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Strichartz estimates associated with the
Grushin operator

Sunit Ghosh, Shyam SwarupMondal
and Jitendriya Swain

Abstract. Let 𝐺 = −∆ − |𝑥|2𝜕2𝑡 denote the Grushin operator on ℝ𝑛+1. It is
well known that the Grushin-Schrödinger equation is totally non-dispersive
and hence the classical approach to obtain Strichartz estimates fails. In this
paper, we prove a restriction theorem with respect to the scaled Hermite-
Fourier transform onℝ𝑛+2 for certain surfaces inℕ𝑛

0 ×ℝ
∗×ℝ and as an appli-

cation, we obtain anisotropic Strichartz estimates for theGrushin-Schrödinger
equation and for the Grushin wave equation.
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1. Introduction
Consider the free Schrödinger equation on ℝ𝑛:

𝑖𝜕𝑠𝑢(𝑥, 𝑠) − ∆𝑢(𝑥, 𝑠) = 0, 𝑥 ∈ ℝ𝑛, 𝑠 ∈ ℝ ⧵ {0}, (1.1)
𝑢(𝑥, 0) = 𝑓(𝑥),
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where ∆ denotes the standard Laplacian on ℝ𝑛. It is well known that 𝑒−𝑖𝑠∆𝑓 is
the unique solution to the IVP (1.1) and can be written as

𝑢(⋅, 𝑠) = 𝑒𝑖
|⋅|2

4𝑠

(4𝜋𝑖𝑠)
𝑛
2

∗ 𝑓(⋅). (1.2)

An application of Young’s inequality in (1.2) gives the following dispersive es-
timate: For all 𝑠 ∈ ℝ ⧵ {0},

‖𝑢(⋅, 𝑠)‖𝐿∞(ℝ𝑛) ≤
1

(4𝜋|𝑠|)
𝑛
2

‖𝑓‖𝐿1(ℝ𝑛) . (1.3)

Such an estimate is crucial in the study of semilinear and quasilinear equations
which has wide applications in physical systems (see [5, 19] and the references
therein). The dispersive estimate (1.3) yields the following remarkable estimate
for the solution of (1.1) by Strichartz [29] (see also [24, 25]) in connection with
Fourier restriction theory:

‖𝑢‖𝐿𝑞(ℝ,𝐿𝑝(ℝ𝑛)) ≤ 𝐶(𝑝, 𝑞) ‖𝑓‖𝐿2(ℝ𝑛) , (1.4)

where (𝑝, 𝑞) satisfies the scaling admissibility condition 2
𝑞
+ 𝑛
𝑝
= 𝑛

2
with𝑝, 𝑞 ≥ 2

and (𝑛, 𝑞, 𝑝) ≠ (2, 2,∞). We refer to [9, 11, 13] for further study on Strichartz
estimates and its connection with dispersive estimates.
In this work, we aim at investigating such phenomenon associated with the

Grushin operator 𝐺 on ℝ𝑛+1 defined by

𝐺 = −∆ − |𝑥|2𝜕2𝑡 , (𝑥, 𝑡) ∈ ℝ𝑛 × ℝ,

where |𝑥| =
√
𝑥21 +⋯+ 𝑥2𝑛.

The studies of the Grushin operator date back to Baouendi and Grushin
[8, 21, 20]. Since then, several authors studied the operator extensively in dif-
ferent contexts, involving classification of solutions to an elliptic equations, free
boundary problems in partial differential equations, well-posedness problems
in Sobolev spaces etc. [1, 14, 17, 23]. Even though numerous studies in the di-
rection of PDEs associated with the Grushin operator are currently available, to
the best of our knowledge, the study on Strichartz estimates for the Schrödinger
and the wave equations associated with the Grushin operator has not been ad-
dressed in the literature so far.
Consider the following Grushin-Schrödinger equation:

𝑖𝜕𝑠𝑢(𝑥, 𝑡, 𝑠) − 𝐺𝑢(𝑥,𝑡, 𝑠) = ℎ(𝑥, 𝑡, 𝑠), 𝑠 ∈ ℝ, (𝑥, 𝑡) ∈ ℝ𝑛+1, (1.5)
𝑢(𝑥, 𝑡, 0) = 𝑓(𝑥, 𝑡).

For 𝑓 in 𝐿2(ℝ𝑛+1), 𝑢(𝑥, 𝑡, 𝑠) = 𝑒−𝑖𝑠𝐺𝑓(𝑥, 𝑡) is the unique global time solution to
the above IVP (1.5) (with ℎ = 0). Unlike the Euclidean case, the IVP (1.5) is
totally non dispersive (see [18]) for 𝑛 = 1. A similar conclusion is observed in
the following proposition for 𝑛 ≥ 1.
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Proposition 1.1. There exists a function 𝑓 ∈ 𝒮(ℝ𝑛+1), the space of all Schwartz
class functions on ℝ𝑛+1, such that the solution to the IVP (1.5) (for ℎ = 0) with
initial data 𝑓 satisfies

𝑢(𝑥, 𝑡, 𝑠) = 𝑓(𝑥, 𝑡 + 𝑠𝑛), ∀𝑠 ∈ ℝ, ∀(𝑥, 𝑡) ∈ ℝ𝑛+1. (1.6)

Notice that ‖𝑢(⋅, 𝑠)‖𝑝 = ‖𝑓‖𝑝 for all 1 ≤ 𝑝 ≤ ∞, hence one cannot expect
for a global dispersive estimate of the type (1.2). Due to loss of dispersion, the
Euclidean strategy of finding Strichartz estimates fails, and the problem of ob-
taining Strichartz estimates is considerably more difficult. Similar situations
have already been handled in the literature in different contexts. For instance,
we refer to [10, 12, 22] for compact Riemannian manifolds, [4] for the Heisen-
berg group, [2] for the hyperbolic space and [6, 15] for the nilpotent Lie groups.
In particular, Bahouri-Gérard-Xu [7] emphasized that the Schrödinger operator
on the Heisenberg groupℍ𝑑 has no dispersion at all. Further, Bahouri-Barilari-
Gallagher [4] derived anisotropic Strichartz estimates for the Schrödinger and
the wave equations on the Heisenberg group involving the sublaplacian, only
for the radial initial data, by adapting the Fourier transform restriction analysis
initiated in [29] and [31].
Since theGrushin operator is closely linked to the sublaplacian on theHeisen-

berg group, we expect analogous results in the context of the Grushin operator.
Following the strategy introduced in [4], we obtain anisotropic Strichartz esti-
mates for the Grushin-Schrödinger equation (1.5) and the Grushin wave equa-
tion (1.14) for initial data that belongs to a more general class of functions.
For 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞, consider the anisotropic Lebesgue spaces

𝐿𝑟𝑡 (ℝ; 𝐿
𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛)))

with the mixed norm

‖𝑓‖𝐿𝑟𝑡𝐿𝑞𝑠 𝐿𝑝𝑥 =
⎛
⎜
⎜
⎝

∫
ℝ

⎛
⎜
⎝
∫
ℝ
(∫

ℝ𝑛
|𝑓(𝑥, 𝑡, 𝑠)|𝑝𝑑𝑥)

𝑞
𝑝

𝑑𝑠
⎞
⎟
⎠

𝑟
𝑞

𝑑𝑡
⎞
⎟
⎟
⎠

1
𝑟

.

Proposition 1.1 shows that the semigroup 𝑒−𝑖𝑠𝐺 is unbounded from 𝐿2(ℝ𝑛+1)
to 𝐿𝑟𝑡 (ℝ; 𝐿

𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) unless 𝑟 = ∞. Therefore, we investigate the following

question: can we obtain nontrivial time space estimates for the solution 𝑢 of
the IVP (1.5) such that 𝑢 ∈ 𝐿∞𝑡 (ℝ; 𝐿

𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) for some non-trivial (𝑝, 𝑞)?

Weaffirm this question by proving a restriction theorem for the scaledHermite-
Fourier transform (defined below) on specific surfaces inℕ𝑛0×ℝ

∗×ℝ and adapt-
ing general methods to derive Strichartz estimates in [29].
The scaled Hermite-Fourier restriction theorem. For 𝑓 ∈ 𝒮(ℝ𝑛+2), the
space of all Schwartz class functions on ℝ𝑛+2 , let

𝑓𝜆,𝜈(𝑥) = ∫
ℝ
∫
ℝ
𝑓(𝑥, 𝑡, 𝑠) 𝑒𝑖𝜆𝑡𝑒𝑖𝜈𝑠𝑑𝑡𝑑𝑠, 𝜆 ∈ ℝ∗ = ℝ ⧵ {0}, 𝜈 ∈ ℝ, (1.7)
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stand for the inverse Fourier transform of 𝑓(𝑥, 𝑡, 𝑠) in the (𝑡, 𝑠) variable. We
define the scaled Hermite-Fourier transform of 𝑓 on ℝ𝑛+2 as

𝑓(𝛼, 𝜆, 𝜈) = ∫
ℝ𝑛
∫
ℝ
∫
ℝ
𝑒𝑖𝜆𝑡𝑒𝑖𝜈𝑠𝑓(𝑥, 𝑡, 𝑠)Φ𝜆𝛼(𝑥)𝑑𝑠𝑑𝑡𝑑𝑥 = ⟨𝑓𝜆,𝜈, Φ𝜆𝛼⟩, (1.8)

for any (𝛼, 𝜆, 𝜈) ∈ ℕ𝑛0 ×ℝ
∗×ℝ. HereΦ𝜆𝛼 is defined in Section 2 and ⟨⋅, ⋅⟩ denotes

the inner product on ℝ𝑛. Given a surface 𝑆 in ℕ𝑛0 × ℝ∗ × ℝ endowed with
an induced measure 𝑑𝜎, we define the restriction operator ℛ𝑆 ∶ 𝐿2(ℝ𝑛+2) →
𝐿2(𝑆, 𝑑𝜎) as

ℛ𝑆𝑓 = 𝑓|𝑆, (1.9)

on the surface 𝑆 and the operator dual to ℛ𝑆 (called the extension operator) as

ℰ𝑆(𝛩)(𝑥, 𝑡, 𝑠) =
1

(2𝜋)2
∫
𝑆
𝑒−𝑖𝜈𝑠𝑒−𝑖𝜆𝑡𝛩(𝛼, 𝜆, 𝜈) Φ𝜆𝛼(𝑥) 𝑑𝜎, (1.10)

𝛩 ∈ 𝐿2(𝑆, 𝑑𝜎). Consider the surface 𝑆 = {(𝛼, 𝜆, 𝜈) ∈ ℕ𝑛0 × ℝ∗ × ℝ ∶ 𝜈 =
(2|𝛼| + 𝑛)|𝜆|} with a localized induced measure 𝑑𝜎𝑙𝑜𝑐 (defined in Section 3)
and let 𝑆𝜎𝑙𝑜𝑐 be the support of 𝑑𝜎𝑙𝑜𝑐 in 𝑆. We obtain the following restriction
theorem for scaled Hermite-Fourier transform for 𝑆𝜎𝑙𝑜𝑐 .

