𝜙))(supp(𝜓))=𝔓𝑥𝔓𝑦𝔓.

Proof. The proof is same as that of Lemma 5 in [RSS21]. □

Let 𝜁 = 𝑤0𝑤1, So

𝜁 =
⎡
⎢
⎣

𝜛𝐸𝐼𝑑𝑛 0 0
0 1 0
0 0 𝜛−1

𝐸 𝐼𝑑𝑛

⎤
⎥
⎦
.
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Lemma 3.10. supp(𝜙0 ∗ 𝜙1) = 𝔓𝜁𝔓 = 𝔓𝑤0𝑤1𝔓.

Proof. It follows from Lemma 3.9 that supp(𝜙0 ∗ 𝜙1) ⊆ 𝔓𝑤0𝔓𝑤1𝔓. Now let
us recall𝔓0, 𝔓+, 𝔓−.

𝔓0 = {
⎡
⎢
⎣

𝑎 0 0
0 𝜆 0
0 0 𝑡𝑎−1

⎤
⎥
⎦
∣ 𝑎 ∈ GL𝑛(𝔒𝐸), 𝜆 ∈ 𝔒×

𝐸 , 𝜆𝜆 = 1},

𝔓+ = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝔒𝐸), 𝑢 ∈ M𝑛×1(𝔒𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0},

𝔓− = {
⎡
⎢
⎣

𝐼𝑑𝑛 0 0
−𝑡𝑢 1 0
𝑋 𝑢 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐩𝐸), 𝑢 ∈ M𝑛×1(𝐩𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

It is easy observe that 𝑤0𝔓−𝑤−1
0 ⊆ 𝔓+, 𝑤0𝔓0𝑤−1

0 = 𝔓0, 𝑤−1
1 𝔓+𝑤1 ⊆ 𝔓−.

Now we have

𝔓𝑤0𝔓𝑤1𝔓 = 𝔓𝑤0𝔓−𝔓0𝔓+𝑤1𝔓
= 𝔓𝑤0𝔓−𝑤−1

0 𝑤0𝔓0𝑤−1
0 𝑤0𝑤1𝑤−1

1 𝔓+𝑤1𝔓
⊆ 𝔓𝔓+𝔓0𝑤0𝑤1𝔓−𝔓
= 𝔓𝑤0𝑤1𝔓
= 𝔓𝜁𝔓.

So 𝔓𝑤0𝔓𝑤1𝔓 ⊆ 𝔓𝑤0𝑤1𝔓 = 𝔓𝜁𝔓. On the contrary, as 1 ∈ 𝔓, so 𝔓𝜁𝔓 =
𝔓𝑤0𝑤1𝔓 ⊆ 𝔓𝑤0𝔓𝑤1𝔓. Hence we have 𝔓𝑤0𝔓𝑤1𝔓 = 𝔓𝑤0𝑤1𝔓 = 𝔓𝜁𝔓.
Therefore supp(𝜙0 ∗ 𝜙1) ⊆ 𝔓𝑤0𝔓𝑤1𝔓 = 𝔓𝑤0𝑤1𝔓 = 𝔓𝜁𝔓. This implies
supp(𝜙0 ∗ 𝜙1) = ∅ or 𝔓𝜁𝔓. But if supp(𝜙0 ∗ 𝜙1) = ∅ then (𝜙0 ∗ 𝜙1) = 0
which is a contradiction. Thus supp(𝜙0 ∗ 𝜙1) = 𝔓𝜁𝔓. □

We shall now show that 𝜙0 and 𝜙1 generate the Hecke algebraℋ(𝐺, 𝜌). To
this end, recall thatℋ(𝐺, 𝜌) consists ofℂ-linear combinations ofmaps𝑓∶ 𝐺 ⟶
𝐸𝑛𝑑ℂ(𝑉∨) such that 𝑓 is supported on𝔓𝑥𝔓 where 𝑥 ∈ ℑ𝐺(𝜌) and 𝑓(𝑝𝑥𝑝′) =
𝜌∨(𝑝)𝑓(𝑥)𝜌∨(𝑝′) for 𝑝, 𝑝′ ∈ 𝔓. Also note that ℑ𝐺(𝜌) = 𝔓 < 𝔓0, 𝑤0, 𝑤1 >
𝔓. Observe that as 𝑤0 normalizes 𝔓0 and as 𝔓0 being a subgroup of 𝔓, so
ℋ(𝐺, 𝜌) consists of ℂ-linear combinations of maps 𝑓∶ 𝐺 ⟶ 𝐸𝑛𝑑ℂ(𝑉∨) such
that 𝑓 is supported on 𝔓𝑥𝔓 where 𝑥 is a word in 𝑤0, 𝑤1 with 𝑤2

0 = 𝑤2
1 = 𝐼𝑑

and 𝑓(𝑝𝑥𝑝′) = 𝜌∨(𝑝)𝑓(𝑥)𝜌∨(𝑝′) for 𝑝, 𝑝′ ∈ 𝔓. Recall that support of 𝜙0 is
𝔓𝑤0𝔓 and support of 𝜙1 is 𝔓𝑤1𝔓. Also note that from Lemma 3.10, we have
supp(𝜙0 ∗ 𝜙1) = 𝔓𝑤0𝑤1𝔓. So any 𝑓∶ 𝐺 ⟶ 𝐸𝑛𝑑ℂ(𝑉∨) such that 𝑓 is sup-
ported on 𝔓𝑥𝔓 where 𝑥 is a word in 𝑤0, 𝑤1 and 𝑓(𝑝𝑥𝑝′) = 𝜌∨(𝑝)𝑓(𝑥)𝜌∨(𝑝′)
for 𝑝, 𝑝′ ∈ 𝔓 can be written as word in 𝜙0 and 𝜙1. Therefore,ℋ(𝐺, 𝜌) consists
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of ℂ-linear combinations of words in 𝜙0 and 𝜙1. Hence, 𝜙0 and 𝜙1 generate
ℋ(𝐺, 𝜌). Let us denote the Hecke algebraℋ(𝐺, 𝜌) by 𝒜. So we have

𝒜 = ℋ(𝐺, 𝜌) =
⟨
𝜙𝑖 ∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝜌∨)

||||||||||

𝜙𝑖 is supported on𝔓𝑤𝑖𝔓
and 𝜙𝑖(𝑝𝑤𝑖𝑝′) = 𝜌∨(𝑝)𝜙𝑖(𝑤𝑖)𝜌∨(𝑝′)
where 𝑝, 𝑝′ ∈ 𝔓, 𝑖 = 0, 1

⟩

where 𝜙𝑖 satisfies the relation:
𝜙2𝑖 = 𝑞𝑛 + (𝑞𝑛 − 1)𝜙𝑖 for 𝑖 = 0, 1.

As 𝜙0, 𝜙1 are units in algebra 𝒜, so 𝜓 = 𝜙0𝜙1 is a unit too in 𝒜 and 𝜓−1 =
𝜙−11 𝜙−10 . Now as we have seen before that

𝑠𝑢𝑝𝑝(𝜙0𝜙1) ⊆ 𝔓𝑤0𝑤1𝔓⟹ 𝑠𝑢𝑝𝑝(𝜓) ⊆ 𝔓𝜁𝔓⟹ 𝑠𝑢𝑝𝑝(𝜓) = ∅ or𝔓𝜁𝔓.
If supp(𝜓)= ∅ ⟹ 𝜓 = 0 which is a contradiction as 𝜓 is a unit in 𝒜. So
supp(𝜓) = 𝔓𝜁𝔓. As 𝜓 is a unit in 𝒜, we can show as before that supp(𝜓2) =
𝔓𝜁2𝔓. Hence by induction on 𝑛 ∈ ℕ, we can further show that that supp(𝜓𝑛)=
𝔓𝜁𝑛𝔓 for 𝑛 ∈ ℕ.
Now 𝒜 contains a sub- algebra generated by 𝜓, 𝜓−1 over ℂ and we denote

this sub-algebra by ℬ. So ℬ = ℂ[𝜓, 𝜓−1] where

ℬ = ℂ[𝜓, 𝜓−1] = {𝑐𝑘𝜓𝑘 +⋯+ 𝑐𝑙𝜓𝑙
||||||
𝑐𝑘, … , 𝑐𝑙 ∈ ℂ;
𝑘 < 𝑙; 𝑘, 𝑙 ∈ ℤ} .

Proposition 3.11. The unique algebra homomorphism ℂ[𝑥, 𝑥−1] ⟶ ℬ given
by 𝑥 ⟶ 𝜓 is an isomorphism. Soℬ ≃ ℂ[𝑥, 𝑥−1].
Proof. The proof is same as that of Proposition 18 in [RSS21]. □

3.6.2. Ramified case: In this section we determine the structure ofℋ(𝐺, 𝜌)
for the ramified case when 𝑛 is even. Recall ℑ𝐺(𝜌) = 𝔓𝑁𝐺(𝜌0)𝔓. But from
lemma3.4,𝑁𝐺(𝜌0) = ⟨𝔓0, 𝑤0, 𝑤1⟩. Soℑ𝐺(𝜌) = 𝔓 ⟨𝔓0, 𝑤0, 𝑤1⟩𝔓 = 𝔓 ⟨𝑤0, 𝑤1⟩𝔓,
as𝔓0 is a subgroup of𝔓. Let 𝑉 be the vector space corresponding to 𝜌. Let us
recall that ℋ(𝐺, 𝜌) consists of maps 𝑓∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝑉∨) such that support of
𝑓 is compact and 𝑓(𝑝𝑔𝑝′) = 𝜌∨(𝑝)𝑓(𝑔)𝜌∨(𝑝′) for 𝑝, 𝑝′ ∈ 𝔓, 𝑔 ∈ 𝐺. In fact
ℋ(𝐺, 𝜌) consists of ℂ-linear combinations of maps 𝑓∶ 𝐺 ⟶ 𝐸𝑛𝑑ℂ(𝑉∨) such
that 𝑓 is supported on𝔓𝑥𝔓where 𝑥 ∈ ℑ𝐺(𝜌) and 𝑓(𝑝𝑥𝑝′) = 𝜌∨(𝑝)𝑓(𝑥)𝜌∨(𝑝′)
for 𝑝, 𝑝′ ∈ 𝔓. We shall now show there exists 𝜙0 ∈ ℋ(𝐺, 𝜌) with support
𝔓𝑤0𝔓 and satisfies 𝜙20 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙0. Let

𝐾(0) = U(𝑛, 𝑛 + 1) ∩ GL2𝑛+1(𝔒𝐸) = {𝑔 ∈ GL2𝑛+1(𝔒𝐸) ∣𝑡 𝑔𝐽𝑔 = 𝐽},
𝐾1(0) = {𝑔 ∈ 𝐼𝑑2𝑛+1 +𝜛𝐸M2𝑛+1(𝔒𝐸) ∣𝑡 𝑔𝐽𝑔 = 𝐽},

𝖦 = {𝑔 ∈ GL2𝑛+1(𝑘𝐸) ∣𝑡 𝑔𝐽𝑔 = 𝐽}.

