A TABLEAUX SYSTEM IN MODAL LOGIC

Miodrag Kapetanović

Tableaux proof are frequently used in discussing modal calculi. A method to be described here and applied to the Kripke modal system G (see more about G in [1]) is a modification of analytic tableaux develiped by Smullyan in [2]. Its main feature, is the use of prefixed formulae¹ i.e. triples of the form (s, T, φ) , (s, F, φ) , (s^*, T, φ) or (s^*, F, φ) with s a (possibly empty) finite sequence of natural numbers and φ a formulae where formulae of G (denoted by $\varphi, \psi, \theta, \ldots$) are defined as usual starting with a countable set of propositional letters and using, say, aconstant \bot , a unary propositional conective \Box and a binary conective \to . The intended meaning of s $T(F)\varphi^2$ $s^*T(F)\varphi$) is: φ is true (false) in the possible world s (φ is true in (false) in all possible worlds related to s).

Let us now define a tableau for φ as any sequence T_0, T_1, \ldots of sets of sets of prefixed formulae such that $T_0 = \{\{\varnothing F\varphi\}\}\$ and for all $m \in \omega$, all formulae ψ, θ and all $B \in T_m$ either

1°
$$sF\psi \to \theta \in B$$
 and $T_{m+1} = (T_m - \{B\}) \cup \{(B - \{sF\psi \to \theta\}) \cup \{sT\psi, sF\theta\}\}$ or

 $2^{\circ} \ s^*F\psi \to \theta \in B$ and T_{m+1} as above with s replaced by s^* or

$$3^{\circ}\ sT\psi\to\theta\in B$$
 and $T_{m+1}=(T_m-\{B\})\cup\{(B-\{sT\psi\to\psi\})\cup P|P\in\{\{sF\psi\},\,\{sT\theta\}\}\}$ or

$$4^\circ\ s^*T\psi\to\theta\in B\ \text{ and for some }s'\underset{\neq}{\subset}s\ \text{occuring in }T_mT_{m+1}=(T_m-\{B\})\cup\{B\cup P|P\in\{\{s'T\theta\}\}\}\}\ \text{or}$$

$$5^{\circ} \ sT \square \psi \in B \ \text{and} \ T_{m+1} = T_m - \{B\}) \cup \{(B - \{sT \square \psi\}) \cup \{s^*T \psi\}\} \text{ or }$$

 $6^{\circ}\ s^*T\Box\psi\in B$ and $T_{m+1}=(T_m-\{B\})\cup\{B\cup\{s^{'}{}^*T\psi|s'\subset s \text{ occurs in }T_m\}\}$ or

¹The referee pointed out that prefixed formulae orginate with Anderson and Belnap (see their "Pure calculuc of entailment", J. Symp. Logic, 27, 19-52)

 $^{^2}$ Brackets and commas in prefixed formulae will always be omitted and s identified with its range

 $7^{\circ} \ sF \square \psi ||B|| \ \text{and} \ T_{m+1} = (T_m - \{B\}) \cup \{(B - \{sF \square \psi\}) \cup P | P \in \{\{s'F\psi, s'^*\psi\} | s' \subset s \ \text{and either} \ s' \ \text{occurs in} \ T_m \ \text{or it is the (lexicorgraphically) first sequence extending} \ s\}\}.$

A set P of prefixed formulae is closed iff $T \perp \in P$ or for some φ $\{sT\varphi, sF\varphi\} \subseteq P$ or for some s and $\varphi s^*F \square \varphi \in P$ and $\{s' \supset s | s' \text{ occurs in } P\} \neq \emptyset$ or for some s' s $upsets\{s^*T\varphi, s'F\varphi\} \subseteq P$ or $\{s^*F\varphi, s'T\varphi\} \subseteq P$

A tableau T_0, T_1, \ldots is closed iff for some $i \in \omega$ all elements of T_i are closed; otherwise it is *open*. Call a formulae φ a *theorem* iff there is a closed tableau for φ .

Let $W \neq \emptyset$ and let < be a binary relation on W. Then (W, <) is a frame for G iff < is transitive and well-founded.

Given a frame (W,<) define a valuation on (W,<) as any mapping $v:W\times\operatorname{For}^3\to\{0,1\}$ satisfying: for all $W,W'\in W$ and all $\varphi,\psi\in\operatorname{For}$:

```
1^{\circ} \ v(w, \perp) = 0;
```

$$2^{\circ} \ v(w, \varphi \to \psi) = 1 \text{ iff } v(w, \varphi) = 0 \text{ or } v(w, \psi) = 1$$

$$3^{\circ} \ v(w, \Box \varphi) = 1 \text{ iff for all } w' < w \ v(w', \varphi) = 1.$$

Then call φ a tautology iff for all frames (W, <) for G, for all $w \in W$ and all valuations v on (W, <) $v(w, \varphi) = 1$.

We can now prove that all theorems for φ and v a valuation such that for some $w \in W$ $v(w,\varphi) = 0$. Then for any tableau for φ and for all s occurring in it define a mapping $s \mapsto w(s) \in W$ by:

```
w(\varnothing) = the least w \in W such that v(W,\varphi) = 0,
```

 $w(\mathrm{si})$ =the least w < w(s) such that for all φ if $\mathrm{si}T(F)\varphi$ occurs in the tableau then $v(w,\varphi) = 1(0)$ and if $\mathrm{si}^*T(F)\varphi$ occurs in the tableau then for all $w' < w \ v(w',\varphi) = 1(0)$.

Now call an $sT\varphi$ v-true iff $v(w(s), \varphi) = 1$ (other cases are similar) and also a set of prefixed formulae i v-true iff all its elements are. So in our case T_0 has a v-true member and if T_m has such a member it is proved (by checking all the cases) that sp does T_{m+1} . That would not be posibble if any of the closure conditions held (by definition of a valuation and well-foundedness of <), so the tableau must be open.

The converse also holds of the above result, i.e. all tautlogies are theorems. To rpove it suppose there is an open tableau for φ and extend it to a (finite) maximal one (in a sence that no more rules can be applied). Choose an open element B of the tableau. Then there is obviously a sequence $\{\varnothing F\varphi\} = B_0, B_1, \ldots, B_k = B(B_i \in T_i)$ of open sets such that we get B_{i+1} form B_i by application of one of the reduction rule $1^{\circ} - 7^{\circ}$. Define a (finite) frame for G by $(\{s|s \text{ occurs in some } B_i\} \supseteq \emptyset$

and a valuation v on it by v(s, p) = 1 iff for some i $sTp \in B_i(p \text{ a propositional letter})$. Using closure conditions one can prove by induction on the complexity of

 $^{^3{}m The~set~of~all~formulae}$

formulae that all B_i are v-true, hence $v(\emptyset, \varphi) = 0$ i.e. φ is not a tautology. Notice that the whole procedure of searching for a counterexamples is effective.

REFERENCES

- $[1] \ \ Boolos, \ G., \ \textit{The unprovability of consistency}, \ Cambridge, \ 1979.$
- [2] Smullyan, R., First-Order Logic, Berlin, Heidelberg, New York, 1968.
- [3] Solovay, R., Provability interpretations of modal logic, Israel J. Math. vol. 25, 1976, pp. 287-304.

Matematički institut Knez Mihailova 35/I 11000 Beograd Yugoslavia