Theorem 1.2 (Scaled Hermite-Fourier restriction theorem). Let 𝑛 ≥ 1.
(1) If 1 ≤ 𝑞 ≤ 𝑝 < 2, then

‖ℛ𝑆𝜎𝑙𝑜𝑐
𝑓‖𝐿2(𝑆,𝑑𝜎𝑙𝑜𝑐) ≤ 𝐶(𝑝, 𝑞)‖𝑓‖𝐿1𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 , (1.11)

for all functions 𝑓 ∈ 𝒮(ℝ𝑛+2).
(2) For 𝑛 = 1, the inequality (1.11) holds for all 𝑓 ∈ 𝒮(ℝ3), when 𝑝 = 2 and

1 ≤ 𝑞 ≤ 2.
(3) For 𝑛 ≥ 2, the inequality (1.11) holds for all 𝑓 ∈ 𝒮𝑟𝑎𝑑(ℝ𝑛+2), the space of

all radial2 Schwartz class functions onℝ𝑛+2, when 𝑝 = 2 and 1 ≤ 𝑞 ≤ 2.

We refer to Liu and Song [26] for a similar restriction theorem associated with
the Grushin operator (see Subsection 2.3).
Anisotropic Strichartz estimates. By duality, Theorem 1.2 can be reframed
as follows: for any 2 < 𝑝′ ≤ 𝑞′ ≤ ∞,

‖ℰ𝑆𝜎𝑙𝑜𝑐 (𝛩)‖𝐿∞𝑡 𝐿𝑞
′
𝑠 𝐿

𝑝′
𝑥
≤ 𝐶(𝑝, 𝑞)‖𝛩‖𝐿2(𝑆,𝑑𝜎𝑙𝑜𝑐) (1.12)

holds for all 𝛩 ∈ 𝐿2(𝑆, 𝑑𝜎𝑙𝑜𝑐).
Now, realizing the solution of (1.5) (with ℎ = 0) as the extension oper-

ator ℰ𝑆𝜎𝑙𝑜𝑐 acting on a suitable function on 𝑆 and using (1.12), we prove an
anisotropic Strichartz estimate for the solution of the free Grushin-Schrödinger
equation. More generally, we obtain the following result.

2A function 𝑓 onℝ𝑛+2 (resp. ℝ𝑛+1) is said to be radial if 𝑓(𝑥, 𝑡, 𝑠) = 𝑓(|𝑥|, 𝑡, 𝑠) (resp. 𝑓(𝑥, 𝑡) =
𝑓(|𝑥|, 𝑡)) for all 𝑥 ∈ ℝ𝑛 and 𝑡, 𝑠 ∈ ℝ.
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Theorem 1.3. Let 𝑓 ∈ 𝐿2(ℝ𝑛+1) and ℎ ∈ 𝐿1𝑠 (ℝ; 𝐿2𝑥,𝑡(ℝ
𝑛+1)). If (𝑝, 𝑞) lies in the

admissible set

𝐴 = {(𝑝, 𝑞) ∶ 2 < 𝑝 ≤ 𝑞 ≤ ∞ and 2
𝑞 +

𝑛
𝑝 = 𝑛 + 2

2 } ,

then the solution𝑢(𝑥, 𝑡, 𝑠) of the IVP (1.5) is in𝐿∞𝑡 (ℝ; 𝐿
𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) and satisfies

the estimate:

‖𝑢(𝑥, 𝑡, 𝑠)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶
(
‖𝑓‖𝐿2(ℝ𝑛+1) + ‖ℎ‖𝐿1𝑠 (ℝ;𝐿2𝑥,𝑡(ℝ𝑛+1))

)
. (1.13)

Moreover, at the endpoint (𝑝, 𝑞) = (2, 2), the estimate (1.13) is valid for all func-
tions 𝑓 and ℎ in one dimension, and for radial functions 𝑓 and ℎ when 𝑛 ≥ 2.

Remark 1.4. The Strichartz estimates (1.13) are not the usual ones in terms
of order of Lebesgue norms. Note that the usual Strichartz estimate, i.e., the
semigroup 𝑒−𝑖𝑠𝐺 is bounded from 𝐿2(ℝ𝑛+1) to 𝐿𝑞𝑠 (ℝ; 𝐿𝑟𝑡 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) only when

(𝑞, 𝑟, 𝑝) = (∞, 2, 2), by Proposition 1.1.

Consider the following Grushin wave equation:

𝜕2𝑠𝑢(𝑥, 𝑡, 𝑠) + 𝐺𝑢(𝑥, 𝑡, 𝑠) = ℎ(𝑥, 𝑡, 𝑠) 𝑠 ∈ ℝ, (𝑥, 𝑡) ∈ ℝ𝑛+1, (1.14)
𝑢(𝑥, 𝑡, 0) = 𝑓(𝑥, 𝑡), 𝜕𝑠𝑢(𝑥, 𝑡, 0) = 𝑔(𝑥, 𝑡).

The solution to the above IVP (1.14) (with ℎ = 0) can be realized as the ex-
tension operator ℰ𝑆𝑤 acting on a suitable function on the surface 𝑆𝑤 (defined
in Remark 3.2). Using the scaled Hermite–Fourier restriction theorem for the
surface 𝑆𝑤, we prove an anisotropic Strichartz estimate for the solution of the
free Grushin wave equation. More generally, we obtain the following result.

Theorem 1.5. Let

𝑓 ∈ 𝐿2(ℝ𝑛+1), 𝐺−1∕2𝑔 ∈ 𝐿2(ℝ𝑛+1), 𝐺−1∕2ℎ ∈ 𝐿1𝑠 (ℝ; 𝐿2𝑥,𝑡(ℝ
𝑛+1)).

If (𝑝, 𝑞) lies in the admissible set

𝐴𝑤 = {(𝑝, 𝑞) ∶ 2 < 𝑝 ≤ 𝑞 ≤ ∞ and 1
𝑞 +

𝑛
𝑝 = 𝑛 + 2

2 } ,

then the solution 𝑢(𝑥, 𝑡, 𝑠) of the IVP (1.14) is in 𝐿∞𝑡 (ℝ; 𝐿
𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) and satis-

fies the estimate:

‖𝑢(𝑥, 𝑡, 𝑠)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥
≤ 𝐶

(
‖𝑓‖𝐿2(ℝ𝑛+1) + ‖𝐺−1∕2𝑔‖𝐿2(ℝ𝑛+1) + ‖𝐺−1∕2ℎ‖𝐿1𝑠 (ℝ;𝐿2𝑥,𝑡(ℝ𝑛+1))

)
. (1.15)

Remark 1.6. In [7], Bahouri-Gérard-Xu derived a (usual) Strichartz estimate for
the wave equation associated with the sublaplacian on the Heisenberg group,
we can expect an analogue result in the case of the Grushin operator. However,
the above theorem may be viewed as an extension of Theorem 1.1 in [7] in the
context of Grushin operator.
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This paper is organized as follows: in Section 2, the spectral theory of the
Grushin operator and some properties of scaled Hermite Fourier transform on
ℝ𝑛+1 are discussed. In Section 3, the restriction theorem for the scaled Hermite
Fourier transform is obtained. In Section 4, the anisotropic Strichartz estimates
for the solutions to IVP (1.5) and IVP (1.14) (with ℎ = 0) are derived. Finally,
we prove Theorem 1.2 and Theorem 1.3 in Section 5.

2. Preliminaries
In this section, we discuss the spectral theory for the Grushin operator and

the Fourier analysis tools associated with the Grushin operator.

2.1. The Grushin operator and its spectral theory: Let𝐻𝑘 denote the Her-
mite polynomial on ℝ, defined by

𝐻𝑘(𝑥) = (−1)𝑘 𝑑
𝑘

𝑑𝑥𝑘
(𝑒−𝑥2)𝑒𝑥2 , 𝑘 ∈ ℕ0 = {0, 1, 2,⋯},

and ℎ𝑘 denote the normalized Hermite functions on ℝ defined by

ℎ𝑘(𝑥) = (2𝑘
√
𝜋𝑘!)−

1
2𝐻𝑘(𝑥)𝑒

− 1
2
𝑥2 , 𝑘 ∈ ℕ0.