The map 𝑟 from 𝐾(0) to 𝖦 given by 𝑟∶ 𝐾(0)
mod𝑝𝐸,,,,,,→ 𝖦 is a surjective group

homomorphism with kernel 𝐾1(0). So by the first isomorphism theorem of
groups we have:

𝐾(0)
𝐾1(0)

≅ 𝖦.
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𝑟(𝔓) = 𝖯 =
⎡
⎢
⎣

GL𝑛(𝑘𝐸) 𝑀𝑛×1(𝑘𝐸) M𝑛(𝑘𝐸)
0 U1(𝑘𝐸) 𝑀1×𝑛(𝑘𝐸)
0 0 GL𝑛(𝑘𝐸)

⎤
⎥
⎦

⋂𝖦= Siegel parabolic sub-

group of 𝖦.

Now 𝖯 = 𝖫 ⋉ 𝖴, where 𝖫 is the Siegel Levi component of 𝖯 and 𝖴 is the
unipotent radical of 𝖯. Here

𝖫 = {
⎡
⎢
⎢
⎣

𝑎 0 0
0 𝜆 0
0 0 𝑡𝑎−1

⎤
⎥
⎥
⎦

∣ 𝑎 ∈ GL𝑛(𝑘𝐸), 𝜆 ∈ 𝐸×, 𝜆𝜆 = 1},

𝖴 = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝑘𝐸), 𝑢 ∈ M𝑛×1(𝑘𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

If 𝑉 be the vector space corresponding to 𝜌, the Hecke algebraℋ(𝐾(0), 𝜌) is
a sub-algebra ofℋ(𝐺, 𝜌). Let 𝜌 be the representation of 𝖯 which when inflated
to𝔓 is given by 𝜌 and 𝑉 is also the vector space corresponding to 𝜌. Recall the
Hecke algebraℋ(𝖦, 𝜌) has the same structure as was defined earlier in section
3.6.1 for the unramified case.
Now the homomorphism 𝑟∶ 𝐾(0) → 𝖦 extends to a map fromℋ(𝐾(0), 𝜌) to

ℋ(𝖦, 𝜌)which we again denote by 𝑟. Thus 𝑟∶ ℋ(𝐾(0), 𝜌)⟶ℋ(𝖦, 𝜌) is given
by

𝑟(𝜙)(𝑟(𝑥)) = 𝜙(𝑥)

for𝜙 ∈ ℋ(𝐾(0), 𝜌) and𝑥 ∈ 𝐾(0).
As in the unramified case, when 𝑛 is odd, we can show that ℋ(𝐾(0), 𝜌) is

isomorphic toℋ(𝖦, 𝜌) as algebras via 𝑟.

Let 𝑤 = 𝑟(𝑤0) = 𝑟(
⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
) =

⎡
⎢
⎣

0 0 𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
∈ 𝖦. Clearly 𝐾(0) ⊇

𝔓 ⨿𝔓𝑤0𝔓 and 𝖦 ⊇ 𝖯 ⨿ 𝖯𝑤𝖯.
Now 𝖦 is a finite group. In fact, it is the special orthogonal group consisting

ofmatrices of size (2𝑛+1)×(2𝑛+1) over finite field 𝑘𝐸 or𝔽𝑞. So𝖦 = 𝑆𝑂2𝑛+1(𝔽𝑞).
According to the Theorem 6.3 in [KM06], there exists a unique 𝜙 inℋ(𝖦, 𝜌)

with support 𝖯𝑤𝖯 such that 𝜙2 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙. Hence there is a unique
element 𝜙0 ∈ ℋ(𝐾(0), 𝜌) such that 𝑟(𝜙0) = 𝜙. Thus supp(𝜙0)=𝔓𝑤0𝔓 and
𝜙20 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙0. Now 𝜙0 can be extended to 𝐺 and viewed as an
element in ℋ(𝐺, 𝜌) as 𝔓𝑤0𝔓 ⊆ 𝐾(0) ⊆ 𝐺. Thus 𝜙0 satisfies the following
relation inℋ(𝐺, 𝜌):

𝜙20 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙0.
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We shall now show there exists 𝜙1 ∈ ℋ(𝐺, 𝜌)with support𝔓𝑤1𝔓 satisfying
the same relation as 𝜙0.

Recall that 𝑤1 =
⎡
⎢
⎢
⎣

0 0 𝜛−1
𝐸 𝐼𝑑𝑛

0 1 0
𝜛𝐸𝐼𝑑𝑛 0 0

⎤
⎥
⎥
⎦

,𝜛−1
𝐸 = −𝜛−1

𝐸 . So

𝑤1 =
⎡
⎢
⎣

0 0 −𝜛−1
𝐸 𝐼𝑑𝑛

0 1 0
𝜛𝐸𝐼𝑑𝑛 0 0

⎤
⎥
⎦

. Let 𝜂 ∈ U(𝑛, 𝑛 + 1) be such that 𝜂𝑤1𝜂−1 = 𝐽′ =
⎡
⎢
⎣

0 0 −𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
and

𝜂
⎡
⎢
⎣

GL𝑛(𝔒𝐸) M𝑛×1(𝔒𝐸) M𝑛(𝔒𝐸)
M1×𝑛(𝐩𝐸) U1(𝔒𝐸) M1×𝑛(𝔒𝐸)
M𝑛(𝐩𝐸) M𝑛×1(𝐩𝐸) GL𝑛(𝔒𝐸)

⎤
⎥
⎦
𝜂−1 =

⎡
⎢
⎣

GL𝑛(𝔒𝐸) M𝑛×1(𝐩𝐸) M𝑛(𝐩𝐸)
M1×𝑛(𝔒𝐸) U1(𝔒𝐸) M1×𝑛(𝐩𝐸)
M𝑛(𝔒𝐸) M𝑛×1(𝔒𝐸) GL𝑛(𝔒𝐸)

⎤
⎥
⎦
.

Recall that𝔓 looks as follows:

𝔓 =
⎡
⎢
⎣

GL𝑛(𝔒𝐸) M𝑛×1(𝔒𝐸) M𝑛(𝔒𝐸)
M1×𝑛(𝐩𝐸) U1(𝔒𝐸) M1×𝑛(𝔒𝐸)
M𝑛(𝐩𝐸) M𝑛×1(𝐩𝐸) GL𝑛(𝔒𝐸)

⎤
⎥
⎦

⋂𝐺.

Note that

𝜂𝐺𝜂−1 = {𝑔 ∈ GL2𝑛+1(𝐸) ∣𝑡 𝑔𝐽′𝑔 = 𝐽′}.
Hence

𝜂𝔓𝜂−1 =
⎡
⎢
⎣

GL𝑛(𝔒𝐸) M𝑛×1(𝐩𝐸) M𝑛(𝐩𝐸)
M1×𝑛(𝔒𝐸) U1(𝔒𝐸) M1×𝑛(𝐩𝐸)
M𝑛(𝔒𝐸) M𝑛×1(𝔒𝐸) GL𝑛(𝔒𝐸)

⎤
⎥
⎦

⋂𝜂𝐺𝜂−1.

Therefore 𝜂𝔓𝜂−1 is the opposite of the Siegel Parahoric subgroup of 𝜂𝐺𝜂−1.
Let

𝐾′(0) = ⟨𝔓,𝑤1⟩.
And let

𝖦′ = {𝑔 ∈ GL2𝑛+1(𝑘𝐸) ∣ 𝑡𝑔𝐽′𝑔 = 𝐽′}
= {𝑔 ∈ GL2𝑛+1(𝑘𝐸) ∣ 𝑡𝑔𝐽′𝑔 = 𝐽′}.

Let 𝑟′∶ 𝐾′(0)⟶ 𝖦′ be the group homomorphism given by

𝑟′(𝑥) = (𝜂𝑥𝜂−1)𝑚𝑜𝑑𝑝𝐸 where𝑥 ∈ 𝐾′(0).
So we have 𝑟′(𝐾(0)) = (𝜂𝐾′(0)𝜂−1)𝑚𝑜𝑑𝑝𝐸 = (𝜂⟨𝔓,𝑤1⟩𝜂−1)𝑚𝑜𝑑𝑝𝐸 . Let

𝑟′(𝔓) = (𝜂𝔓𝜂−1)𝑚𝑜𝑑𝑝𝐸 = 𝖯
′
.
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We can see that

𝑟′(𝑤1) = (𝜂𝑤1𝜂−1)𝑚𝑜𝑑𝑝𝐸 = 𝐽′𝑚𝑜𝑑𝑝𝐸 = 𝑤′ =
⎡
⎢
⎣

0 0 −𝐼𝑑𝑛
0 1 0
𝐼𝑑𝑛 0 0

⎤
⎥
⎦
.

So

𝖯
′
= 𝑟′(𝔓) = (𝜂𝔓𝜂−1)𝑚𝑜𝑑𝑝𝐸 =

⎡
⎢
⎣

GL𝑛(𝑘𝐸) 0 0
𝑀1×𝑛(𝑘𝐸) U1(𝑘𝐸) 0
M𝑛(𝑘𝐸) 𝑀𝑛×1(𝑘𝐸) GL𝑛(𝑘𝐸)

⎤
⎥
⎦

⋂
𝖦′.

Clearly 𝖯
′
is the opposite of Siegel parabolic subgroup of 𝖦′. So 𝑟′(𝐾′(0)) =

⟨𝖯
′
, 𝑤′⟩ = 𝖦′, as 𝖯

′
is a maximal subgroup of 𝖦′ and 𝑤′ does not lie in 𝖯

′
. So 𝑟′

is a surjective homomorphism of groups.
Let 𝑉 be the vector space corresponding to 𝜌. Note that the Hecke algebra

ℋ(𝐾′(0), 𝜌) is a sub-algebra ofℋ(𝐺, 𝜌).
Let 𝜌′ be the representation of 𝖯

′
which when inflated to 𝜂𝔓 is given by 𝜂𝜌

and 𝑉 is also the vector space corresponding to 𝜌′. Note that the Hecke algebra
ℋ(𝖦′, 𝜌′) has a similar structure as that ofℋ(𝖦, 𝜌) which was defined earlier.
Now the homomorphism 𝑟′∶ 𝐾′(0)⟶ 𝖦′ extends to a map

𝑟′ ∶ ℋ(𝐾′(0), 𝜌) → ℋ(𝖦′, 𝜌′).

where 𝑟′ ∶ ℋ(𝐾′(0), 𝜌) → ℋ(𝖦′, 𝜌′) is given by:

𝑟′(𝜙)(𝑟′(𝑥)) = 𝜙(𝑥)

for𝜙 ∈ ℋ(𝐾′(0), 𝜌) and𝑥 ∈ 𝐾′(0).
As in the unramified case when 𝑛 is odd, we can show that ℋ(𝐾′(0), 𝜌) is

isomorphic toℋ(𝖦′, 𝜌′) as algebras via 𝑟′.
Clearly, 𝐾′(0) ⊇ 𝔓 ⨿𝔓𝑤1𝔓 and 𝖦′ ⊇ 𝖯

′
⨿ 𝖯

′
𝑤′𝖯

′
.

