ON A CONJECTURE OF A. IVIĆ AND W. SCHWARZ

Antal Balog

Introduction. In their paper A. Ivić and W. Schwarz [1] investigated the following system of arithmetical functional equations:

$$(1) f^k = I * (f \circ q_r)$$

$$(2) f \circ q_r = \mu^2 * f$$

where $k, r \geq 2$ are integers and f(1) = 1. Here * denotes the Dirichlet convolution of arithmetical functions, defined by

$$(f * g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right),$$

and \circ denotes the ordinary composition of functions. I is the constant function with value 1, q_r is the r-th power function and μ^2 is the characteristic function of square-free numbers. An artihmetical function f is multiplicative if f(mn) = f(m)f(n) when m and n are coprime, and f, is prime-independent if $f(p^m)$ depends only on m bat not on p, in other words there is a function t such that $f(p^m) = t(m)$ for all primes p and integers m. Multiplicative functions form a commutative group under the convolution and multiplicative prime-independent functions form a subgroup of this group. It is easy to check that

$$\tau^2 = I * (\tau \circ q_2), \qquad \tau \circ q_2 = \mu^2 * \tau$$

where τ denotes the divisor function, that is $\tau = I * I$.

This is a special case of the system (1-2) namely k=r=2. A. Ivić and W. Schwarz [1] conjectured that this is the only nonnegative solution of the system (1-2) for k, r > 2. They could reach the following remarkable partial results:

Theorem A: If f is a multiplicative prime-independent solution of the system (1–2) with k=r=2, then $f\equiv 0$ or $f=\tau$ or $f(p^m)=\chi(m+1)$ where $\chi=1,-1,\ 0$ if $m\equiv 1,-1,\ 0$ mod 3 respectively.

12 Antal Balog

Theorem B: If $k \geq 3$, $r \geq 2$ but $r \neq 2^{k-1}$ then there are no nonnegative solutions f of the system (1-2) with f(1) = 1.

The aim of this paper is to prove the conjecture in the remaining cases. Our results runs as follows:

Theorem: Let $k, r \geq 2$ are integers. The only nonnegative solution of the system (1-2) with f(1) = 1 is $f = \tau$, k = r = 2.

We will use the idea of A. Ivić and W. Schwarz. Let $\omega(n)$ be the number of distinct prime factors of n. It is well-known that $I*\mu^2=2^\omega$, thus if f satisfies the system (1–2) then

$$(3) f^k = 2^\omega * f,$$

and if f satisfies (3) and either (1) or (2) then f also satisfies the other one. A. Ivić and W. Schwarz investigated the equation (3) separately and got the following result:

Theorem C: If $k \geq 2$ then there is exactly one nonnegative solution f of (3) with f(1) = 1, this is multiplicative and prime-independent.

(Actually their result was somewhat stronger.) The proof of Theorem A, Theorem B and Theorem C is to be found in A. Ivić and W. Schwarz [1]. All the other statements mentioned in this section are well-known; see for example G. H. Hardy and E. M. Wright [2].

Proof. To prove the Theorem it suffices to investigate the system (2-3) which is equivalent to the system (1-2).

Theorem C says that for a given $k \geq 2$ we have a unique nonnegative function f satisfying (3) and f(1) = 1. In what follows f denotes this function, and the question is whether f satisfies (2) for a certain value of r. f is multiplicative and prime-independent thus we can abbreviate $f(p^m)$ by f_m and take $f_0 = f(1) = 1$. (2) means that $f_{mr} = f_{m-1} + f_m$ for $m \geq 1$, specially

$$(4) f_r = 1 + f_1$$

and (3) means that for $m \geq 1$

(5)
$$f_m^k = 2(f_0 + \dots + f_{m+1}) + f_m.$$

Generally for a>0 let x_a be the unique positive solution of the equation $x^k-x-a=0$. Then x_a is monotonic in a, in other words $x^k-x-a 0$ if and only if $x x_a (x>1)$. Take $a_m=2(f_0+\cdots+f_{m-1})$ for $m\geq 1$, then from (5) we have $f_m=x_{a_m}; f_m$ is monotonic because a_m is trivially monotonic. Thus there is at most one value of r for which (4) is valid with a fixed k. This and Theorem A proves the Theorem in the case k=2 and after Theorem B it remains to show that (4) is false with $k\geq 3$ and $r=2^{k-1}$. The proof is based on giving a good lower bound for f_m .