The higher dimensional Hermite functions denoted by Φ𝛼 are then obtained
by taking tensor product of one dimensional Hermite functions. Thus, for any
multi-index 𝛼 ∈ ℕ𝑛0 and 𝑥 ∈ ℝ𝑛, we define Φ𝛼(𝑥) =

∏𝑛
𝑗=1 ℎ𝛼𝑗 (𝑥𝑗). For 𝜆 ∈ ℝ∗,

the scaled Hermite functions are defined by Φ𝜆𝛼(𝑥) = |𝜆|
𝑛
4 Φ𝛼(

√
|𝜆|𝑥), they are

the eigenfunctions of the (scaled) Hermite operator 𝐻(𝜆) = −∆ + 𝜆2|𝑥|2 with
eigenvalues (2|𝛼| + 𝑛)|𝜆|, where |𝛼| =

∑𝑛
𝑗=1 𝛼𝑗, 𝛼 ∈ ℕ𝑛0 . For each 𝜆 ∈ ℝ∗, the

family {Φ𝜆𝛼 ∶ 𝛼 ∈ ℕ𝑛0 } is then an orthonormal basis for 𝐿
2(ℝ𝑛). For each 𝑘 ∈ ℕ,

let 𝑃𝑘(𝜆) stand for the orthogonal projection of 𝐿2 (ℝ𝑛) onto the eigenspace of
𝐻(𝜆) spanned by

{
Φ𝜆𝛼 ∶ |𝛼| = 𝑘

}
. More precisely, for 𝑓 ∈ 𝐿2(ℝ𝑛),

𝑃𝑘(𝜆)𝑓 =
∑

|𝛼|=𝑘
⟨𝑓, Φ𝜆𝛼⟩ Φ𝜆𝛼 , (2.1)

where ⟨⋅, ⋅⟩ denote the standard inner product in 𝐿2(ℝ𝑛). Then the spectral
decomposition of𝐻(𝜆) is explicitly given as

𝐻(𝜆)𝑓 =
∞∑

𝑘=0
(2𝑘 + 𝑛)|𝜆|𝑃𝑘(𝜆)𝑓. (2.2)

Note that

𝑃𝑘(𝜆)𝑓(𝑥) = 𝑃𝑘(1)(𝑓◦𝑑
|𝜆|−

1
2
)◦𝑑

|𝜆|
1
2
(𝑥), (2.3)

where the dilations 𝑑𝑟 on ℝ𝑛 is defined by 𝑑𝑟(𝑥) = 𝑟𝑥 for 𝑟 > 0.
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For a Schwartz function 𝑓 on ℝ𝑛+1, let 𝑓𝜆(𝑥) = ∫ℝ 𝑓(𝑥, 𝑡)𝑒
𝑖𝜆𝑡𝑑𝑡 denotes the

inverse Fourier transform of 𝑓(𝑥, 𝑡) in the 𝑡 variable. Applying the operator 𝐺
to the Fourier expansion 𝑓(𝑥, 𝑡) = 1

2𝜋
∫ℝ 𝑒

−𝑖𝜆𝑡𝑓𝜆(𝑥)𝑑𝜆, we see that

𝐺𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

ℝ
𝑒−𝑖𝜆𝑡𝐻(𝜆)𝑓𝜆(𝑥)𝑑𝜆.

Using (2.2), the spectral decomposition of the Grushin operator is given by

𝐺𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

ℝ
𝑒−𝑖𝜆𝑡 (

∞∑

𝑘=0
(2𝑘 + 𝑛)|𝜆|𝑃𝑘(𝜆)𝑓𝜆(𝑥)) 𝑑𝜆. (2.4)

This operator belongs to thewide class of subelliptic operators studied byFranchi
et al. in [16]. Moreover, it is positive, self-adjoint, and hypoelliptic. The opera-
tor 𝐺 possesses a natural family of anisotropic dilations, namely

𝛿𝑟(𝑥, 𝑡) = (𝑟𝑥, 𝑟2𝑡) for 𝑟 > 0, (2.5)

and this anisotropic dilation structure introduces homogeneous norm onℝ𝑛+1

𝜌 ∶= 𝜌(𝑥, 𝑡) = (
𝑛∑

𝑖=1
|𝑥𝑖|4 + 𝑡2)

1
4

.With the norm 𝜌, we define the ball centered

at 𝑤0 = (𝑥0, 𝑡0) ∈ ℝ𝑛+1 and of radius 𝑅 ≥ 0 by 𝐵(𝑤0, 𝑅) = {(𝑥, 𝑡) ∈ ℝ𝑛+1 ∶
𝜌(𝑥 − 𝑥0, 𝑡 − 𝑡0) < 𝑅}.We refer to [27] and the references therein for a detailed
information about the Grushin operator.

2.2. The scaledHermite-Fourier transformonℝ𝒏+𝟏: For a reasonable func-
tion 𝑓, the scaled Fourier-Hermite transform is defined by

𝑓(𝛼, 𝜆) = ∫
ℝ𝑛
∫
ℝ
𝑒𝑖𝜆𝑡𝑓(𝑥, 𝑡)Φ𝜆𝛼(𝑥)𝑑𝑡𝑑𝑥 = ⟨𝑓𝜆, Φ𝜆𝛼⟩, (𝛼, 𝜆) ∈ ℕ𝑛0 × ℝ

∗. (2.6)

If 𝑓 ∈ 𝐿2(ℝ𝑛+1), then 𝑓 ∈ 𝐿2(ℕ𝑛0 × ℝ
∗) and satisfies the Plancherel formula

‖𝑓‖𝐿2(ℝ𝑛+1) =
1
2𝜋‖𝑓‖𝐿2(ℕ

𝑛
0×ℝ∗). (2.7)

The inversion formula is given by

𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

ℝ
𝑒−𝑖𝜆𝑡

∑

𝛼∈ℕ𝑛0

𝑓(𝛼, 𝜆) Φ𝜆𝛼(𝑥) 𝑑𝜆. (2.8)

If 𝑓 ∈ 𝐿1(ℝ𝑛+1), it can be seen that for 𝑟 > 0,

(̂𝑓◦𝛿𝑟)(𝛼, 𝜆) = 𝑟−(
𝑛
2
+2)𝑓(𝛼, 𝑟−2𝜆), (2.9)

where 𝛿𝑟 is the anisotropic dilation on ℝ𝑛+1 in (2.5).
Replacing 𝑓 by 𝐺𝑓 in (2.8) and comparing with (2.4), we get

(̂𝐺𝑓)(𝛼, 𝜆) = (2|𝛼| + 𝑛)|𝜆| 𝑓(𝛼, 𝜆), (𝛼, 𝜆) ∈ ℕ𝑛0 × ℝ
∗. (2.10)
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As in the Euclidean case, (2.10) allows us to solve (1.5) (with ℎ = 0) explicitly.
For 𝑓 ∈ 𝐿2(ℝ𝑛+1), taking the scaled Hermite-Fourier transform with respect to
(𝑥, 𝑡) variable in (1.5) with ℎ = 0, we get

𝑖 𝑑
𝑑𝑠
𝑢̂(𝛼, 𝜆, 𝑠) − (2|𝛼|+𝑛)|𝜆| 𝑢̂(𝛼, 𝜆, 𝑠) = 0, (2.11)

𝑢̂(𝛼, 𝜆, 0) = 𝑓(𝛼, 𝜆).

Solving the ordinary differential equation (2.11), we get

𝑢̂(𝛼, 𝜆, 𝑠) = 𝑒−𝑖𝑠(2|𝛼|+𝑛)|𝜆|𝑓(𝛼, 𝜆).

Now applying the inversion formula (2.8), the solution of the IVP (1.5) (with
ℎ = 0) can be written as

𝑢(𝑥, 𝑡, 𝑠) = 𝑒−𝑖𝑠𝐺𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

ℝ∗
𝑒−𝑖𝜆𝑡

∑

𝛼∈ℕ𝑛
𝑒−𝑖𝑠(2|𝛼|+𝑛)|𝜆|𝑓(𝛼, 𝜆)Φ𝜆𝛼(𝑥)𝑑𝜆.

(2.12)

We proceed to prove Proposition 1.1.
Proof of Proposition 1.1 : Fix a function 𝑄 ∈ 𝐶∞𝑐 ((1,∞)) and consider

𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

∞

1
𝑒−𝑖𝜆𝑡Φ𝜆0(𝑥)𝑄(𝜆)𝑑𝜆. (2.13)

Thus, 𝑓 ∈ 𝒮(ℝ𝑛+1) and comparing (2.13) with the inversion formula (2.8) we
have

𝑓(𝛼, 𝜆) = { 0, if 𝛼 ≠ 0, 𝜆 ∈ ℝ∗

𝑄(𝜆), if 𝛼 = 0, 𝜆 ∈ ℝ∗.
By (2.8), the solution of the IVP (1.5) can be written as

𝑢(𝑥, 𝑡, 𝑠) = 𝑒−𝑖𝑠𝐺𝑓(𝑥, 𝑡) = 1
2𝜋 ∫

∞

1
𝑒−𝑖𝜆(𝑡+𝑛𝑠)Φ𝜆0(𝑥)𝑄(𝜆)𝑑𝜆 = 𝑓(𝑥, 𝑡 + 𝑛𝑠).

□

2.3. A restriction theorem for the scaledHermite-Fourier transform on
ℝ𝒏+𝟏: For 𝜇 > 0, consider the surface

𝕊𝑛(𝜇) =
{
(𝛼, 𝜆) ∈ ℕ𝑛0 × ℝ

∗ ∶ (2|𝛼| + 𝑛)|𝜆| = 𝜇
}
,

with the measure 𝑑𝜎𝜇 on 𝕊𝑛(𝜇) defined by

∫
𝕊𝑛(𝜇)

Θ(𝛼, 𝜆) 𝑑𝜎𝜇 =
∑

𝛼∈ℕ𝑛0

1
2|𝛼| + 𝑛

(Θ(𝛼,
𝜇

2|𝛼| + 𝑛
) + Θ(𝛼,

−𝜇
2|𝛼| + 𝑛

)) ,

for suitable functions Θ on 𝕊𝑛(𝜇). The surface 𝕊𝑛(𝜇) can be viewed as an ana-
logue of the sphere of radius 𝜇 in ℕ𝑛0 × ℝ∗ with surface measure 𝑑𝜎𝜇, in the
sense that for any 𝐹 ∈ 𝐿1(ℕ𝑛0 × ℝ

∗), we have

∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝐹(𝛼, 𝜆)𝑑𝜆 = ∫

∞

0
(∫

𝕊𝑛(𝜇)
𝐹(𝛼, 𝜆) 𝑑𝜎𝜇) 𝑑𝜇.
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In [26], Liu-Song derived a restriction theorem associated to Grushin opera-
tor onℝ𝑑1 ×ℝ𝑑2 , analogous to the seminal work of Müller [28]. Specifically, by
setting 𝑑1 = 𝑛, 𝑑2 = 1, 𝑞 = 𝑝 and 𝑟 = 𝑝′, with 1

𝑝
+ 1

𝑝′
= 1, Theorem 2 in [26]

can be reframed as follows:

Theorem 2.1. [26] If 1 ≤ 𝑝 < 2, then

‖𝑓|𝕊𝑛(𝜇)‖𝐿2(𝕊𝑛(𝜇),𝑑𝜎𝜇) ≤ 𝐶𝜇
𝑛( 1

𝑝
− 1
2
)
‖𝑓‖𝐿1𝑡 𝐿𝑝𝑥 ,

for all functions 𝑓 ∈ 𝒮(ℝ𝑛+1) and 𝜇 > 0.