Now 𝖦′ is a finite group over the field 𝐾𝐸 or 𝔽𝑞. Note that 𝖦′ ≅ 𝑆𝑝2𝑛(𝑘𝐸).
According to the Theorem 6.3 in [KM06], there exists a unique 𝜙 inℋ(𝖦′, 𝜌′)
with support 𝖯

′
𝑤′𝖯

′
such that 𝜙2 = 𝑞𝑛∕2 + (𝑞𝑛∕2 −1)𝜙. Hence there is a unique

element 𝜙1 ∈ ℋ(𝐾′(0), 𝜌) such that 𝑟′(𝜙1) = 𝜙. Thus supp(𝜙1)=𝔓𝑤1𝔓 and
𝜙21 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙1. Now 𝜙1 can be extended to 𝐺 and viewed as an
element in ℋ(𝐺, 𝜌) as 𝔓𝑤1𝔓 ⊆ 𝐾′(0) ⊆ 𝐺. Thus 𝜙1 satisfies the following
relation inℋ(𝐺, 𝜌):

𝜙21 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙1.
Thus we have shown there exists 𝜙𝑖 ∈ ℋ(𝐺, 𝜌) with supp(𝜙𝑖)=𝔓𝑤𝑖𝔓 sat-

isfying 𝜙2𝑖 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙𝑖 for 𝑖 = 0, 1. It can be further shown as in
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the unramified case that 𝜙0 and 𝜙1 generate the Hecke algebraℋ(𝐺, 𝜌). Let us
denote the Hecke algebraℋ(𝐺, 𝜌) by 𝒜. So

𝒜 = ℋ(𝐺, 𝜌) =
⟨
𝜙𝑖 ∶ 𝐺 → 𝐸𝑛𝑑ℂ(𝜌∨)

||||||||||

𝜙𝑖 is supported on𝔓𝑤𝑖𝔓
and𝜙𝑖(𝑝𝑤𝑖𝑝′) = 𝜌∨(𝑝)𝜙𝑖(𝑤𝑖)𝜌∨(𝑝′)
where 𝑝, 𝑝′ ∈ 𝔓, 𝑖 = 0, 1

⟩

where 𝜙𝑖 has support𝔓𝑤𝑖𝔓 and 𝜙𝑖 satisfies the relation:
𝜙2𝑖 = 𝑞𝑛∕2 + (𝑞𝑛∕2 − 1)𝜙𝑖 for 𝑖 = 0, 1.

Lemma 3.12. 𝜙0 and 𝜙1 are units in𝒜.

Proof. As 𝜙2𝑖 = 𝑞𝑛∕2+(𝑞𝑛∕2−1)𝜙𝑖 for 𝑖 = 0, 1. So 𝜙𝑖(
𝜙𝑖+(1−𝑞𝑛∕2)1

𝑞𝑛∕2
) = 1 for i=0,1.

Hence 𝜙0 and 𝜙1 are units in 𝒜. □

As 𝜙0, 𝜙1 are units in 𝒜 which is an algebra, so 𝜓 = 𝜙0𝜙1 is a unit too in 𝒜
and 𝜓−1 = 𝜙−11 𝜙−10 . As in the unramified case when 𝑛 is odd, we can show that
𝒜 contains sub-algebra ℬ = ℂ[𝜓, 𝜓−1] where

ℬ = ℂ[𝜓, 𝜓−1] = {𝑐𝑘𝜓𝑘 +⋯+ 𝑐𝑙𝜓𝑙
||||||
𝑐𝑘, … , 𝑐𝑙 ∈ ℂ;
𝑘 < 𝑙; 𝑘, 𝑙 ∈ ℤ} .

Further, as in the unramified casewhen𝑛 is odd, we can show thatℂ[𝜓, 𝜓−1] ≃
ℂ[𝑥, 𝑥−1] as ℂ-algebras.

4. Final calculations to answer the question
4.1. Structureofℋ(𝑳, 𝝆𝟎). In this sectionwedescribe the structure ofℋ(𝐿, 𝜌0).
Thus we need first to determine

𝑁𝐿(𝜌0) = {𝑚 ∈ 𝑁𝐿(𝔓0) ∣ 𝜌𝑚0 ≃ 𝜌0}.
We know from lemma 3.2 that 𝑁GL𝑛(𝐸)(𝐾0) = 𝐾0𝑍, so we have 𝑁𝐿(𝔓0) =

𝑍(𝐿)𝔓0. Since 𝑍(𝐿) clearly normalizes 𝜌0 and 𝜌0 is an irreducible cuspidal rep-
resentation of𝔓0, so 𝑁𝐿(𝜌0) = 𝑍(𝐿)𝔓0 =

∐
𝑛∈ℤ𝔓0𝜁𝑛.

Define 𝛼 ∈ ℋ(𝐿, 𝜌0) by supp(𝛼) = 𝔓0𝜁 and 𝛼(𝜁) = 1𝑉∨ . We can show that
𝛼𝑛(𝜁𝑛) = (𝛼(𝜁))𝑛 for 𝑛 ∈ ℤ and supp(𝛼𝑛) = 𝔓0𝜁𝑛𝔓0 = 𝔓0𝜁𝑛 = 𝜁𝑛𝔓0 for
𝑛 ∈ ℤ. Further we can show that ℋ(𝐿, 𝜌0) = ℂ[𝛼, 𝛼−1]. For details refer to
section 7 in [RSS21].

Proposition 4.1. The unique algebra homomorphism ℂ[𝑥, 𝑥−1] ⟶ ℂ[𝛼, 𝛼−1]
given by 𝑥 ⟶ 𝛼 is an isomorphism. So ℂ[𝛼, 𝛼−1] ≃ ℂ[𝑥, 𝑥−1].

We have already shown before in sections 6.1 and 6.2 thatℬ = ℂ[𝜓, 𝜓−1] is a
sub-algebra of𝒜 = ℋ(𝐺, 𝜌), where 𝜓 is supported on𝔓𝜁𝔓 andℬ ≅ ℂ[𝑥, 𝑥−1].
Asℋ(𝐿, 𝜌0) = ℂ[𝛼, 𝛼−1] ≅ ℂ[𝑥, 𝑥−1], so ℬ ≅ ℋ(𝐿, 𝜌0) as ℂ-algebras. Hence
ℋ(𝐿, 𝜌0) can be viewed as a sub-algebra ofℋ(𝐺, 𝜌).
Nowwewould like to find out how simpleℋ(𝐿, 𝜌0)-modules look like. Thus

to understand them we need to find out how simple ℂ[𝑥, 𝑥−1]-modules look
like.
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4.2. Calculation of simple ℋ(𝑳, 𝝆𝟎)-modules.Recall that ℋ(𝐿, 𝜌0) =
ℂ[𝛼, 𝛼−1]. Note that ℂ[𝛼, 𝛼−1] ≅ ℂ[𝑥, 𝑥−1] as ℂ-algebras. It can be shown
by direct calculation that the simple ℂ[𝑥, 𝑥−1]-modules are of the form ℂ𝜆 for
𝜆 ∈ ℂ×, where ℂ𝜆 is the vector space ℂ with the ℂ[𝑥, 𝑥−1]-module structure
given by 𝑥.𝑧 = 𝜆𝑧 for 𝑧 ∈ ℂ𝜆.
So the distinct simpleℋ(𝐿, 𝜌0)-modules(up to isomorphism) are the various

ℂ𝜆 for 𝜆 ∈ ℂ×. The module structure is determined by 𝛼.𝑧 = 𝜆𝑧 for 𝑧 ∈ ℂ𝜆.

4.3. Calculation of 𝜹𝑷(𝜻 ). Let us recall the modulus character

𝛿𝑃 ∶ 𝑃⟶ ℝ×
>0

introduced in section 1. The character 𝛿𝑃 is given by

𝛿𝑃(𝑝) = ‖𝑑𝑒𝑡(𝐴𝑑 𝑝)|Lie𝑈‖𝐹

for 𝑝 ∈ 𝑃, where Lie𝑈 is the Lie algebra of 𝑈. We have

𝑈 = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐸), 𝑢 ∈ M𝑛×1(𝐸), 𝑋 +𝑡 𝑋 + 𝑢𝑡𝑢 = 0},

Lie𝑈 = {
⎡
⎢
⎣

0 𝑢 𝑋
0 0 −𝑡𝑢
0 0 0

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐸), 𝑢 ∈ M𝑛×1(𝐸), 𝑋 +𝑡 𝑋 = 0}.

4.3.1. Unramified case: Recall 𝜁 =
⎡
⎢
⎣

𝜛𝐸𝐼𝑑𝑛 0 0
0 1 0
0 0 𝜛−1

𝐸 𝐼𝑑𝑛

⎤
⎥
⎦
in the unramified

case. So

(𝐴𝑑 𝜁)
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
= 𝜁

⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
𝜁−1 =

⎡
⎢
⎣

𝐼𝑑𝑛 𝜛𝐸𝑢 𝜛2
𝐸𝑋

0 1 −𝜛𝐸
𝑡𝑢

0 0 𝐼𝑑𝑛

⎤
⎥
⎦
.

Hence

𝛿𝑃(𝜁) = ‖𝑑𝑒𝑡(𝐴𝑑 𝜁)|Lie𝑈‖𝐹
= ‖ −𝜛2𝑛+2𝑛2

𝐸 ‖𝐹
= ‖ −𝜛2𝑛+2𝑛2

𝐹 ‖𝐹
= 𝑞−2𝑛−2𝑛2 .



1128 SUBHA SANDEEP REPAKA

4.3.2. Ramified case: Recall 𝜁 =
⎡
⎢
⎣

𝜛𝐸𝐼𝑑𝑛 0 0
0 1 0
0 0 −𝜛−1

𝐸 𝐼𝑑𝑛

⎤
⎥
⎦
in the ramified

case. So

(𝐴𝑑 𝜁)
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
= 𝜁

⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
𝜁−1 =

⎡
⎢
⎣

𝐼𝑑𝑛 𝜛𝐸𝑢 −𝜛2
𝐸𝑋

0 1 𝜛𝐸
𝑡𝑢

0 0 𝐼𝑑𝑛

⎤
⎥
⎦
.

Hence

𝛿𝑃(𝜁) = ‖𝑑𝑒𝑡(𝐴𝑑 𝜁)|Lie𝑈‖𝐹
= ‖𝜛2𝑛+2𝑛2

𝐸 ‖𝐹
= ‖𝜛𝑛+𝑛2

𝐹 ‖𝐹
= 𝑞−𝑛−𝑛2 .