From the monotonicity of x_a we get

(6)
$$x_a > (a+1)^{1/k}.$$

The definition of a_m and the trivial bound $f_m \ge f_o = 1$ give us that $a_m \ge 2m$ and (6) leads to $f_m \ge (2m+1)^{1/k}$, which is also true for m=0. Combining this whith the definition of a_m we get

$$a_m \ge 2 \sum_{i=0}^{m-1} (2i+1)^{1/k}.$$

Using the convexity of the function $x^{1/k}$ we get

$$(2i+1)^{1/k} > \frac{1}{2} \int_{2i}^{2i+2} x^{1/k} dx$$

which leads to

$$a_m \ge \int_{-\infty}^{2m} x^{1/k} \, dx.$$

Finally (6) gives us that

(7)
$$f_m > \left(\frac{k}{k+1} (2m)^{\frac{k+1}{k}}\right)^{1/k},$$

and with $r = 2^{k-1}$ we obtain

$$(8) f_r > 2\left(\frac{2k}{k+1}\right)^{1/k}.$$

Numerical calculations show that for $3 \le k \le 9$

$$1 + f_1 = 1 + x_2 > 2\left(\frac{2k}{k+1}\right)^{1/k}$$

so this approach is too rough to prove these cases. For $k \geq 10$ we get from the monotonicity of x_a that

$$x_2 < \left(\frac{25}{8}\right)^{1/k}$$

and trivially from (8)

$$f_r > 2\left(\frac{20}{11}\right)^{1/k}$$
.

It is easy to check that for k > 10

$$2\left(\frac{20}{11}\right)^{1/k} > 1 + \left(\frac{25}{8}\right)^{1/k},$$

which means that f cant't satisfy equation (4) and therefore equation (2). This proves the Theorem if $k \ge 10$. For $3 \le k \le 9$ we have the numerical data:

Antal Balog

k	$1 + f_1$	f_r
3	$2.5213\dots$	2.5109
4	$2.3532\dots$	2.3492
5	2.6771	$2.2702\dots$
6	$2.2148\dots$	$2.2231\dots$
7	2.1796	2.1911
8	$2.1544\dots$	$2.1677\dots$
9	$2.1353\ldots$	$2.1497\dots$

This completes the proof of our theorem and gives the affirmative answer for the conjecture.

Remarks. From the monotonicity of x_a and f_m it is easy to prove that

$$f_m \le (2m+1)^{\frac{1}{k-1}}$$

and an argument similar to the one above gives the upper bound

(9)
$$f_m \le \left(\frac{k-1}{k} (2m)^{\frac{k}{k-1}} + \frac{k+1}{k}\right)^{\frac{1}{k-1}}$$

and an easy special case of this is

$$f_r < 2\left(\frac{2k+3/2}{k+1}\right)^{1/k}$$

with $r = 2^{k-1}$. Comparing this with (8) we get

$$f_r = 2 + \frac{\log 4}{k} + O(k^{-2})$$

but

$$1 + f_1 = 2 + \frac{\log 3}{k} + O(k^{-2}).$$

If m is close to $3^{1/2}2^{k-2}$ then (7) and (9) gives us that

$$f_m = 2 + \frac{\log 3}{k} + O(k^{-2}).$$

This shows that in our proof $3^{1/2}2^{k-2}$ is a more critical value than 2^{k-1} which is the critical value of the proof of A. Ivić and W. Schwarz.

Using (7) we can improve our lower bound for a_m and we can get

$$f_r > 2\left(\frac{2k+1/2}{k+1}\right)^{1/k}$$

where $r=2^{k-1}$. This proves the Theorem for $k\geq 8$. Some other improvements are possible.

REFERENCES

- [1] A. Ivić and W. Schwarz, Remarks on some number-theoretical functional equations, Aeq. Math. 20 (1980), 80–89.
- [2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, Clarendon Press, 1979.

Mathematical Instituta of the Hungarian Academy of Sciences Reáltanoda utca 13-15 H-1053 Budapest, Hungary