In order to obtain Strichartz estimates via the Fourier restriction method for
evolution PDEs, one applies the result to specific surfaces in ℝ𝑛+1 = ℝ𝑛 × ℝ,
such as the paraboloid for the Schrödinger equation and the cone for the wave
equation (see [29]).
When dealingwith evolution equations associated to the Grushin operator𝐺

onℝ𝑛+1, one is naturally lead to consider surfaces inℕ𝑛0×ℝ
∗×ℝ. Consequently,

restriction theorems in ℕ𝑛0 × ℝ∗ alone are not sufficient. Thus, we adapt the
scaled Hermite–Fourier transform on ℝ𝑛+2 (defined in (3.1)) and establish a
restriction theorem (Theorem 1.2) for surfaces in ℕ𝑛0 × ℝ

∗ × ℝ.

3. Restriction theorem for the scaled Hermite–Fourier
transform
For a Schwartz class function 𝑓 on ℝ𝑛+2, the scaled Hermite–Fourier trans-

form of 𝑓 on ℝ𝑛+2 is defined by

𝑓(𝛼, 𝜆, 𝜈) = ∫
ℝ𝑛
∫
ℝ
∫
ℝ
𝑒𝑖𝜆𝑡𝑒𝑖𝜈𝑠𝑓(𝑥, 𝑡, 𝑠)Φ𝜆𝛼(𝑥)𝑑𝑠𝑑𝑡𝑑𝑥 = ⟨𝑓𝜆,𝜈, Φ𝜆𝛼⟩, (3.1)

for any (𝛼, 𝜆, 𝜈) ∈ ℕ𝑛0 ×ℝ
∗ ×ℝ. If 𝑓 ∈ 𝐿2(ℝ𝑛+2) then 𝑓 ∈ 𝐿2(ℕ𝑛0 ×ℝ

∗ ×ℝ) and
satisfies the Plancherel formula

‖𝑓‖𝐿2(ℝ𝑛+2) =
1

(2𝜋)2
‖𝑓‖𝐿2(ℕ𝑛0×ℝ∗×ℝ). (3.2)

The inversion formula is given by

𝑓(𝑥, 𝑡, 𝑠) = 1
(2𝜋)2

∫
ℝ
∫
ℝ
𝑒−𝑖𝜈𝑠𝑒−𝑖𝜆𝑡

∑

𝛼∈ℕ𝑛0

𝑓(𝛼, 𝜆, 𝜈) Φ𝜆𝛼(𝑥) 𝑑𝜆𝑑𝜈. (3.3)

3.1. A surface measure: Let us consider the surface

𝑆 = {(𝛼, 𝜆, 𝜈) ∈ ℕ𝑛0 × ℝ
∗ × ℝ ∶ 𝜈 = (2|𝛼| + 𝑛)|𝜆|}. (3.4)

We endow 𝑆 with themeasure 𝑑𝜎 induced by the projection 𝜋 ∶ ℕ𝑛0 ×ℝ
∗×ℝ →

ℕ𝑛0 × ℝ
∗ onto the first two factors, where ℕ𝑛0 × ℝ

∗ endowed with the measure
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𝑑𝜇⊗𝑑𝜆, 𝑑𝜇 and 𝑑𝜆 denote the countingmeasure onℕ𝑛0 and Lebesguemeasure
onℝ∗ respectively. More explicitly, for any integrable function𝛩 on 𝑆, we have

∫
𝑆
𝛩 𝑑𝜎 =

∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝛩(𝛼, 𝜆, (2|𝛼| + 𝑛)|𝜆|) 𝑑𝜆.

By construction, it is clear that ifΘ = 𝑓◦𝜋|𝑆, where 𝑓 is a function onℕ𝑛0 ×ℝ
∗,

then for all 1 ≤ 𝑝 ≤ ∞

‖Θ‖𝐿𝑝(𝑆,𝑑𝜎) = ‖𝑓‖𝐿𝑝(ℕ𝑛0×ℝ∗). (3.5)

Our purpose here is to show that every (appropriate) function 𝑓 (on ℝ𝑛+2)
has a scaledHermite-Fourier transform 𝑓 that can be restricted to the surface 𝑆.
In view of the Fourier restriction theorem due to Thomas [31], such restriction
property is best dealt with compact subsets in the Euclidean space. Therefore,
we consider the surface 𝑆 endowed with the surface measure 𝑑𝜎𝑙𝑜𝑐 = 𝜓(𝜈)𝑑𝜎
defined by

∫
𝑆
𝛩 𝑑𝜎𝑙𝑜𝑐 =

∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝛩(𝛼, 𝜆, (2|𝛼| + 𝑛)|𝜆|) 𝜓((2|𝛼| + 𝑛)|𝜆|) 𝑑𝜆. (3.6)

with 𝜓 any smooth, even, compactly supported function inℝwith an 𝐿∞ norm
at most 1.
Let 𝑆𝜎𝑙𝑜𝑐 be the support of 𝜎𝑙𝑜𝑐 in 𝑆, i.e., 𝑆𝜎𝑙𝑜𝑐 = {(𝛼, 𝜆, 𝜈) ∈ 𝑆 ∶ 𝜓(𝜈) ≠ 0}. The

restriction operator, ℛ𝑆𝜎𝑙𝑜𝑐
and the extension operator, ℰ𝑆𝜎𝑙𝑜𝑐 with respect to the

surface (𝑆, 𝑑𝜎𝑙𝑜𝑐) can be computed as ℛ𝑆𝜎𝑙𝑜𝑐
𝑓 = 𝑓|𝑆𝜎𝑙𝑜𝑐 and

(2𝜋)2ℰ𝑆𝜎𝑙𝑜𝑐 (𝛩)(𝑥, 𝑡, 𝑠) = (3.7)
∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝑒−𝑖(2|𝛼|+𝑛)|𝜆|𝑠𝑒−𝑖𝜆𝑡𝛩(𝛼, 𝜆, (2|𝛼| + 𝑛)|𝜆|)Φ𝜆𝛼(𝑥)𝜓((2|𝛼| + 𝑛)|𝜆|)𝑑𝜆.

3.2. Proof of the scaled Hermite-Fourier restriction theorem: We prove
each case in Theorem 1.2 separately. First, we prove the case 1 ≤ 𝑞 ≤ 𝑝 < 2.
Before proceeding to the proof, we need to observe the following:

Lemma 3.1. Let 𝜙 ∈ 𝒮(ℝ𝑛) and 𝜆 ∈ ℝ∗, then for all 1 ≤ 𝑝 ≤ 2,

‖𝑃𝑘(𝜆)𝜙‖𝐿𝑝′ (ℝ𝑛) ≤ 𝐶|𝜆|
𝑛
2
(1− 2

𝑝′
)
(2𝑘 + 𝑛)

𝑛−1
2
(1− 2

𝑝′
)
‖𝜙‖𝐿𝑝(ℝ𝑛), (3.8)

where 𝑝′ is the conjugate exponent of 𝑝, i.e., 1
𝑝
+ 1

𝑝′
= 1.

Proof. Since {𝑃𝑘(𝜆)}𝑘≥0 are orthogonal projections on 𝐿2(ℝ𝑛),we have
‖𝑃𝑘(𝜆)𝜙‖𝐿2(ℝ𝑛) ≤ ‖𝜙‖𝐿2(ℝ𝑛). (3.9)

Using the relation (2.3) and the 𝐿1 − 𝐿∞ estimate in the proof of Proposition
4.4.2 in [30], we have

‖𝑃𝑘(𝜆)𝜙‖𝐿∞(ℝ𝑛) ≤ |𝜆|
𝑛
2 (2𝑘 + 𝑛)

𝑛−1
2 ‖𝜙‖𝐿1(ℝ𝑛). (3.10)
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This estimate can also be found in the proof of Proposition 1 in [26]. Thus, the
Lemma 3.1 follows by interpolating (3.9) and (3.10). □

Proof of Theorem 1.2 for the case 1 ≤ 𝑞 ≤ 𝑝 < 2: By duality argument, it is
enough to show that the boundedness of the operator ℰ𝑆𝜎𝑙𝑜𝑐 from 𝐿2(𝑆, 𝑑𝜎𝑙𝑜𝑐) to

𝐿∞𝑡 (ℝ; 𝐿
𝑞′
𝑠 (ℝ; 𝐿

𝑝′
𝑥 (ℝ𝑛))). Equivalently, we show that the operator ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )

∗

is bounded from 𝐿1𝑡 (ℝ; 𝐿
𝑞
𝑠 (ℝ; 𝐿

𝑝
𝑥 (ℝ𝑛))) to 𝐿∞𝑡 (ℝ; 𝐿

𝑞′
𝑠 (ℝ; 𝐿

𝑝′
𝑥 (ℝ𝑛))), where 1

𝑝
+

1
𝑝′
= 1 and 1

𝑞
+ 1

𝑞′
= 1.