4.4. Calculation of (𝝓𝟎 ∗ 𝝓𝟏)(𝜻 ). In this section we calculate (𝜙0 ∗ 𝜙1)(𝜁).
Let 𝑔𝑖 = 𝑞−𝑛∕2𝜙𝑖 for 𝑖 = 0, 1 in the unramified case and 𝑔𝑖 = 𝑞−𝑛∕4𝜙𝑖 for 𝑖 = 0, 1
in the ramified case. Determining (𝜙0 ∗ 𝜙1)(𝜁) would be useful in showing
𝑔0 ∗ 𝑔1 = 𝑇𝑃(𝛼) in both ramified and unramified cases. From now on, we
assume without loss of generality that vol𝔓0 = vol𝔓− = vol𝔓+ = 1. Thus we
have vol𝔓 = 1.
For 𝑟 ∈ ℤ let,

𝐾−,𝑟 = {
⎡
⎢
⎣

𝐼𝑑𝑛 0 0
−𝑡𝑢 1 0
𝑋 𝑢 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝐩𝑟𝐸), 𝑢 ∈ M𝑛×1(𝐩𝑟𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0},

𝐾+,𝑟 = {
⎡
⎢
⎣

𝐼𝑑𝑛 𝑢 𝑋
0 1 −𝑡𝑢
0 0 𝐼𝑑𝑛

⎤
⎥
⎦
∣ 𝑋 ∈ M𝑛(𝔒𝑟

𝐸), 𝑢 ∈ M𝑛×1(𝔒𝑟
𝐸), 𝑋 + 𝑡𝑋 + 𝑢𝑡𝑢 = 0}.

Proposition 4.2. (𝜙0 ∗ 𝜙1)(𝜁) = 𝜙0(𝑤0)𝜙1(𝑤1).
Proof. From Lemma 3.10, supp(𝜙0 ∗ 𝜙1) = 𝔓𝜁𝔓 = 𝔓𝑤0𝑤1𝔓. So now let us
consider

(𝜙0 ∗ 𝜙1)(𝜁) = (𝜙0 ∗ 𝜙1)(𝑤0𝑤1)

= ∫
𝐺
𝜙0(𝑦)𝜙1(𝑦−1𝜁)𝑑𝑦

= ∫
𝔓𝑤0𝔓

𝜙0(𝑦)𝜙1(𝑦−1𝜁)𝑑𝑦.

We know that𝔓𝑤0𝔓 = ⨿
𝑧∈𝔓𝑤0𝔓∕𝔓

𝑧𝔓. Let 𝑦 = 𝑧𝑝 ∈ 𝑧𝔓. So we have

𝜙0(𝑦)𝜙1(𝑦−1𝜁) = 𝜙0(𝑧𝑝)𝜙1(𝑝−1𝑧−1𝜁)
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= 𝜙0(𝑧)𝜌∨(𝑝)𝜌∨(𝑝−1)𝜙1(𝑧−1𝜁)
= 𝜙0(𝑧)𝜙1(𝑧−1𝜁).

Hence

(𝜙0 ∗ 𝜙1)(𝜁) =
∑

𝑧∈𝔓𝑤0𝔓∕𝔓
𝜙0(𝑧)𝜙1(𝑧−1𝜁)Vol𝔓 =

∑

𝑧∈𝔓𝑤0𝔓∕𝔓
𝜙0(𝑧)𝜙1(𝑧−1𝜁)

Let 𝛼∶ 𝔓∕𝑤0𝔓𝑤−1
0 ∩𝔓⟶𝔓𝑤0𝔓∕𝔓 be the map given by 𝛼(𝑥(𝑤0𝔓𝑤−1

0 ∩
𝔓)) = 𝑥𝑤0𝔓 where 𝑥 ∈ 𝔓. We can observe that the map 𝛼 is bijective. So
𝔓∕𝑤0𝔓𝑤−1

0 ∩ 𝔓 is in bijection with𝔓𝑤0𝔓∕𝔓.
Hence

(𝜙0 ∗ 𝜙1)(𝜁) =
∑

𝑥∈𝔓∕𝑤0𝔓𝑤−1
0 ∩𝔓

𝜙0(𝑥𝑤0)𝜙1(𝑤−1
0 𝑥−1𝜁).

From Iwahori factorization of𝔓we have𝔓 = 𝔓−𝔓0𝔓+ = 𝐾−,1𝔓0𝐾+,0. There-
fore 𝑤0𝔓𝑤−1

0 =𝑤0 𝔓 =𝑤0 𝐾𝑤0
−,1𝔓

𝑤0
0 𝐾+,0 = 𝐾+,1𝔓0𝐾−,0. So 𝔓0 ∩ 𝑤0𝔓𝑤−1

0 =
𝔓 ∩𝑤0 𝔓 = 𝐾+,1𝔓0𝐾−,1. Let 𝛽∶ 𝔓∕𝑤0𝔓𝑤−1

0 ∩ 𝔓 ⟶ 𝐾+,0∕𝐾+,1 be the map
given by 𝛽(𝑥(𝔓∩𝑤0 𝔓)) = 𝑥+𝐾+,1 where 𝑥 ∈ 𝔓 and 𝑥 = 𝑥+𝑝𝑥−, 𝑥+ ∈ 𝔓+, 𝑝 ∈
𝔓0, 𝑥− ∈ 𝔓−. We can observe that the map 𝛽 is bijective. So
𝔓∕𝑤0𝔓𝑤−1

0 ∩ 𝔓 is in bijection with 𝐾+,0∕𝐾+,1.
Therefore

(𝜙0 ∗ 𝜙1)(𝜁) =
∑

𝑥+∈𝐾+,0∕𝐾+,1
𝜙0(𝑥+𝑤0)𝜙1(𝑤−1

0 𝑥−1+ 𝜁)

=
∑

𝑥+∈𝐾+,0∕𝐾+,1
𝜌∨(𝑥+)𝜙0(𝑤0)𝜙1(𝑤−1

0 𝑥−1+ 𝜁).

As 𝜌∨ is trivial on𝔓+ and 𝑥+ ∈ 𝔓+ so we have

(𝜙0 ∗ 𝜙1)(𝜁) =
∑

𝑥+∈𝐾+,0∕𝐾+,1
𝜙0(𝑤0)𝜙1(𝑤−1

0 𝑥−1+ 𝜁).

The terms in above summation which do not vanish are the ones for which
𝑤−1
0 𝑥−1+ 𝜁 ∈ 𝔓𝑤1𝔓 ⟹ 𝑥−1+ ∈ 𝑤0𝔓𝑤1𝔓𝜁−1 ⟹ 𝑥+ ∈ 𝜁𝔓𝑤−1

1 𝔓𝑤−1
0 ⟹

𝑤−1
0 𝑥+𝑤0 ∈ 𝑤1𝔓𝑤−1

1 𝔓. It is clear𝑤1𝔓𝑤−1
1 𝔓 = (𝑤1𝔓)(𝔓). As𝑤1𝔓 = 𝑤1𝐾𝑤1

−,1𝔓
𝑤1
0 𝐾+,0 =

𝐾−,2𝔓0𝐾+,−1, so

𝑤1𝔓𝑤−1
1 𝔓 = (𝑤1𝔓)(𝔓) = 𝐾−,2𝔓0𝐾+,−1𝔓0𝐾−,1

Hencewehave𝑤−1
0 𝑥+𝑤0 ∈ 𝐾−,2𝔓0𝐾+,−1𝔓0𝐾−,1which implies that𝑤−1

0 𝑥+𝑤0
= 𝑘−𝑝0𝑘+𝑘′− where 𝑘− ∈ 𝐾−,2, 𝑘+ ∈ 𝐾+,−1, 𝑘

′
− ∈ 𝐾−,1, 𝑝0 ∈ 𝔓0. Hence we

have 𝑝0𝑘+ = 𝑘−1− 𝑤−1
0 𝑥+𝑤0𝑘

′−1
− . Now as 𝑤−1

0 𝑥+𝑤0 ∈ 𝐾−,0, 𝑘−1− ∈ 𝐾−,2, 𝑘
′−1
− ∈

𝐾−,1, so 𝑘−1− 𝑤−1
0 𝑥+𝑤0𝑘

′−1
− ∈ 𝐾−,0 and 𝑝0𝑘+ ∈ 𝔓0𝐾+,−1. But we know that

𝐾−,0 ∩ 𝔓0𝐾+,−1 = 1 ⟹ 𝑝0𝑘+ = 1 ⟹ 𝑤−1
0 𝑥+𝑤0 = 𝑘−𝑘′− ∈ 𝐾−,1 ⟹ 𝑥+ ∈

𝑤0𝐾−,1𝑤−1
0 = 𝐾+,1. As 𝑥+ ∈ 𝐾+,1, so only the trivial coset contributes to the

above summation. Hence

(𝜙0 ∗ 𝜙1)(𝜁) = 𝜙0(𝑤0)𝜙1(𝑤−1
0 𝜁) = 𝜙0(𝑤0)𝜙1(𝑤1).
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□

4.5. Relation between 𝒈𝟎, 𝒈𝟏 and 𝑻𝑷(𝜶).

4.5.1. Unramified case: Recall thatℋ(𝐺, 𝜌) = ⟨𝜙0, 𝜙1⟩where𝜙0 is supported
on𝔓𝑤0𝔓 and 𝜙1 is supported on𝔓𝑤1𝔓 respectively with 𝜙2𝑖 = 𝑞𝑛 + (𝑞𝑛 −1)𝜙𝑖
for 𝑖 = 0, 1. In this section we show that 𝑔0 ∗ 𝑔1 = 𝑇𝑃(𝛼), where 𝑔𝑖 = 𝑞−𝑛∕2𝜙𝑖
for 𝑖 = 0, 1.

Proposition 4.3. 𝑔0𝑔1 = 𝑇𝑃(𝛼).

Proof. Let us choose 𝜓𝑖 ∈ ℋ(𝐺, 𝜌) for 𝑖 = 0, 1 such that supp(𝜓𝑖) = 𝔓𝑤𝑖𝔓
for 𝑖 = 0, 1. So 𝜙𝑖 is a scalar multiple of 𝜓𝑖 for 𝑖 = 0, 1. Hence 𝜙𝑖 = 𝜆𝑖𝜓𝑖
where 𝜆𝑖 ∈ ℂ× for 𝑖 = 0, 1. Let 𝜓𝑖(𝑤𝑖) = 𝐴 ∈ Hom𝔓∩𝑤𝑖𝔓(𝑤𝑖𝜌∨, 𝜌∨) for 𝑖 = 0, 1
and 𝑊 be the space of 𝜌. So 𝐴2 = 1𝑊∨ . From Propostion 4.2, we have (𝜓0 ∗
𝜓1)(𝜁) = 𝜓0(𝑤0)𝜓1(𝑤1) = 𝐴2 = 1𝑊∨ . Now let 𝜓𝑖 satisfies the quadratic relation
given by 𝜓2𝑖 = 𝑎𝜓𝑖 + 𝑏 where 𝑎, 𝑏 ∈ ℝ for 𝑖 = 0, 1. As 𝜓2𝑖 = 𝑎𝜓𝑖 + 𝑏 ⟹
(−𝜓𝑖)2 = (−𝑎)(−𝜓𝑖) + 𝑏, so 𝑎 can be arranged such that 𝑎 > 0. We can see that
1 ∈ ℋ(𝐺, 𝜌) is defined as below:

1(𝑥) = {0, if 𝑥 ∉ 𝔓;
𝜌∨(𝑥) if 𝑥 ∈ 𝔓.