Let 𝑓 ∈ 𝒮(ℝ𝑛+2). From (3.7) and (3.6), we have

(2𝜋)2ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓(𝑥, 𝑡, 𝑠)

=
∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝑒−𝑖(2|𝛼|+𝑛)|𝜆|𝑠𝑒−𝑖𝜆𝑡𝑓(𝛼, 𝜆, (2|𝛼| + 𝑛)|𝜆|) Φ𝜆𝛼(𝑥)𝜓((2|𝛼| + 𝑛)|𝜆|) 𝑑𝜆

=
∑

𝛼∈ℕ𝑛0

1
2|𝛼| + 𝑛

∫
ℝ∗
𝑒−𝑖|𝜆|𝑠𝑒−

𝑖𝜆𝑡
2|𝛼|+𝑛𝑓(𝛼, 𝜆

2|𝛼| + 𝑛
, |𝜆|) Φ

𝜆
2|𝛼|+𝑛
𝛼 (𝑥)𝜓(|𝜆|) 𝑑𝜆,

where the last term obtained by performing the change of variables (2|𝛼| +
𝑛)𝜆 ↦ 𝜆 in each integral. Using (3.1), (2.1) and writing 𝑎𝑘 =

1
2𝑘+𝑛

, we obtain

(2𝜋)2ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓(𝑥, 𝑡, 𝑠)

=
∞∑

𝑘=0

1
2𝑘 + 𝑛

∑

±
∫

∞

0
𝑒−𝑖𝜆𝑠𝑒∓𝑖𝑎𝑘𝜆𝑡𝑃𝑘(𝑎𝑘𝜆)𝑓±𝑎𝑘𝜆,𝜆(𝑥)𝜓(𝜆) 𝑑𝜆

= 𝐶
∞∑

𝑘=0

∑

±

1
2𝑘 + 𝑛

ℱ𝜆→𝑠
(
𝑒∓𝑖𝑎𝑘𝜆𝑡𝑃𝑘(𝑎𝑘𝜆)𝑓±𝑎𝑘𝜆,𝜆(𝑥)𝜓+(𝜆)

)
, (3.11)

where 𝜓+(𝜆) = 𝜓(𝜆)𝟏𝜆>𝟎. For fixed 𝑡 ∈ ℝ, Hausdorff–Young inequality on the
right-hand side of (3.11) with respect to 𝑠−variable gives

‖ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓‖𝐿𝑞′𝑠 ≤ 𝐶

∞∑

𝑘=0

∑

±

1
2𝑘 + 𝑛

‖𝜓+(𝜆)𝑒∓𝑖𝑎𝑘𝜆𝑡𝑃𝑘(𝑎𝑘𝜆)𝑓±𝑎𝑘𝜆,𝜆(𝑥)‖𝐿𝑞𝜆 .

(3.12)

For any function 𝑔 onℝ𝑛+1 and for 𝑞′ ≥ 𝑝′ > 2, applyingMinkowski’s inequal-
ity followed by Housdorff-Young inequality and again applying Minkowski’s
inequality, we get

‖ℱ𝜆→𝑠𝑔‖𝐿𝑞′𝑠 𝐿𝑝
′

𝑥
≤ ‖ℱ𝜆→𝑠𝑔‖𝐿𝑝′𝑥 𝐿𝑞

′
𝑠
≤ 𝐶‖𝑔‖𝐿𝑝′𝑥 𝐿𝑞𝜆

≤ 𝐶‖𝑔‖𝐿𝑞𝜆𝐿
𝑝′
𝑥
. (3.13)

In view of (3.13) and (3.12), we deduce that

‖ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓‖𝐿∞𝑡 𝐿𝑞

′
𝑠 𝐿

𝑝′
𝑥
≤ 𝐶

∞∑

𝑘=0

∑

±

1
2𝑘 + 𝑛

‖𝜓(𝜆)𝑃𝑘(𝑎𝑘𝜆)𝑓±𝑎𝑘𝜆,𝜆(𝑥)‖𝐿𝑞𝜆𝐿
𝑝′
𝑥
.
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But, by Lemma 3.1, we have

‖𝑃𝑘(𝑎𝑘𝜆)𝑓±𝑎𝑘𝜆,𝜆‖𝐿𝑝′𝑥 ≤ 𝐶|𝑎𝑘𝜆|
𝑛
2
(1− 2

𝑝′
)
(2𝑘 + 𝑛)

𝑛−1
2
(1− 2

𝑝′
)
‖ℱ𝑠→−𝜆𝑓(⋅, ⋅, 𝑠)‖𝐿𝑝𝑥𝐿1𝑡 ,

which implies that

‖ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓‖𝐿∞𝑡 𝐿𝑞

′
𝑠 𝐿

𝑝′
𝑥

≤ 𝐶
∞∑

𝑘=0

1

(2𝑘 + 𝑛)
1+ 1

2
(1− 2

𝑝′
)

‖‖‖‖‖‖‖
‖ℱ𝑠→−𝜆𝑓(⋅, ⋅, 𝑠)‖𝐿𝑝𝑥𝐿1𝑡 𝜓(𝜆)𝜆

𝑛
2
(1− 2

𝑝′
)‖‖‖‖‖‖‖𝐿𝑞𝜆

≤ 𝐶
‖‖‖‖‖‖‖
‖ℱ𝑠→−𝜆𝑓(⋅, ⋅, 𝑠)‖𝐿𝑝𝑥𝐿1𝑡 𝜓(𝜆)𝜆

𝑛
2
(1− 2

𝑝′
)‖‖‖‖‖‖‖𝐿𝑞𝜆

≤ 𝐶‖ℱ𝑠→−𝜆𝑓(⋅, ⋅, 𝑠)‖𝐿𝑎𝜆𝐿
𝑝
𝑥𝐿1𝑡
‖𝜓(𝜆)𝜆

𝑛
2
(1− 2

𝑝′
)
‖𝐿𝑏𝜆(ℝ), (3.14)

where the last step is justified by an application of Hölder’s inequality in (3.14)
with 𝑎 ≥ 2, 1

𝑎
+ 1

𝑎′
= 1 and 1

𝑎
+ 1

𝑏
= 1

𝑞
. Then, taking 𝑎 = 𝑞′ and applying

Minkowski’s inequality followed byHausdorff-Young inequality in 𝜆− variable,
we get

‖ℰ𝑆𝜎𝑙𝑜𝑐 (ℰ𝑆𝜎𝑙𝑜𝑐 )
∗𝑓‖𝐿∞𝑡 𝐿𝑞

′
𝑠 𝐿

𝑝′
𝑥
≤ 𝐶‖𝜓(𝜆)𝜆

𝑛
2
(1− 2

𝑝′
)
‖𝐿𝑏𝜆(ℝ)‖𝑓‖𝐿

𝑝
𝑥𝐿1𝑡 𝐿

𝑞
𝑠
. (3.15)

Thus, (1.11) follows from (3.15) by Minkowski’s integral inequality for all 1 ≤
𝑞 ≤ 𝑝 < 2. □
Proof of Theorem 1.2 for the case 𝑛 = 1, 𝑝 = 2, 1 ≤ 𝑞 ≤ 2: Note that for
𝑛 = 1,

‖ℛ𝑆𝜎𝑙𝑜𝑐
𝑓‖2𝐿2(𝑆,𝑑𝜎𝑙𝑜𝑐) =

1
(2𝜋)2

∑

±

∞∑

𝑘=0
∫

∞

0

1
2𝑘 + 1

‖‖‖‖𝑃𝑘(±𝑎𝑘𝜆)𝑓
±𝑎𝑘𝜆,𝜆‖‖‖‖

2

𝐿2(ℝ)
𝜓(𝜆)𝑑𝜆.

(3.16)

Consider theHilbert space 𝐿2(ℕ0×ℝ+; 𝐿2(ℝ)), with respect to the inner product

⟨𝛼̃, 𝛽⟩′ =
∞∑

𝑘=0
∫
ℝ+
⟨𝛼̃(𝑘, 𝜆), 𝛽(𝑘, 𝜆)⟩𝜓(𝜆)𝑑𝜆, for all 𝛼̃, 𝛽 ∈ 𝐿2(ℕ0 × ℝ+; 𝐿2(ℝ)),

where ℝ+ denote the set of all positive reals. In view of (3.16) it is enough to
prove that the operator 𝑇 defined on 𝒮(ℝ3) by

𝑇𝑓 = 1

(2𝑘 + 1)
1
2

𝑃𝑘(𝑎𝑘𝜆)𝑓𝑎𝑘𝜆,𝜆,

is bounded from 𝐿1𝑡 (ℝ; 𝐿
𝑞
𝑠 (ℝ; 𝐿2𝑥(ℝ𝑛))) into 𝐿2(ℕ0 × ℝ+; 𝐿2(ℝ)) or equivalently

that its adjoint𝑇∗ is bounded from𝐿2(ℕ0×ℝ+; 𝐿2(ℝ)) into𝐿∞𝑡 (ℝ; 𝐿
𝑞′
𝑠 (ℝ; 𝐿

𝑝′
𝑥 (ℝ𝑛)))

to obtain (1.11).
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For 𝛼̃ ∈ 𝐿2(ℕ0 × ℝ+; 𝐿2(ℝ)), the operator 𝑇∗ can be computed to be

𝑇∗(𝛼̃)(𝑥, 𝑡, 𝑠) =
∞∑

𝑘=0
∫
ℝ+

1

(2𝑘 + 1)
1
2

𝑒−𝑖𝑎𝑘𝜆𝑡𝑒−𝑖|𝜆|𝑠 𝑃𝑘(𝑎𝑘𝜆)(𝛼̃(𝑘, 𝜆))(𝑥)𝜓(𝜆)𝑑𝜆.

Using Minkowski’s inequality together with the Hausdorff-Young inequality
(see (3.13)), for any fixed 𝑡 ∈ ℝ, we have

‖𝑇∗(𝛼̃)(⋅, 𝑡, ⋅)‖𝐿𝑞′𝑠 𝐿2𝑥 ≤ 𝐶‖𝑔‖𝐿𝑞𝜆𝐿2𝑥 ,

where

𝑔(𝑥, 𝜆) = 𝜓(𝜆)
∞∑

𝑘=0

1

(2𝑘 + 1)
1
2

𝑃𝑘(𝑎𝑘𝜆)(𝛼̃(𝑘, 𝜆))(𝑥).

Now

‖𝑔(⋅, 𝜆)‖2𝐿2(ℝ) = 𝜓(𝜆)2
∑

𝑘,𝑙≥0

1

(2𝑘 + 1)
1
2 (2𝑙 + 1)

1
2

⟨𝑃𝑘(𝑎𝑘𝜆)𝛼̃(𝑘, 𝜆), 𝑃𝑙(𝑎𝑘𝜆)𝛼̃(𝑙, 𝜆)⟩

≤ 𝐶𝜓(𝜆)2
∑

𝑘≤𝑙

‖𝛼̃(𝑘, 𝜆)‖𝐿2(ℝ)‖𝛼̃(𝑙, 𝜆)‖𝐿2(ℝ)

(2𝑘 + 1)
3
4 (2𝑙 + 1)

3
4

∫
ℝ

|||||||||
ℎ𝑘 (

𝑥
√
2𝑘 + 1

)
|||||||||

|||||||||
ℎ𝑙 (

𝑥
√
2𝑙 + 1

)
|||||||||
𝑑𝑥,

(3.17)

where the last line obtained by Cauchy–Schwarz inequality and a change of
variable 𝑥 ↦ 𝜆𝑥. Using Proposition 6.2 (see appendix), (3.17) turns out to be

‖𝑔(⋅, 𝜆)‖2𝐿2(ℝ) ≤ 𝐶𝜓(𝜆)2
∑

𝑙
‖𝛼̃(𝑙, 𝜆)‖𝐿2(ℝ)

⎛
⎜
⎝

1
𝑙

𝑙∑

𝑘=0
‖𝛼̃(𝑘, 𝜆)‖𝐿2(ℝ)

⎞
⎟
⎠
.

By Hardy’s inequality (see [3]), we get

‖𝑔(⋅, 𝜆)‖𝐿2(ℝ) ≤ 𝐶𝜓(𝜆) (
∞∑

𝑘=0
‖𝛼̃(𝑘, 𝜆)‖2𝐿2(ℝ))

1
2

.

Further, applying Hölder’s inequality, we have

‖𝑔‖𝐿𝑞𝜆𝐿2𝑥 ≤ 𝐶‖𝜓(𝜆)‖
𝐿

2𝑞
2−𝑞
𝜆 (ℝ+)

‖𝛼̃‖𝐿2(ℕ0×ℝ+).

□
Proposition 6.2 plays a decisive role in the proof presented above. However,
we could not find such estimate for the higher dimensional Hermite functions
(𝑛 ≥ 2). Nonetheless, we prove the restriction inequality (1.11) for 𝑛 ≥ 2 and
𝑝 = 2 for the radial functions. Recall that a function 𝑓 on ℝ𝑛+2 is said to be
radial if 𝑓(𝑥, 𝑡, 𝑠) = 𝑓(|𝑥|, 𝑡, 𝑠) for all 𝑥 ∈ ℝ𝑛 and 𝑡, 𝑠 ∈ ℝ. If 𝑓 is radial onℝ𝑛+2,
then 𝑓𝜆,𝜈 is radial on ℝ𝑛 for any 𝜆 ∈ ℝ∗ and 𝜈 ∈ ℝ. Thus, by Corollary 3.4.1 in
[30] and the relation (2.3), for all 𝑘 ∈ ℕ0, we get

𝑃2𝑘+1(𝜆)(𝑓𝜆,𝜈) = 0 and 𝑃2𝑘(𝜆)(𝑓𝜆,𝜈)(𝑥) = 𝑅2𝑘(𝑓𝜆,𝜈)𝐿
𝑛
2
−1

𝑘 (|𝜆||𝑥|2)𝑒−
|𝜆|
2
|𝑥|2 ,
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where

𝑅2𝑘(𝑓𝜆,𝜈) =
Γ(𝑘 + 1)
Γ(𝑘 + 𝑛

2
)
|𝜆|

𝑛
2 ∫

ℝ𝑛
𝑓𝜆,𝜈(𝑥)𝐿

𝑛
2
−1

𝑘 (|𝜆||𝑥|2)𝑒−
|𝜆|
2
|𝑥|2𝑑𝑥

and 𝐿𝛿𝑘 denote the Laguerre polynomials of type 𝛿(> −1) defined by 𝐿𝛿𝑘(𝑟) =
1
𝑘!
𝑒𝑟𝑟−𝛿 𝑑𝑘

𝑑𝑥𝑘
(𝑒−𝑟𝑟𝑘+𝛿) for 𝑟 > 0.

Proof of Theorem 1.2 for the case 𝑛 ≥ 2, 𝑝 = 2, 1 ≤ 𝑞 ≤ 2: Let 𝑓 ∈
𝒮𝑟𝑎𝑑(𝑅𝑛+2). To prove (1.11) for 𝑛 ≥ 2 and 𝑝 = 2 (proceeding as in (3.16) for
𝑛 = 1 case), it suffices to show

∞∑

𝑘=0
∫

∞

0
(
|||||||
𝑅(𝑘, 𝜆

4𝑘 + 𝑛
, 𝜆)

|||||||

2
+
|||||||
𝑅(𝑘, −𝜆

4𝑘 + 𝑛
, 𝜆)

|||||||

2

) 𝜆
𝑛
2 𝜙(𝜆)𝑑𝜆 ≤ 𝐶‖𝑓‖2

𝐿1𝑡 𝐿
𝑞
𝑠 𝐿

𝑝
𝑥
,

(3.18)

where

𝑅(𝑘, 𝜆, 𝜈) =
⎛
⎜
⎜
⎝

Γ(𝑘 + 1)

Γ(𝑘 + 𝑛
2
)(4𝑘 + 𝑛)

𝑛
2
+1

⎞
⎟
⎟
⎠

1
2

∫
ℝ𝑛
𝑓𝜆,𝜈(𝑥)𝐿

𝑛
2
−1

𝑘 (|𝜆||𝑥|2)𝑒−
|𝜆|
2
|𝑥|2𝑑𝑥.

(3.19)

Consider the operator 𝑇 ∶ 𝒮𝑟𝑎𝑑(𝑅𝑛+2) → 𝐿2(ℕ0 × ℝ+) defined by

(𝑇𝑓)(𝑘, 𝜆) = 𝑅(𝑘, 𝑎2𝑘𝜆, 𝜆),

where 𝑓 is related to 𝑅 through (3.19) and the space 𝐿2(ℕ0×ℝ+) endowed with
the measure 𝓁2(ℕ0) ⊗ 𝐿2(ℝ+, 𝜆

𝑛
2 𝜙(𝜆)𝑑𝜆). To prove (3.18), it is enough to show

the adjoint 𝑇∗ is bounded from 𝐿2(ℕ0 × ℝ+) into 𝐿∞𝑡 (ℝ; 𝐿
𝑞′
𝑠 (ℝ; 𝐿

𝑝′
𝑥 (ℝ𝑛))). For

𝛼 ∈ 𝐿2(ℕ0 × ℝ+), the operator 𝑇∗ is given by

𝑇∗(𝛼)(𝑥, 𝑡, 𝑠) =
∞∑

𝑘=0
∫
ℝ+
𝛼(𝑘, 𝜆)𝑒−𝑖𝑎𝑘𝜆𝑡𝑒−𝑖|𝜆|𝑠 ℒ𝑘 (𝑎2𝑘𝜆) (𝑥)𝜆

𝑛
2𝜓(𝜆)𝑑𝜆,

with

ℒ𝑘(𝜆)(𝑥) =
⎛
⎜
⎜
⎝

Γ(𝑘 + 1)

Γ(𝑘 + 𝑛
2
)(4𝑘 + 𝑛)

𝑛
2
+1

⎞
⎟
⎟
⎠

1
2

𝐿
𝑛
2
−1

𝑘 (|𝜆||𝑥|2)𝑒−
|𝜆|
2
|𝑥|2 .

AgainusingMinkowski’s inequality togetherwith theHausdorff-Young inequal-
ity (see (3.13)), for any fixed 𝑡 ∈ ℝ, we have

‖𝑇∗(𝛼)(⋅, 𝑡, ⋅)‖𝐿𝑞′𝑠 𝐿2𝑥 ≤ 𝐶‖𝑔‖𝐿𝑞𝜆𝐿2𝑥 ,
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where 𝑔(𝑥, 𝜆) = 𝜆
𝑛
2𝜓(𝜆)

∞∑

𝑘=0
𝛼(𝑘, 𝜆) ℒ𝑘 (𝑎2𝑘𝜆) (𝑥). By an obvious change of vari-

able, we get

‖𝑔(⋅, 𝜆)‖2𝐿2(ℝ) ≤ 𝜆𝑛𝜓(𝜆)2
∑

𝑘,𝑙≥0
|𝛼(𝑘, 𝜆)||𝛼(𝑙, 𝜆)| ∫

ℝ𝑛

|||ℒ𝑘(𝑎𝑘)(𝑥)||| |||ℒ𝑙(𝑎𝑙)(𝑥)||| 𝑑𝑥.

(3.20)

Now, by Lemma 4.2 in [28], there exists 𝐶 > 0 such that for all 𝑘, 𝑙 ∈ ℕ0,

∫
ℝ𝑛

|||||||
ℒ𝑘 (

1
4𝑘 + 𝑛

) (𝑥)
|||||||

|||||||
ℒ𝑙 (

1
4𝑙 + 𝑛

) (𝑥)
|||||||
𝑑𝑥 ≤ 𝐶

max(𝑘, 𝑙)
. (3.21)

Note that the above result is stated in Lemma 4.2 of [28] for even 𝑛, but a same
idea works for odd 𝑛 as well. Once we have (3.21), applying Hardy’s inequality
in (3.17) and after using Hölders inequality (arguing as in the proof of 𝑛 = 1
case), we obtain (3.18). □

Remark 3.2. We consider the surfaces
𝑆± = {(𝛼, 𝜆, 𝜈) ∈ ℕ𝑛0 × ℝ

∗ × ℝ ∶ 𝜈2 = (2|𝛼| + 𝑛)|𝜆|, ±𝜈 > 0}, (3.22)

to obtain Strichartz estimate for thewave equation (1.14). The inducedmeasure
𝑑𝜎± by the projection 𝜋 ∶ ℕ𝑛0 × ℝ

∗ × ℝ → ℕ𝑛0 × ℝ
∗ onto the first two factors,

for the surfaces 𝑆± are given by

∫
𝑆±
𝛩 𝑑𝜎± =

∑

𝛼∈ℕ𝑛0

∫
ℝ∗
𝛩(𝛼, 𝜆, ±

√
(2|𝛼| + 𝑛)|𝜆| ) 𝑑𝜆,

for any integrable function 𝛩 on 𝑆±.
Arguing as in the proof of Theorem (1.2), the restriction inequality (1.11)

can be archived for the surface 𝑆𝑤 = 𝑆+ ∪ 𝑆− endowed with the corresponding
localized measure.