Let us consider 𝜓2𝑖 (1) = ∫𝐺 𝜓𝑖(𝑦)𝜓𝑖(𝑦−1)𝑑𝑦 for 𝑖 = 0, 1. Now let 𝑦 = 𝑝𝑤𝑖𝑝′
where 𝑝, 𝑝′ ∈ 𝔓 for 𝑖 = 0, 1. So we have

𝜓2𝑖 (1) = ∫
𝔓𝑤𝑖𝔓

𝜓𝑖(𝑝𝑤𝑖𝑝′)𝜓𝑖(𝑝
′−1𝑤−1

𝑖 𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= ∫
𝔓𝑤𝑖𝔓

𝜌∨(𝑝)𝜓𝑖(𝑤𝑖)𝜌∨(𝑝′)𝜌∨(𝑝
′−1)𝜓𝑖(𝑤−1

𝑖 )𝜌∨(𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= ∫
𝔓𝑤𝑖𝔓

𝜌∨(𝑝)𝜓𝑖(𝑤𝑖)𝜓𝑖(𝑤−1
𝑖 )𝜌∨(𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= ∫
𝔓𝑤𝑖𝔓

𝜌∨(𝑝)𝜓𝑖(𝑤𝑖)𝜓𝑖(𝑤𝑖)𝜌∨(𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= ∫
𝔓𝑤𝑖𝔓

𝜌∨(𝑝)𝐴2𝜌∨(𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= ∫
𝔓𝑤𝑖𝔓

𝐴2𝜌∨(𝑝)𝜌∨(𝑝−1)𝑑(𝑝𝑤𝑖𝑝′)

= 𝐴2vol(𝔓𝑤𝑖𝔓)
= 1𝑊∨vol(𝔓𝑤𝑖𝔓).

So 𝜓2𝑖 (1) = 1𝑊∨vol(𝔓𝑤𝑖𝔓) for 𝑖 = 0, 1. We already know that 𝜓2𝑖 = 𝑎𝜓𝑖 + 𝑏
where 𝑎, 𝑏 ∈ ℝ and for 𝑖 = 0, 1. Now evaluating the expression 𝜓2𝑖 = 𝑎𝜓𝑖 + 𝑏
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at 1, we have 𝜓2𝑖 (1) = 𝑎𝜓𝑖(1) + 𝑏1(1). We can see that 𝜓𝑖(1) = 0 as support of
𝜓𝑖 is 𝔓𝑤𝑖𝔓 for 𝑖 = 0, 1. We have seen before that 𝜓2𝑖 (1) = 1𝑊∨vol(𝔓𝑤𝑖𝔓) for
𝑖 = 0, 1 and as 1 ∈ 𝔓, 1(1) = 𝜌∨(1) = 1𝑊∨ . So 𝜓2𝑖 (1) = 𝑎𝜓𝑖(1) + 𝑏1(1) ⟹
1𝑊∨vol(𝔓𝑤𝑖𝔓) = 1𝑊∨𝑏 for 𝑖 = 0, 1. Comparing coefficients of 1𝑊∨ on both
sides of the equation 1𝑊∨vol(𝔓𝑤𝑖𝔓) = 1𝑊∨𝑏 for 𝑖 = 0, 1 we get

𝑏 = vol(𝔓𝑤𝑖𝔓).

As 𝜙𝑖 = 𝜆𝑖𝜓𝑖 for 𝑖 = 0, 1, hence 𝜙2𝑖 = 𝜆2𝑖 𝜓
2
𝑖 = 𝜆2𝑖 (𝑎𝜓𝑖 + 𝑏) = (𝜆𝑖𝑎)(𝜆𝑖𝜓𝑖) +

𝜆2𝑖 𝑏 = (𝜆𝑖𝑎)𝜙𝑖 + 𝜆2𝑖 𝑏 for 𝑖 = 0, 1. But 𝜙2𝑖 = (𝑞𝑛 − 1)𝜙𝑖 + 𝑞𝑛 for 𝑖 = 0, 1. So
𝜙2𝑖 = (𝜆𝑖𝑎)𝜙𝑖 + 𝜆2𝑖 𝑏 = (𝑞𝑛 − 1)𝜙𝑖 + 𝑞𝑛 for 𝑖 = 0, 1. As 𝜙𝑖 and 1 are linearly
independent, hence 𝜆𝑖𝑎 = (𝑞𝑛 −1) for 𝑖 = 0, 1. Therefore 𝜆𝑖 =

𝑞𝑛−1
𝑎

for 𝑖 = 0, 1.
As 𝑎 > 0, 𝑎 ∈ ℝ, so 𝜆𝑖 > 0, 𝜆𝑖 ∈ ℝ for 𝑖 = 0, 1. Similarly, as 𝜙𝑖 and 1 are linearly
independent, hence 𝜆2𝑖 𝑏 = 𝑞𝑛 ⟹𝜆2𝑖 =

𝑞𝑛

𝑏
for 𝑖 = 0, 1.

Now 𝔓𝑤𝑖𝔓 = ⨿
𝑥∈𝔓∕𝔓∩𝑤𝑖𝔓

𝑥𝑤𝑖𝔓 ⟹ vol(𝔓𝑤𝑖𝔓) = [𝔓𝑤𝑖𝔓 ∶ 𝔓]vol𝔓 =

[𝔓𝑤𝑖𝔓 ∶ 𝔓] = [𝔓 ∶ 𝔓 ∩𝑤𝑖 𝔓] for 𝑖 = 0, 1. Hence 𝑏 = vol(𝔓𝑤𝑖𝔓) = [𝔓 ∶
𝔓 ∩𝑤𝑖 𝔓] for 𝑖 = 0, 1. Now as 𝜆20 = 𝜆21 =

𝑞𝑛

𝑏
⟹𝜆0 = 𝜆1 =

𝑞𝑛∕2

𝑏1∕2
= 𝑞𝑛∕2

[𝔓∶𝔓∩𝑤0𝔓]1∕2
.

Therefore

𝜙0𝜙1 = (𝜆0𝜓0)(𝜆1𝜓1)
= 𝜆20𝜓0𝜓1

= 𝑞𝑛𝜓0𝜓1
[𝔓 ∶ 𝔓 ∩𝑤0 𝔓]

.

We have seen before that,𝔓 = 𝐾−,1𝔓0𝐾+,0 and𝔓 ∩𝑤0 𝔓 = 𝐾−,1𝔓0𝐾+,1. So

[𝔓 ∶ 𝔓 ∩𝑤0 𝔓] = |
𝐾+,0
𝐾+,1

|

= |{𝑋 ∈ M𝑛(𝑘𝐸), 𝑢 ∈ M𝑛×1(𝑘𝐸) ∣ 𝑋 +𝑡 𝑋 + 𝑢𝑡𝑢 = 0}|

= (𝑞2𝑛)(𝑞)
(𝑛)(𝑛−1)

2

= (𝑞2𝑛)(𝑞𝑛2−𝑛)
= 𝑞𝑛2+𝑛.

Hence

(𝜙0𝜙1)(𝜁) =
𝑞𝑛(𝜓0𝜓1)(𝜁)

[𝔓 ∶ 𝔓 ∩𝑤0 𝔓]

= 𝑞𝑛(𝜓0𝜓1)(𝜁)
𝑞𝑛2+𝑛

= 𝑞−𝑛21𝑊∨ .
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Recall 𝑔𝑖 = 𝑞−𝑛∕2𝜙𝑖 for 𝑖 = 0, 1. We know that 𝜙2𝑖 = (𝑞𝑛 − 1)𝜙𝑖 + 𝑞𝑛 for
𝑖 = 0, 1. So for 𝑖 = 0, 1 we have

𝑔2𝑖 = 𝑞−𝑛𝜙2𝑖
= 𝑞−𝑛((𝑞𝑛 − 1)𝜙𝑖 + 𝑞𝑛)
= (1 − 𝑞−𝑛)𝜙𝑖 + 1
= (1 − 𝑞−𝑛)𝑞𝑛∕2𝑔𝑖 + 1
= (𝑞𝑛∕2 − 𝑞−𝑛∕2)𝑔𝑖 + 1.

So 𝑔0𝑔1 = (𝑞−𝑛∕2𝜙1)(𝑞−𝑛∕2𝜙2) = 𝑞−𝑛𝜙1𝜙2 implies that

(𝑔0𝑔1)(𝜁) = 𝑞−𝑛(𝜙1𝜙2)(𝜁) = 𝑞−𝑛𝑞−𝑛21𝑊∨ = 𝑞−𝑛2−𝑛1𝑊∨ .

From the earlier discussion in this section we have 𝑇𝑃(𝛼)(𝜁) = 𝛿1∕2𝑃 (𝜁)1𝑊∨ .
From section 4.3, we have 𝛿𝑃(𝜁) = 𝑞−2𝑛2−2𝑛. Hence 𝛿1∕2𝑃 (𝜁) = 𝑞−𝑛2−𝑛. There-
fore (𝑔0𝑔1)(𝜁) = 𝑇𝑃(𝛼)(𝜁). So (𝑔0𝑔1)(𝜁) = 𝑇𝑃(𝛼)(𝜁). We have
supp(𝑇𝑃(𝛼)) = 𝔓𝜁𝔓. As supp(𝑔𝑖) = 𝔓𝑤𝑖𝔓, Lemma 3.10 then gives
supp(𝑔0𝑔1) = 𝔓𝜁𝔓. Therefore 𝑔0𝑔1 = 𝑇𝑃(𝛼). □

4.5.2. Ramified case: We know that ℋ(𝐺, 𝜌) = ⟨𝜙0, 𝜙1⟩ where 𝜙0 is sup-
ported on 𝔓𝑤0𝔓 and 𝜙1 is supported on 𝔓𝑤1𝔓 respectively with 𝜙2𝑖 = 𝑞𝑛∕2 +
(𝑞𝑛∕2 − 1)𝜙𝑖 for 𝑖 = 0, 1. In this section we show that 𝑔0 ∗ 𝑔1 = 𝑇𝑃(𝛼), where
𝑔𝑖 = 𝑞−𝑛∕4𝜙𝑖 for 𝑖 = 0, 1.

Proposition 4.4. 𝑔0𝑔1 = 𝑇𝑃(𝛼).

Proof. Let us choose 𝜓𝑖 ∈ ℋ(𝐺, 𝜌) for 𝑖 = 0, 1 such that supp(𝜓𝑖) = 𝔓𝑤𝑖𝔓
for 𝑖 = 0, 1. So 𝜙𝑖 is a scalar multiple of 𝜓𝑖 for 𝑖 = 0, 1. Hence 𝜙𝑖 = 𝜆𝑖𝜓𝑖
where 𝜆𝑖 ∈ ℂ× for 𝑖 = 0, 1. Let 𝜓𝑖(𝑤𝑖) = 𝐴𝑖 ∈ Hom𝔓∩𝑤𝑖𝔓(𝑤𝑖𝜌∨, 𝜌∨) for 𝑖 =
0, 1 and 𝑊 be the space of 𝜌. So 𝐴2

𝑖 = 1𝑊∨ for 𝑖 = 0, 1. From section 5.1 on
page 24 in [KM06], we can say that 𝐴0 = 𝐴1. From Proposition 4.2, we have
(𝜓0 ∗ 𝜓1)(𝜁) = 𝜓0(𝑤0)𝜓1(𝑤1) = 𝐴0𝐴1 = 𝐴2

0 = 1𝑊∨ . Now let 𝜓𝑖 satisfies the
quadratic relation given by 𝜓2𝑖 = 𝑎𝑖𝜓𝑖 + 𝑏𝑖 where 𝑎𝑖, 𝑏𝑖 ∈ ℝ for 𝑖 = 0, 1. As
𝜓2𝑖 = 𝑎𝑖𝜓𝑖 + 𝑏𝑖 ⟹ (−𝜓𝑖)2 = (−𝑎𝑖)(−𝜓𝑖) + 𝑏𝑖, so 𝑎𝑖 can be arranged such that
𝑎𝑖 > 0 for 𝑖 = 0, 1. We can see that 1 ∈ ℋ(𝐺, 𝜌) is defined as below:

1(𝑥) = {0, if 𝑥 ∉ 𝔓;
𝜌∨(𝑥) if 𝑥 ∈ 𝔓.