4. Anisotropic Strichartz estimates for the homogenous case
We consider the following class of functions : A function 𝑓 ∈ 𝒮(ℝ𝑛+1) is said

to be frequency localized in a ball ℬ𝑅, center at 0 of radius 𝑅 if there exists a
smooth, even function 𝜓 supported in (−1, 1) and equal to 1 near 0 such that

𝑓 = 𝜓( −𝑅−2 𝐺 ) 𝑔, (4.1)

for some 𝑔 ∈ 𝒮(ℝ𝑛+1), which equivalent to saying that for all (𝛼, 𝜆) ∈ ℕ𝑛0 ×ℝ
∗,

𝑓(𝛼, 𝜆) = 𝜓(𝑅−2(|𝛼| + 𝑛)|𝜆|)𝑔̂(𝛼, 𝜆). (4.2)

Note that (4.1) is defined using functional calculus for 𝐺. By construction it is
clear that any function 𝑓 ∈ 𝒮(ℝ𝑛+1) can be approximated by frequency local-
ized functions in 𝐿2 sense. Now we are in position to prove Theorem 1.3 for
ℎ = 0.
Proof of Theorem 1.3 for ℎ = 0: First, suppose 𝑓 ∈ 𝒮(ℝ𝑛+1) is frequency lo-
calized in the unit ballℬ1, i.e., there exists a smooth, even function𝜓 supported
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in (−1, 1) such that 𝑓(𝛼, 𝜆) = 𝜓((|𝛼| + 𝑛)|𝜆|)𝑔̂(𝛼, 𝜆) for some 𝑔 ∈ 𝒮(ℝ𝑛+1). Let
𝛩 = 𝑔̂◦𝜋|𝑆 and the localized measure on 𝑆 be 𝑑𝜎𝑙𝑜𝑐 = 𝜓𝑑𝜎 defined in (3.6). In
view of (2.12) and (3.7) we can write

𝑒−𝑖𝑠𝐺𝑓(𝑥, 𝑡) = ℰ𝑆𝜎𝑙𝑜𝑐 (𝛩)(𝑥, 𝑡, 𝑠).

By the restriction inequality (1.12), we have for 2 < 𝑝 ≤ 𝑞 ≤ ∞

‖𝑒−𝑖𝑠𝐺𝑓‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶‖𝛩‖𝐿2(𝑆,𝑑𝜎𝑙𝑜𝑐) = 𝐶‖𝑓◦𝜋|𝑆‖𝐿2(𝑆,𝑑𝜎) = 𝐶‖𝑓‖𝐿2(ℝ𝑛+1), (4.3)

where the last equality is obtained by (3.5) and the Plancherel formula (3.2).
Next, assume that 𝑓 is frequency localized in the ball ℬ𝑅. By (2.9) one can

check that the function 𝑓𝑅 ∶= 𝑓◦𝛿𝑅−1 is frequency localized in ℬ1 and hence
applying (4.3) we get

‖𝑒−𝑖𝑠𝐺𝑓𝑅(𝑥, 𝑡)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶‖𝑓𝑅‖𝐿2(ℝ𝑛+1) = 𝐶𝑅
𝑛
2
+1‖𝑓‖𝐿2(ℝ𝑛+1). (4.4)

Again using (4.3), we have 𝑒−𝑖𝑠𝐺𝑓𝑅(𝑥, 𝑡) = 𝑒−𝑖𝑅−2𝑠𝐺𝑓(𝑅−1𝑥, 𝑅−2𝑡), thus from
(4.4) we obtain

‖𝑒−𝑖𝑠𝐺𝑓‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 = 𝑅
− 2
𝑞
− 𝑛
𝑝 ‖𝑒−𝑖𝑅−2𝑠𝐺𝑓(𝑅−1𝑥, 𝑅−2𝑡)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶𝑅

𝑛+2
2
− 2
𝑞
− 𝑛
𝑝 ‖𝑓‖𝐿2(ℝ𝑛+1).

(4.5)

So, if 𝑓 is frequency localized in the ball ℬ𝑅, then

‖𝑒−𝑖𝑠𝐺𝑓‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶‖𝑓‖𝐿2(ℝ𝑛+1),

provided 2
𝑞
+ 𝑛

𝑝
= 𝑛+2

2
and hence the estimate (1.13) (with ℎ = 0) follows by

density of frequency localized functions in 𝐿2(ℝ𝑛+1).
Using Theorem 1.2 for (𝑝, 𝑞) = (2, 2) and following the preceding argument,

we can derive Theorem 1.3 (with ℎ = 0) at the point (2, 2). □
Proof of Theorem 1.5 for ℎ = 0: Let 𝑓, 𝑔 ∈ 𝒮(ℝ𝑛+1)with 𝐺−1∕2𝑔 ∈ 𝐿2(ℝ𝑛+1).
Using (2.10) and the inversion formula (2.8), the solution of (1.14) (with ℎ = 0)
is given by

𝑢(𝑥, 𝑡, 𝑠) =
∑

±

1
2𝜋 ∫

ℝ∗
𝑒−𝑖𝜆𝑡

∑

𝛼∈ℕ𝑛
𝑒∓𝑖𝑠

√
(2|𝛼|+𝑛)|𝜆|𝜑±(𝛼, 𝜆)Φ𝜆𝛼(𝑥)𝑑𝜆, (4.6)

where 𝜑± =
1
2

(
𝑓 ∓ 𝑖𝐺−1∕2𝑔

)
.

Let the surface 𝑆𝑤 = 𝑆+∪𝑆− endowed with themeasure 𝑑𝜎±, where 𝑆±, 𝑑𝜎±
are defined in Remark 3.2 and 𝛩 = 𝜑±◦𝜋|𝑆± on each sheet. With this, (4.6) can
bewritten as𝑢(𝑥, 𝑡, 𝑠) = ℰ𝑆𝑤 (𝛩)(𝑥, 𝑡, 𝑠).Assume that𝜑± are frequency localized
in ℬ1. Proceeding as in the proof of Theorem 1.3 for the surface (𝑆𝑤, 𝑑𝜎±) and
using (3.5), we obtain

‖𝑢(𝑥, 𝑡, 𝑠)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶‖𝛩‖𝐿2(𝑆,𝑑𝜎±) = ‖𝜑±‖𝐿2(ℕ𝑛0×ℝ∗) = ‖𝜑±‖𝐿2(ℝ𝑛+1), (4.7)

for 2 < 𝑝 ≤ 𝑞 ≤ ∞.
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If 𝜑± are frequency localized in ℬ𝑅, then the functions 𝜑±,𝑅 = 𝜑±◦𝛿𝑅−1 are
frequency localized in ℬ1 and give rise to the solution

𝑢𝑅(𝑥, 𝑡, 𝑠) = 𝑢(𝑅−1𝑥, 𝑅−2𝑡, 𝑅−1𝑠).

Thus, using (4.7) we obtain

‖𝑢(𝑥, 𝑡, 𝑠)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶𝑅
𝑛+2
2
− 1
𝑞
− 𝑛
𝑝 ‖𝜑±‖𝐿2(ℝ𝑛+1).

By Plancherel formula, we have

‖𝜑±‖2𝐿2(ℝ𝑛+1) = ‖𝜑+‖2𝐿2(ℝ𝑛+1) + ‖𝜑−‖2𝐿2(ℝ𝑛+1) = ‖𝑓‖2𝐿2(ℝ𝑛+1) + ‖𝐺−1∕2𝑔‖2𝐿2(ℝ𝑛+1).

Hence, we conclude that if 𝑓, 𝑔 are frequency localized in ℬ𝑅, then

‖𝑢(𝑥, 𝑡, 𝑠)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶
(
‖𝑓‖𝐿2(ℝ𝑛+1) + ‖𝐺−1∕2𝑔‖𝐿2(ℝ𝑛+1)

)

provided 1
𝑞
+ 𝑛

𝑝
= 𝑛+2

2
. Thus, Theorem 1.5 for ℎ = 0 follows by density argu-

ment. □

5. The inhomogeneous case
The solution of inhomogeneousGrushin–Schrödinger equation (1.5) is given

by Duhamel’s formula:

𝑢(𝑥, 𝑡, 𝑠) = 𝑒−𝑖𝑠𝐺𝑓(𝑥, 𝑡) − 𝑖 ∫
𝑠

0
𝑒−𝑖(𝑠−𝑠′)𝐺𝑔(𝑥, 𝑡, 𝑠′)𝑑𝑠′. (5.1)

Proof of Theorem 1.3: Let 𝑣(𝑥, 𝑡, 𝑠) = 𝑖 ∫
𝑠

0
𝑒−𝑖(𝑠−𝑠′)𝐺𝑔(𝑥, 𝑡, 𝑠′)𝑑𝑠′. Clearly, we

have

‖𝑣(⋅, ⋅, ⋅)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ ∫
ℝ
‖𝑒−𝑖(⋅)𝐺𝑒𝑖𝑠′𝐺𝑔(⋅, ⋅, 𝑠′)‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥𝑑𝑠

′. (5.2)