Let us consider 𝜓20(1) = ∫𝐺 𝜓0(𝑦)𝜓0(𝑦−1)𝑑𝑦. Now let 𝑦 = 𝑝𝑤0𝑝′ where
𝑝, 𝑝′ ∈ 𝔓. So we have

𝜓20(1) = ∫
𝔓𝑤0𝔓

𝜓0(𝑝𝑤0𝑝′)𝜓0(𝑝′−1𝑤−1
0 𝑝−1)𝑑(𝑝𝑤0𝑝′)
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= ∫
𝔓𝑤0𝔓

𝜌∨(𝑝)𝜓0(𝑤0)𝜌∨(𝑝′)𝜌∨(𝑝
′−1)𝜓0(𝑤−1

0 )𝜌∨(𝑝−1)𝑑(𝑝𝑤0𝑝′)

= ∫
𝔓𝑤0𝔓

𝜌∨(𝑝)𝜓0(𝑤0)𝜓0(𝑤−1
0 )𝜌∨(𝑝−1)𝑑(𝑝𝑤0𝑝′)

= ∫
𝔓𝑤0𝔓

𝜌∨(𝑝)𝜓0(𝑤0)𝜓0(𝑤0)𝜌∨(𝑝−1)𝑑(𝑝𝑤0𝑝′)

= ∫
𝔓𝑤0𝔓

𝜌∨(𝑝)𝐴2
0𝜌

∨(𝑝−1)𝑑(𝑝𝑤0𝑝′)

= ∫
𝔓𝑤0𝔓

𝐴2
0𝜌

∨(𝑝)𝜌∨(𝑝−1)𝑑(𝑝𝑤0𝑝′)

= 𝐴2
0vol(𝔓𝑤0𝔓)

= 1𝑊∨vol(𝔓𝑤0𝔓).

So 𝜓20(1) = 1𝑊∨vol(𝔓𝑤0𝔓). We already know that 𝜓20 = 𝑎0𝜓0 + 𝑏0 where
𝑎0, 𝑏0 ∈ ℝ. Now evaluating the expression𝜓20 = 𝑎0𝜓0+𝑏0 at 1, we have𝜓20(1) =
𝑎0𝜓0(1)+𝑏01(1). We can see that 𝜓0(1) = 0 as support of 𝜓0 is𝔓𝑤0𝔓. We have
seen before that 𝜓20(1) = 1𝑊∨vol(𝔓𝑤0𝔓) and as 1 ∈ 𝔓, 1(1) = 𝜌∨(1) = 1𝑊∨ . So

𝜓20(1) = 𝑎0𝜓𝑖(1) + 𝑏01(1)⟹ 1𝑊∨vol(𝔓𝑤0𝔓) = 1𝑊∨𝑏0.

Comparing coefficients of 1𝑊∨ on both sides of the equation

1𝑊∨𝑏0 = 1𝑊∨vol(𝔓𝑤0𝔓),

we get 𝑏0 = vol(𝔓𝑤0𝔓).
As 𝜙0 = 𝜆0𝜓0, hence 𝜙20 = 𝜆20𝜓

2
0 = 𝜆20(𝑎0𝜓0 + 𝑏0) = (𝜆0𝑎0)(𝜆0𝜓0) + 𝜆20𝑏0 =

(𝜆0𝑎0)𝜙0+𝜆20𝑏0. But 𝜙
2
0 = (𝑞𝑛∕2−1)𝜙0+𝑞𝑛∕2. So 𝜙20 = (𝜆0𝑎0)𝜙0+𝜆20𝑏0 = (𝑞𝑛∕2−

1)𝜙0 + 𝑞𝑛∕2. As 𝜙0 and 1 are linearly independent, hence 𝜆0𝑎0 = (𝑞𝑛∕2 − 1).
Therefore 𝜆0 =

𝑞𝑛∕2−1
𝑎0

. As 𝑎0 > 0, 𝑎0 ∈ ℝ, so 𝜆0 > 0, 𝜆0 ∈ ℝ. Similarly, as 𝜙0

and 1 are linearly independent, hence 𝜆20𝑏 = 𝑞𝑛∕2 ⟹𝜆20 =
𝑞𝑛∕2

𝑏0
.

Now 𝔓𝑤0𝔓 = ⨿
𝑥∈𝔓∕𝔓∩𝑤0𝔓

𝑥𝑤0𝔓 ⟹ vol(𝔓𝑤0𝔓) = [𝔓𝑤0𝔓 ∶ 𝔓]vol𝔓 =

[𝔓𝑤0𝔓 ∶ 𝔓] = [𝔓 ∶ 𝔓 ∩𝑤0 𝔓]. Hence 𝑏0 = vol(𝔓𝑤0𝔓) = [𝔓 ∶ 𝔓 ∩𝑤0 𝔓].
Now as 𝜆20 =

𝑞𝑛∕2

𝑏0
⟹𝜆0 =

𝑞𝑛∕4

𝑏1∕20
= 𝑞𝑛∕4

[𝔓∶𝔓∩𝑤0𝔓]1∕2
.

We have seen before that,𝔓 = 𝐾−,1𝔓0𝐾+,0 and𝔓 ∩𝑤0 𝔓 = 𝐾−,1𝔓0𝐾+,1. So

[𝔓 ∶ 𝔓 ∩𝑤0 𝔓] = |
𝐾+,0
𝐾+,1

|

= |{𝑋 ∈ M𝑛(𝑘𝐸), 𝑢 ∈ M𝑛×1(𝑘𝐸) ∣ 𝑋 +𝑡 𝑋 + 𝑢𝑡𝑢 = 0}|

= (𝑞𝑛)(𝑞
(𝑛)(𝑛−1)

2 )
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= 𝑞
𝑛2+𝑛
2 .

So

𝜆0 =
𝑞𝑛∕4

[𝔓∶𝔓∩𝑤0𝔓]1∕2
= 𝑞𝑛∕4

𝑞
𝑛2+𝑛
4
.

Let us consider 𝜓21(1) = ∫𝐺 𝜓1(𝑦)𝜓1(𝑦−1)𝑑𝑦. Now let 𝑦 = 𝑝𝑤1𝑝′ where
𝑝, 𝑝′ ∈ 𝔓. So we have

𝜓21(1) = ∫
𝔓𝑤1𝔓

𝜓1(𝑝𝑤1𝑝′)𝜓1(𝑝
′−1𝑤−1

1 𝑝−1)𝑑(𝑝𝑤1𝑝′)

= ∫
𝔓𝑤1𝔓

𝜌∨(𝑝)𝜓1(𝑤1)𝜌∨(𝑝′)𝜌∨(𝑝
′−1)𝜓1(𝑤−1

1 )𝜌∨(𝑝−1)𝑑(𝑝𝑤1𝑝′)

= ∫
𝔓𝑤1𝔓

𝜌∨(𝑝)𝜓1(𝑤1)𝜓1(𝑤−1
1 )𝜌∨(𝑝−1)𝑑(𝑝𝑤1𝑝′)

= ∫
𝔓𝑤1𝔓

𝜌∨(𝑝)𝜓1(𝑤1)𝜓1(−𝑤1)𝜌∨(𝑝−1)𝑑(𝑝𝑤1𝑝′)

= ∫
𝔓𝑤1𝔓

𝜌∨(𝑝)𝜓1(𝑤1)𝜌∨(−1)𝜓1(𝑤1)𝜌∨(𝑝−1)𝑑(𝑝𝑤1𝑝′)

= 𝜌∨(−1) ∫
𝔓𝑤1𝔓

𝐴2
1𝜌

∨(𝑝)𝜌∨(𝑝−1)𝑑(𝑝𝑤1𝑝′)

= 𝜌∨(−1)𝐴2
1vol(𝔓𝑤1𝔓)

= 𝜌∨(−1)1𝑊∨vol(𝔓𝑤1𝔓).

So 𝜓21(1) = 1𝑊∨vol(𝔓𝑤1𝔓). We already know that 𝜓21 = 𝑎1𝜓1 + 𝑏1 where
𝑎1, 𝑏1 ∈ ℝ. Now evaluating the expression𝜓21 = 𝑎1𝜓1+𝑏1 at 1, we have𝜓21(1) =
𝑎1𝜓1(1)+𝑏11(1). We can see that 𝜓1(1) = 0 as support of 𝜓1 is𝔓𝑤1𝔓. We have
seen before that 𝜓21(1) = 1𝑊∨vol(𝔓𝑤1𝔓) and as 1 ∈ 𝔓, 1(1) = 𝜌∨(1) = 1𝑊∨ . So

𝜓21(1) = 𝑎1𝜓𝑖(1) + 𝑏11(1)⟹ 𝜌∨(−1)1𝑊∨vol(𝔓𝑤1𝔓) = 1𝑊∨𝑏1.
Comparing coefficients of 1𝑊∨ on both sides of the equation

1𝑊∨𝑏1 = 1𝑊∨𝜌∨(−1)vol(𝔓𝑤1𝔓),
we get 𝑏1 = 𝜌∨(−1)vol(𝔓𝑤1𝔓).
As 𝜙1 = 𝜆1𝜓1, hence 𝜙21 = 𝜆21𝜓

2
1 = 𝜆21(𝑎1𝜓1 + 𝑏1) = (𝜆1𝑎1)(𝜆1𝜓1) + 𝜆21𝑏1 =

(𝜆0𝑎1)𝜙1+𝜆21𝑏1. But 𝜙
2
1 = (𝑞𝑛∕2−1)𝜙1+𝑞𝑛∕2. So 𝜙21 = (𝜆1𝑎1)𝜙1+𝜆21𝑏1 = (𝑞𝑛∕2−

1)𝜙1 + 𝑞𝑛∕2. As 𝜙1 and 1 are linearly independent, hence 𝜆1𝑎1 = (𝑞𝑛∕2 − 1).
Therefore 𝜆1 =

𝑞𝑛∕2−1
𝑎1

. As 𝑎1 > 0, 𝑎1 ∈ ℝ, so 𝜆1 > 0, 𝜆1 ∈ ℝ. Similarly, as 𝜙1

and 1 are linearly independent, hence 𝜆21𝑏 = 𝑞𝑛∕2 ⟹𝜆21 =
𝑞𝑛∕2

𝑏1
.
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Now 𝔓𝑤1𝔓 = ⨿
𝑥∈𝔓∕𝔓∩𝑤1𝔓

𝑥𝑤1𝔓 ⟹ vol(𝔓𝑤1𝔓) = [𝔓𝑤1𝔓 ∶ 𝔓]vol𝔓 =

[𝔓𝑤1𝔓 ∶ 𝔓] = [𝔓 ∶ 𝔓 ∩𝑤1 𝔓]. Hence 𝑏1 = vol(𝔓𝑤1𝔓) = [𝔓 ∶ 𝔓 ∩𝑤1 𝔓].
Now as 𝜆21 =

𝑞𝑛∕2

𝑏1
⟹𝜆1 =

𝑞𝑛∕4

𝑏1∕21
= 𝑞𝑛∕4

[𝔓∶𝔓∩𝑤1𝔓]1∕2
.