First, assume that, for all 𝑠′, 𝑔(⋅, ⋅, 𝑠′) is frequency localized in unit ball ℬ1 in
ℝ𝑛+1. For each 𝑠′, using (4.3) and the unitarity of 𝑒𝑖𝑠′𝐺 , (5.2) yields

‖𝑣‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶 ∫
ℝ
‖𝑒𝑖𝑠′𝐺𝑔(⋅, ⋅, 𝑠′)‖𝐿2(ℝ𝑛+1)𝑑𝑠′ = 𝐶 ∫

ℝ
‖𝑔(⋅, ⋅, 𝑠′)‖𝐿2(ℝ𝑛+1)𝑑𝑠′. (5.3)

Now assume, for all 𝑠, 𝑔(⋅, ⋅, 𝑠) is frequency localized in ℬ𝑅. Letting

𝑔𝑅 = 𝑅−2𝑔(⋅, ⋅, 𝑅−2𝑠)◦𝛿𝑅−1 and 𝑣𝑅(𝑥, 𝑠, 𝑡) = 𝑖 ∫
𝑠

0
𝑒−𝑖(𝑠−𝑠′)𝐺𝑔𝑅(𝑥, 𝑡, 𝑠′)𝑑𝑠′,

we find that 𝑔𝑅(⋅, ⋅, 𝑠) is frequency localized in ballℬ1 for all 𝑠 and 𝑣𝑅(𝑥, 𝑡, 𝑠) =
𝑣(𝑅−1𝑥, 𝑅−2𝑡, 𝑅−2𝑠). Applying (5.3) to 𝑔𝑅 and using

‖𝑣𝑅‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 = 𝑅
2
𝑞
+ 𝑛
𝑝 ‖𝑣‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥

with
‖𝑔𝑅‖𝐿1(ℝ;𝐿2(ℝ𝑛+1)) = 𝑅

𝑛
2
+1‖𝑔‖𝐿1(ℝ;𝐿2(ℝ𝑛+1)),
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we obtain

‖𝑣‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶𝑅
𝑛+2
2
− 2
𝑞
− 𝑛
𝑝 ‖𝑔‖𝐿1𝑠 (ℝ;𝐿2𝑥,𝑡(ℝ𝑛+1)). (5.4)

Taking 2
𝑞
+ 𝑛

𝑝
= 𝑛+2

2
and using density of frequency localized functions in

𝐿1𝑠 (ℝ; 𝐿2𝑥,𝑡(ℝ
𝑛+1)), (5.4) turns out to be

‖𝑣‖𝐿∞𝑡 𝐿𝑞𝑠 𝐿𝑝𝑥 ≤ 𝐶‖𝑔‖𝐿1𝑠 (ℝ;𝐿2𝑥,𝑡(ℝ𝑛+1)), (5.5)

and holds for all 𝑔 ∈ 𝐿1(ℝ; 𝐿2(ℝ𝑛+1)). Combining the estimate for the first term
in (5.1) from Theorem 1.3 together with (5.5), we get (1.13).
We can derive Theorem 1.3 at the point (2, 2) using Theorem 1.2 for (𝑝, 𝑞) =

(2, 2) and arguing as before. □
For the inhomogeneous Grushin wave equation (1.14), one can apply Du-

hamel’s principle and follow similar arguments as those used for the inhomo-
geneous Grushin-Schrödinger equation (1.5) discussed above to establish The-
orem 1.5. The details of the proof are left to the reader.

6. Appendix
Let us recall a simplified pointwise estimate for theHermite functions {ℎ𝑘}𝑘∈ℕ0

(see [17], Corollary 2.8). For 𝑘 ∈ ℕ0, we denote 𝜆𝑘 =
√
2𝑘 + 1.

Lemma 6.1 (Rough pointwise estimates for Hermite functions). There exits
𝐶 > 0 such that for any 𝑘 ∈ ℕ0 and 𝑥 ∈ ℝ,

|ℎ𝑘(𝑥)| ≤ 𝐶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜆
− 1
2

𝑘 if |𝑥| ≤ 𝜆𝑘
2

(𝜆
2
3
𝑘 + |𝑥2 − 𝜆2𝑘|)

− 1
4

if 𝜆𝑘
2
≤ |𝑥| ≤ 2𝜆𝑘

𝑒−
𝑥2

8 if |𝑥| ≥ 2𝜆𝑘.

Using the previous lemma, we derive the following proposition, which plays
a crucial role in proving the endpoint case for 𝑛 = 1 in Theorem 1.2.

Proposition 6.2. There exists 𝐶 > 0 such that for any 𝑘, 𝑙 ∈ ℕ,

1

(2𝑘 + 1)
3
4 (2𝑙 + 1)

3
4

∫
ℝ

|||||||||
ℎ𝑘 (

𝑥
√
2𝑘 + 1

)
|||||||||

|||||||||
ℎ𝑙 (

𝑥
√
2𝑙 + 1

)
|||||||||
𝑑𝑥 ≤ 𝐶

max{𝑘, 𝑙}
. (6.1)

Proof. Let 𝑘 ≤ 𝑙. We split the region of the integration in (6.1) into three parts
and estimate each part separately.
(1) In the region {𝑥 ∈ ℝ ∶ |𝑥| ≤ 2𝜆2𝑘}, applying Hölder inequality and using

the estimate ‖‖‖‖ℎ𝑘
(
𝜆−1𝑘 ⋅

)
ℎ𝑙
(
𝜆−1𝑙 ⋅

)‖‖‖‖𝐿2(ℝ) ≤
𝜆
1
2
𝑘

(2𝑙+1)
1
4
, in Corollary 5.2 of [17], we
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obtain

∫
|𝑥|≤2𝜆2𝑘

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤ 2𝜆𝑘
‖‖‖‖ℎ𝑘

(
𝜆−1𝑘 ⋅

)
ℎ𝑙
(
𝜆−1𝑙 ⋅

)‖‖‖‖𝐿2(ℝ) ≤
(2𝑘 + 1)

3
4

(2𝑙 + 1)
1
4

.

(2) In the region {𝑥 ∈ ℝ ∶ 2𝜆2𝑘 ≤ |𝑥| ≤ 2𝜆2𝑙 }, we use the pointwise estimates
in Lemma 6.1.
Case I: Assume 1

2
𝜆2𝑙 ≤ 2𝜆2𝑘. Then

∫
2𝜆2𝑘≤|𝑥|≤2𝜆

2
𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤ 𝐶 ∫
2𝜆2𝑙

2𝜆2𝑘

𝑒
− 𝑥2

8𝜆2𝑘
1

(𝜆
2
3
𝑙 + |𝜆−2𝑙 𝑥2 − 𝜆2𝑙 |)

1
4

𝑑𝑥

= 𝐶 𝜆
3
2
𝑙 ∫

2

2
𝜆2𝑘
𝜆2𝑙

𝑒
−

𝜆4𝑙
8𝜆2𝑘

𝑥2 1

(𝜆
− 4
3

𝑙 + |𝑥2 − 1|)
1
4

𝑑𝑥

≤ 𝐶 𝜆
3
2
𝑙 𝑒

−
𝜆4𝑙
32𝜆2𝑘 ∫

2

1
2

1

|𝑥2 − 1|
1
4

𝑑𝑥

≤ 𝐶

(2𝑙 + 1)
1
4

,

where the second equality is obtained by changing the variable 𝑥 ↦ 𝜆2𝑙 𝑥 and

the last inequality follows from the fact that 𝑒
−

𝜆4𝑙
32𝜆2𝑘 ≤

32𝜆2𝑘
𝜆4𝑙
.

Case II: Assume 2𝜆2𝑘 ≤
1
2
𝜆2𝑙 . Then

∫
2𝜆2𝑘≤|𝑥|≤

1
2
𝜆2𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤ 𝐶 𝜆
− 1
2

𝑙 ∫

1
2
𝜆2𝑙

2𝜆2𝑘

𝑒
− 𝑥2

8𝜆2𝑘 𝑑𝑥

≤ 𝐶 𝜆
− 1
2

𝑙 ∫

1
2
𝜆2𝑙

2𝜆2𝑘

8𝜆2𝑘
𝑥2

𝑑𝑥

≤ 𝐶

(2𝑙 + 1)
1
4

,

and arguing as in the Case I, we obtain ∫
1
2
𝜆2𝑙 ≤|𝑥|≤2𝜆

2
𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤

𝐶

(2𝑙 + 1)
1
4

. Thus,

∫
2𝜆2𝑘≤|𝑥|≤2𝜆

2
𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤
𝐶

(2𝑙 + 1)
1
4

.
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(3) In the region {𝑥 ∈ ℝ ∶ |𝑥| ≥ 2𝜆2𝑙 }, again we use the Lemma 6.1. We
obtain

∫
|𝑥|≥2𝜆2𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤ 𝐶 ∫
∞

2𝜆2𝑙

𝑒
−(

𝜆2𝑘+𝜆
2
𝑙

8𝜆2𝑘𝜆
2
𝑙
)𝑥2

𝑑𝑥.

Then writing 𝐴 =
𝜆2𝑘+𝜆

2
𝑙

8𝜆2𝑘𝜆
2
𝑙
and 𝑋 = 2𝜆2𝑙 , we have

∫
∞

𝑋
𝑒−𝐴𝑥2𝑑𝑥 ≤ 1

2𝐴𝑋
∫

∞

𝑋
2𝐴𝑥𝑒−𝐴𝑥2𝑑𝑥 = 1

2𝐴𝑋𝑒
−𝐴𝑋2 ≤ 1

2𝐴𝑋 (
1

√
𝐴𝑋

) .

Thus,

∫
|𝑥|≥2𝜆2𝑙

||||ℎ𝑘
(
𝜆−1𝑘 𝑥

)||||
||||ℎ𝑙

(
𝜆−1𝑙 𝑥

)|||| 𝑑𝑥 ≤ 𝐶 (
𝜆2𝑘

𝜆2𝑘 + 𝜆2𝑙
)

3
2 1
𝜆𝑙
≤ 𝐶

(2𝑙 + 1)
1
2

.

After combining the estimates obtained in each case, we get (6.1). □
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