We have seen before that 𝔓 = 𝐾−,1𝔓0𝐾+,0,𝑤1 𝔓 = 𝐾−,2𝔓0𝐾+,−1. So 𝔓 ∩𝑤1

𝔓 = 𝐾−,2𝔓0𝐾+,0. Hence

[𝔓 ∶ 𝔓 ∩𝑤1 𝔓] = |
𝐾−,1
𝐾−,2

|

= |{𝑋 ∈ M𝑛(𝑘𝐸), 𝑢 ∈ M𝑛×1(𝑘𝐸) ∣ 𝑋 −𝑡 𝑋 − 𝑢𝑡𝑢 = 0}|

= 𝑞
𝑛2+𝑛
2 .

So

𝜆1 =
𝑞𝑛∕4

[𝔓∶𝔓∩𝑤1𝔓]1∕2
= 𝑞𝑛∕4

𝑞
𝑛2+𝑛
4 (𝜌(−1))1∕2

.

Hence

(𝜙0𝜙1)(𝜁) = (𝜆0𝜓0)(𝜆1𝜓1)(𝜁)
= (𝜆0𝜆1)(𝜓0𝜓1)(𝜁)

= 𝑞𝑛∕4

𝑞
𝑛2+𝑛
4

𝑞𝑛∕4

𝑞
𝑛2+𝑛
4 (𝜌(−1))1∕2

1∨𝑊

=
𝑞
−𝑛2

2 1∨𝑊
(𝜌(−1))1∕2

.

As −1 ∈ 𝑍(𝔓) and 𝜌∨ is a representation of𝔓, so 𝜌∨(−1) = 𝜔𝜌∨(−1) where
𝜔𝜌∨ is the central character of 𝔓. Now 1 = 𝜔𝜌∨(1) = (𝜔𝜌∨(−1))2, so 𝜌∨(−1) =
𝜔𝜌∨(−1) = ±1. We have seen before that 𝜆1 =

𝑞𝑛∕2−1
𝑎1

and 𝑎1 ∈ ℝ, 𝑎1 > 0, so

𝜆1 > 0. But we know that 𝜆1 =
𝑞𝑛∕4

[𝔓∶𝔓∩𝑤1𝔓]1∕2
= 𝑞𝑛∕4

𝑞
𝑛2+𝑛
4 (𝜌(−1))1∕2

, hence 𝜌∨(−1) = 1.

Recall 𝑔𝑖 = 𝑞−𝑛∕4𝜙𝑖 for 𝑖 = 0, 1. We know that 𝜙2𝑖 = (𝑞𝑛∕2 − 1)𝜙𝑖 + 𝑞𝑛∕2 for
𝑖 = 0, 1. So for 𝑖 = 0, 1 we have

𝑔2𝑖 = 𝑞−𝑛∕2𝜙2𝑖
= 𝑞−𝑛∕2((𝑞𝑛∕2 − 1)𝜙𝑖 + 𝑞𝑛∕2)
= (1 − 𝑞−𝑛∕2)𝜙𝑖 + 1
= (1 − 𝑞−𝑛∕2)𝑞𝑛∕4𝑔𝑖 + 1
= (𝑞𝑛∕4 − 𝑞−𝑛∕4)𝑔𝑖 + 1.
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So 𝑔0𝑔1 = 𝑞−𝑛∕2𝜙1𝜙2, which implies that

(𝑔0𝑔1)(𝜁) = 𝑞−𝑛∕2(𝜙0𝜙1)(𝜁) = 𝑞−𝑛∕2
𝑞
−𝑛2

2 1∨𝑊
(𝜌(−1))1∕2

= 𝑞
−𝑛2−𝑛

2 1∨𝑊 .

From the earlier discussion in this section we have 𝑇𝑃(𝛼)(𝜁) = 𝛿1∕2𝑃 (𝜁)1𝑊∨ .

From Section 4.3, we have 𝛿𝑃(𝜁) = 𝑞−𝑛2−𝑛. Hence 𝛿1∕2𝑃 (𝜁) = 𝑞
−𝑛2−𝑛

2 . Therefore
(𝑔0𝑔1)(𝜁) = 𝑇𝑃(𝛼)(𝜁), (𝑔0𝑔1)(𝜁) = 𝑇𝑃(𝛼)(𝜁), and supp(𝑇𝑃(𝛼))
= 𝔓𝜁𝔓. As supp(𝑔𝑖) = 𝔓𝑤𝑖𝔓, Lemma 3.10 gives supp(𝑔0𝑔1) = 𝔓𝜁𝔓. There-
fore 𝑔0𝑔1 = 𝑇𝑃(𝛼). □

4.6. Calculation of 𝒎𝑳(𝝅𝝂). Recall that 𝜋 = 𝜆𝜒 where 𝜆 is an irreducible
supercuspidal depth zero representation of GL𝑛(𝐸) and 𝜒 is a supercuspidal
depthzero character of U1(𝐸). Note that 𝜋𝜈 lies in ℜ[𝐿,𝜋]𝐿(𝐿). Recall 𝑚𝐿 is an
equivalence of categories. As 𝜋𝜈 is an irreducible representation of 𝐿, it follows
that𝑚𝐿(𝜋𝜈) is a simpleℋ(𝐿, 𝜌0)-module. In this section, we identify the simple
ℋ(𝐿, 𝜌0)-module corresponding to𝑚𝐿(𝜋𝜈). Calculating𝑚𝐿(𝜋𝜈) will be useful
in answering the question in next section.
From Section 2.5, we know that 𝜋 = 𝑐-𝐼𝑛𝑑𝐿

𝔓0
𝜌0, where

𝔓0 = ⟨𝜁⟩𝔓0, 𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗)
for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ. Let us recall that 𝜈 is unramified character of 𝐿 from section
1. Let𝑉 be space of 𝜋𝜈 and𝑊 be space of 𝜌0. Recall𝑚𝐿(𝜋𝜈) = Hom𝔓0(𝜌0, 𝜋𝜈).
Let 𝑓 ∈ Hom𝔓0(𝜌0, 𝜋𝜈). As 𝔓0 is a compact open subgroup of 𝐿 and 𝜈 is an
unramified character of 𝐿, so 𝜈(𝑗) = 1 for 𝑗 ∈ 𝔓0. We already know that
𝛼 ∈ ℋ(𝐿, 𝜌0) with support of 𝛼 being𝔓0𝜁 and 𝛼(𝜁) = 1𝑊∨ . Let 𝑤 ∈ 𝑊 and we
have seen in section 2.4 that the wayℋ(𝐿, 𝜌0) acts on Hom𝔓0(𝜌0, 𝜋𝜈) is given
by:

(𝛼.𝑓)(𝑤) = ∫
𝐿
(𝜋𝜈)(𝑙)𝑓(𝛼∨(𝑙−1)𝑤)𝑑𝑙

= ∫
𝐿
(𝜋𝜈)(𝑙)𝑓((𝛼(𝑙))∨𝑤)𝑑𝑙

= ∫
𝔓0

(𝜋𝜈)(𝑝𝜁)𝑓((𝛼(𝑝𝜁))∨𝑤)𝑑𝑝

= ∫
𝔓0

(𝜋𝜈)(𝑝𝜁)𝑓((𝜌∨0 (𝑝)𝛼(𝜁))
∨𝑤)𝑑𝑝

= ∫
𝔓0

(𝜋𝜈)(𝑝𝜁)𝑓((𝜌∨0 (𝑝)1𝑊∨)∨𝑤)𝑑𝑝

= ∫
𝔓0

(𝜋𝜈)(𝑝𝜁)𝑓((𝜌∨0 (𝑝))
∨𝑤)𝑑𝑝
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= ∫
𝔓0

𝜋(𝑝𝜁)𝜈(𝑝𝜁)𝑓((𝜌∨0 (𝑝))
∨𝑤)𝑑𝑝

= ∫
𝔓0

𝜋(𝑝𝜁)𝜈(𝜁)𝑓((𝜌∨0 (𝑝))
∨𝑤)𝑑𝑝.

Now ⟨, ⟩∶ 𝑊 × 𝑊∨ ⟶ ℂ is given by: ⟨𝑤, 𝜌∨0 (𝑝)𝑤
∨⟩ = ⟨𝜌0(𝑝−1)𝑤,𝑤∨⟩ for

𝑝 ∈ 𝔓0, 𝑤 ∈ 𝑊. So we have (𝜌∨0 (𝑝))
∨ = 𝜌0(𝑝−1) for 𝑝 ∈ 𝔓0. Hence

(𝛼.𝑓)(𝑤) = ∫
𝔓0

𝜋(𝑝𝜁)𝜈(𝜁)𝑓(𝜌0(𝑝−1)𝑤)𝑑𝑝.

As 𝑓 ∈ Hom𝔓0(𝜌0, 𝜋𝜈), so (𝜋𝜈)(𝑝)𝑓(𝑤) = 𝑓(𝜌0(𝑝)𝑤) for 𝑝 ∈ 𝔓0, 𝑤 ∈ 𝑊.
Hence

(𝛼.𝑓)(𝑤) = 𝜈(𝜁) ∫
𝔓0

𝜋(𝑝𝜁)(𝜋𝜈)(𝑝−1)𝑓(𝑤)𝑑𝑝

= 𝜈(𝜁) ∫
𝔓0

𝜋(𝑝𝜁)𝜋(𝑝−1)𝜈(𝑝−1)𝑓(𝑤)𝑑𝑝

= 𝜈(𝜁) ∫
𝔓0

𝜋(𝑝𝜁)𝜋(𝑝−1)𝑓(𝑤)𝑑𝑝.

Now as 𝜋 = 𝑐-𝐼𝑛𝑑𝐿
𝔓0
𝜌0 and𝔓0 = ⟨𝜁⟩𝔓0, 𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗) for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ,

so 𝜋(𝑝𝜁) = 𝜋(𝑝)𝜌0(𝜁) = 𝜋(𝑝)𝜌0(1) = 𝜋(𝑝)1𝑊∨ . Therefore

(𝛼.𝑓)(𝑤) = 𝜈(𝜁) ∫
𝔓0

𝜋(𝑝)𝜋(𝑝−1)𝑓(𝑤)𝑑𝑝

= 𝜈(𝜁)𝑓(𝑤)Vol(𝔓0)
= 𝜈(𝜁)𝑓(𝑤)

So (𝛼.𝑓)(𝑤) = 𝜈(𝜁)𝑓(𝑤) for 𝑤 ∈ 𝑊. So 𝛼 acts on 𝑓 by multiplication by
𝜈(𝜁). Recall for 𝜆 ∈ ℂ×, we write ℂ𝜆 for theℋ(𝐿, 𝜌0)-module with underlying
abelian group ℂ such that 𝛼.𝑧 = 𝜆𝑧 for 𝑧 ∈ ℂ𝜆. Therefore𝑚𝐿(𝜋𝜈) ≅ ℂ𝜈(𝜁).

5. Proof of Theorem 1.1
Recall the following commutative diagram which we have described earlier.

ℜ[𝐿,𝜋]𝐺 (𝐺)
𝑚𝐺,,,,,,→ ℋ(𝐺, 𝜌) − 𝑀𝑜𝑑

𝜄𝐺𝑃
↑⏐⏐⏐⏐⏐⏐⏐ (𝑇𝑃)∗↑⏐⏐⏐⏐⏐⏐⏐

ℜ[𝐿,𝜋]𝐿(𝐿)
𝑚𝐿,,,,,,→ ℋ(𝐿, 𝜌0) − 𝑀𝑜𝑑

(CD)
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Recall that in the unramified case when 𝑛 is even or in the ramified case
when 𝑛 is odd we have 𝑁𝐺(𝜌0) = 𝑍(𝐿)𝔓0. Thus ℑ𝐺(𝜌) = 𝔓(𝑍(𝐿)𝔓0)𝔓 =
𝔓𝑍(𝐿)𝔓.
From Corollary 6.5 in [KP98] it follows that if ℑ𝐺(𝜌) ⊆ 𝔓𝐿𝔓 then

𝑇𝑃 ∶ ℋ(𝐿, 𝜌0)⟶ℋ(𝐺, 𝜌)
is an isomorphism of ℂ-algebras. As we have ℑ𝐺(𝜌) = 𝔓𝑍(𝐿)𝔓 in the unram-
ified case when 𝑛 is even or in the ramified case when 𝑛 is odd, so ℋ(𝐿, 𝜌0)
≅ ℋ(𝐺, 𝜌) as ℂ-algebras. So from the commutative diagram (CD), we can con-
clude that 𝜄𝐺𝑃 (𝜋𝜈) is irreducible for any unramified character 𝜈 of 𝐿.
Recall that 𝜋𝜈 lies inℜ[𝐿,𝜋]𝐿(𝐿). Note that from the above commutative di-

agram, it follows that 𝜄𝐺𝑃 (𝜋𝜈) lies in ℜ[𝐿,𝜋]𝐺 (𝐺) and 𝑚𝐺(𝜄𝐺𝑃 (𝜋𝜈)) is anℋ(𝐺, 𝜌)-
module. Recall 𝑚𝐿(𝜋𝜈) ≅ ℂ𝜈(𝜁) asℋ(𝐿, 𝜌0)-modules. From the commutative
diagram (CD), we have

𝑚𝐺(𝜄𝐺𝑃 (𝜋𝜈)) ≅ (𝑇𝑃)∗(ℂ𝜈(𝜁))
asℋ(𝐺, 𝜌)-modules. Thus to determine the unramified characters 𝜈 for which
𝜄𝐺𝑃 (𝜋𝜈) is irreducible, wehave to understandwhen (𝑇𝑃)∗(ℂ𝜈(𝜁)) is a simpleℋ(𝐺, 𝜌)-
module.
Using notation on page 438 in [KM09], we have 𝛾1 = 𝛾2 = 𝑞𝑛∕2 for un-

ramified case when 𝑛 is odd and 𝛾1 = 𝛾2 = 𝑞𝑛∕4 for ramified case when 𝑛 is
even. As in Proposition 1.6 of [KM09], let Γ = {𝛾1𝛾2, −𝛾1𝛾−12 , −𝛾−11 𝛾2, (𝛾1𝛾2)−1}.
So by Proposition 1.6 in [KM09], (𝑇𝑃)∗(ℂ𝜈(𝜁)) is a simpleℋ(𝐺, 𝜌)-module⟺
𝜈(𝜁) ∉ Γ. Recall 𝜋 = 𝑐-𝐼𝑛𝑑𝐿𝑍(𝐿)𝔓0

𝜌0 where 𝜌0(𝜁𝑘𝑗) = 𝜌0(𝑗) for 𝑗 ∈ 𝔓0, 𝑘 ∈ ℤ
and 𝜌0 = 𝜏𝜃 for some regular character 𝜃 of 𝑙× with [𝑙 ∶ 𝑘𝐸] = 𝑛. Hence we
can conclude that 𝜄𝐺𝑃 (𝜋𝜈) is irreducible for the unramified case when 𝑛 is odd
⟺𝜈(𝜁) ∉ {𝑞𝑛, 𝑞−𝑛, −1}, 𝜃𝑞𝑛+1 = 𝜃−𝑞 and 𝜄𝐺𝑃 (𝜋𝜈) is irreducible for the ramified
case when 𝑛 is even ⟺ 𝜈(𝜁) ∉ {𝑞𝑛∕2, 𝑞−𝑛∕2, −1}, 𝜃𝑞𝑛∕2 = 𝜃−1. That proves
Theorem 1.1.

References
[BK98] Bushnell, Colin J.; Kutzko, Philip C., Smooth representations of reductive 𝑝-adic

groups: structure theory via types, Proc. LondonMath. Soc. (3), 77 (1998), no. 3, 582–634.
MR1643417 (2000c:22014), Zbl 0911.22014. 1107, 1108, 1109, 1111

[CR92] Carter, RogerW., Finite groups of Lie type conjugacy classes and complex characters,
Univ. Microfilms Internat (1992). 1117

[DFM91] Francois, Digne; Michel, Jean, Representations of finite groups of Lie type, Cam-
bridge University Press (1991). MR1118841 (92g:20063), Zbl 0815.20014. 1117

[GD94] Goldberg, David, Some results on reducibility for unitary groups and local Asai 𝐿-
functions, J. Reine Angew. Math, 448 (1994), 65–95, 0075-4102. MR1266747 (95g:22031),
Zbl 0815.11029. 1105

[GJA55] Green, J. A., The characters of the finite general linear groups, Trans. Amer. Math.
Soc, 80 (1955), 402–447. MR0072878 (17,345e), Zbl 0068.25605. 1102

[HV11] Heiermann, Volker, Opérateurs d’entrelacement et algèbres de Hecke avec
paramètres d’un groupe réductif p-adique: le cas des groupes classiques, Selecta Mathe-
matica, 17 (2011), 713–756. MR2827179 (2012h:22022), Zbl 1246.22021. 1105

http://www.ams.org/mathscinet-getitem?mr=1643417
http://www.emis.de/cgi-bin/MATH-item?0911.22014
http://www.ams.org/mathscinet-getitem?mr=1118841
http://www.emis.de/cgi-bin/MATH-item?0815.20014
http://www.ams.org/mathscinet-getitem?mr=1266747
http://www.emis.de/cgi-bin/MATH-item?0815.11029
http://www.ams.org/mathscinet-getitem?mr=0072878
http://www.emis.de/cgi-bin/MATH-item?0068.25605
http://www.ams.org/mathscinet-getitem?mr=2827179
http://www.emis.de/cgi-bin/MATH-item?1246.22021


ON REDUCIBILITY OF INDUCED REPRESENTATIONS 1139

[HV17] Heiermann, Volker, Local Langlands correspondence for classical groups and affine
Hecke algebras,Math. Z, 287 (2017), 1029–1052. MR3719526, Zbl 1381.22014. 1105

[KM06] Kutzko, Philip; Morris, Lawrence, Level zero Hecke algebras and parabolic in-
duction: the Siegel case for split classical groups, Int. Math. Res. Not (2006), no. 40.
MR2276353 (2008a:20075), Zbl 1115.22013. 1117, 1123, 1125, 1132

[KM09] Kutzko, Philip; Morris, Lawrence, Explicit Plancherel theorems forℋ(𝑞1, 𝑞2) and
𝕊𝕃2(𝐹), Pure Appl. Math. Q., 5 (2009), no. 1, 435–467. MR2531913 (2010m:20009), Zbl
1168.22010. 1138

[KP98] Kutzko, Philip C., Smooth representations of reductive 𝑝-adic groups: an introduction
to the theory of types, Geometry and representation theory of real and 𝑝-adic groups
(Córdoba, 1995), Progr. Math., 158 (1998), 175–196, Birkha̋user Boston, Boston, MA.
MR1486141 (98k:22072)), Zbl 0885.22022. 1105, 1138

[LS20] Lust, Jaimie; Stevens, Shaun, On depth zero L-packets for classical groups, Proc.
Lond. Math. Soc. (3), 121 (2020), no. 5, 1083–1120. MR4118530, Zbl 1475.22026. 1105

[ML93] Morris, Lawrence, Tamely ramified intertwining algebras, Invent. Math., 114 (1993),
no. 1, 1–54. MR1235019 (94g:22035), Zbl 0854.22022. 1102, 1113, 1115

[RSS21] Repaka, Subha S., A reducibility problem for even unitary groups: The depth zero
case, J. Algebra, 573 (2021), 663–711. MR4209718, Zbl 1467.22003. 1104, 1114, 1115,
1116, 1117, 1119, 1120, 1122, 1126

(Subha Sandeep Repaka) Department ofMathematics, SRMUniversity- AP, Amaravati
522240, Andhra Pradesh, India
sandeep.repaka@gmail.com
subhasandeep.r@srmap.edu.in

This paper is available via http://nyjm.albany.edu/j/2024/30-50.html.

http://www.ams.org/mathscinet-getitem?mr=3719526
http://www.emis.de/cgi-bin/MATH-item?1381.22014
http://www.ams.org/mathscinet-getitem?mr=2276353
http://www.emis.de/cgi-bin/MATH-item?1115.22013
http://www.ams.org/mathscinet-getitem?mr=2531913
http://www.emis.de/cgi-bin/MATH-item?1168.22010
http://www.emis.de/cgi-bin/MATH-item?1168.22010
http://www.ams.org/mathscinet-getitem?mr=1486141
http://www.emis.de/cgi-bin/MATH-item?0885.22022
http://www.ams.org/mathscinet-getitem?mr=4118530
http://www.emis.de/cgi-bin/MATH-item?1475.22026
http://www.ams.org/mathscinet-getitem?mr=1235019
http://www.emis.de/cgi-bin/MATH-item?0854.22022
http://www.ams.org/mathscinet-getitem?mr=4209718
http://www.emis.de/cgi-bin/MATH-item?1467.22003
mailto:sandeep.repaka@gmail.com
mailto:subhasandeep.r@srmap.edu.in
http://nyjm.albany.edu/j/2024/30-50.html

	1. Introduction
	2. Preliminaries
	3. Structure of H(G,)
	4. Final calculations to answer the question
	5. Proof of Theorem 1.1
	References

