LINEAR COMBINATIONS OF REGULAR FUNCTIONS WITH NEGATIVE COEFFICIENTS

G. Lakshma Reddy and K. S. Padmanabhan

Abstract. Let $f(z) = a_p z^p - \sum\limits_{n=1}^{\infty} a_{n+k} z^{n+k}, \ k \geq p \geq 1$ with $a_p > 0$, $a_{n+k} \geq 0$ be regular in $E = \{z : |z| < 1\}$ and $F(z) = (1-\lambda)f(z) + \lambda z f'(z), \ z \in E$ where $\lambda \geq 0$. The radius of p-valent starlikeness of order $\alpha, 0 \leq \alpha < 1$, of F as f varies over a certain subclass of p-valent regular functions in E is determined, and the mapping properties of F in certain other situations also are discussed.

1. Introduction. Let $E=\{z:|z|<1\}$ be the unit disc in ${\bf C}$ and $H=\{w:w \text{ is regular in }E \text{ such that }w(0)=0, \mid w(z)\mid <1, z\in E\}.$ Let P(A,B) denote the class of functions regular in E which are of the form $(1+Aw(z))/(1+Bw(z)), -1\leq A< B\leq 1, w\in H.$ Let T_p be the class of functions $f(z)=a_pz^p-\sum\limits_{n=1}^\infty a_{n+k}z^{n+k}, \ k\geq p\geq 1, \ a_p>0 \text{ and }a_{n+k}\geq 0, \text{ regular in the unit disc }E.$ Let $S_p^*(A,B)=\left\{f\in T_:\frac{1}{p}\frac{zf'(z)}{f(z)}\in P(A,B)\right\}$ and $K_p(A,B)=\left\{f\in T_p:\frac{1}{p}\left(1+\frac{zf''(z)}{f'(z)}\right)\in P(A,B)\right\}$. We note that $S_p^*(A,B)$ and $K_p(A,B)$ are subclasses of T_p consisting of p-valently starlike and p-valently convex functions respectively. $f\in S_p^*(A,B)$ implies that, $Re\{zf'(z)/f(z)\}>0$ for $z\in E$. Further if $f\in S_p^*(A,B)$ and $z=re^{i\theta},\ r<1,\frac{1}{2\pi}\int\limits_0^{2\pi}Re\frac{zf'(z)}{f(z)}d\theta=\frac{p}{2\pi}\int\limits_0^{2\pi}Re\frac{1+Aw(z)}{1+Bw(z)}d\theta=p, \text{ since }Re\frac{1+Aw(z)}{1+Bw(z)}$ is a harmonic function in E with w(0)=0. This argument shows the p-valence of f in $S_p^*(A,B)$. Similarly $f\in K_p(A,B)$ is p-valently convex in E. Define $P^*(A,B)=\{f\in T_1:f'(z)\in P(A,B),a_1=1\}.$ In this paper we consider the function F in E defined by $F(z)=(1-\lambda)f(z)+\lambda zf'(z),\ \lambda\geq 0$ and study some mapping properties of F, as f varies over the classes $S_p^*(A,B),\ K_p(B,A)$ and $P^*(A,B)$. We also consider the class of function $f\in T_p$ for which $f^{(p-1)}$ is univalent and discuss a mapping property of F. It is interesting to note that the

necessary condition for univalence of $f^{(p-1)}$ for $f \in T_p$, turns out to be a necessary and sufficient condition for $f^{(p-1)}$ to be starlike univalent in E.

2. Coefficient inequalities and theorems on radius of starlikeness, convexity and close-to-convexity. We use the following notations for the sake of brevity

$$n+k=m, \ m(B+1)-p(A+1)=C_m, \ p(B-A)=D \ \ {\rm and} \ \ \sum_{m=k+1}^{\infty}=\Sigma.$$

We begin by proving the following

LEMMA 1. Let $f \in T_p$. Then $f \in S_p^*(A, B)$ if and only if

$$(1) \Sigma C_m a_m \le D a_p.$$

Proof . Suppose $f \in S_p^*(A,B)$. Then $\frac{zf'(z)}{f(z)} = p\frac{1+Aw(z)}{1+Bw(z)}, -1 \le A < B \le 1, w \in H$.

That is,

$$w(z) = \frac{p - zf'(z)/f(z)}{Bzf'(z)/f(z) - Ap}, \ w(0) = 0 \text{ and}$$

$$|w(x)| = \left| \frac{zf'(z) - pf(z)}{Bzf'(z) - Apf(z)} \right| = \left| \frac{\Sigma(m - p)a_m z^m}{Da_p z^p - \Sigma(Bm - Ap)a_m z^m} \right| < 1.$$

Thus

(2)
$$\operatorname{Re}\left\{\frac{\Sigma(m-p)a_m z^m}{Da_p z^p \Sigma(Bm-Ap)a_m z^m}\right\} < 1.$$

Take z = r with 0 < r < 1. Then, for sufficiently small r, the denominator of the left hand member of (2) is positive and so it is positive for all r 0 < r < 1, since w(z) is regular for |z| < 1. Then (2) gives

$$\begin{split} & \Sigma(m-p)a_mr^m < Da_pr^p - \Sigma(Bm-Ap)a_mr^m, \text{ that is,} \\ & \Sigma[m(B+1)-p(A+1)]a_mr^m < Da_pr^p, \text{ that is, } \Sigma C_ma_mr^m < Da_pr^p, \end{split}$$

and (1) follows on letting $r \to 1$.

Conversely, for |z| = r, 0 < r < 1, and since $r^m < r^p$, by (1) we have $\sum C_m a_m r^m < r^p \sum C_m a_m < Da_p r^p$. Using this inequality we have

$$| \Sigma(m-p)a_m z^m | \leq \Sigma(m-p)a_m r^m < Da_p r^p - \Sigma(Bm-Ap)a_m r^m$$

$$\leq | Da_p z^p - \Sigma(Bm-Ap)a_m z^m |.$$

This proves that zf'(z)/f(z) is on the form $p\frac{1+Aw(z)}{1+Bw(z)}$ with $w\in H$. Therefore $f\in S_p^*(A,B)$ and the proof is complete.

COROLLARY 1. $f \in T_1$. Then $f \in S_1^*(2\alpha - 1, 1)$ if and only if $\Sigma(m - \alpha)a_m \le (1 - \alpha)a_1$.

Remark. Note that $S_1^*(2\alpha - 1, 1) = S^*(\alpha)$, the class of univalent starlike functions of order α . This corollary reduces to Theorem 1 in [2].

Theorem 1. Let $f \in S_p^*(A,B)$ and $F(z)=(1-\lambda)f(z)+\lambda z f'(z), \ \lambda \geq 0, \ z \in E$. Then F is p-valently starlike of order $\alpha,\ 0\leq \alpha < 1,$ for

$$|z| < r_1 = \inf_{m} \left[\frac{(p-\alpha)(1+(p-1))}{(m-\alpha)(1+(m-1))} \cdot \frac{C_m}{D} \right]^{1/(m-p)}$$
 and the bound is sharp.

$$\begin{split} Proof. \ &\text{Since} \ F(z) = (1-\lambda)f(z) + \lambda z f'(z), \ \lambda \geq 0 \\ &= (1+(p-1)\lambda)a_p z^p - \Sigma(1+(m-1)\lambda)a_m z^m, \\ &\frac{zF'(z)}{F(z)} = \frac{p(1+(p-1)\lambda)a_p z^p - \Sigma m(1+(m-1)\lambda)a_m z^m}{(1+(p-1)\lambda)a_p z^p - \Sigma(1+(m-1)\lambda)a_m z^m}. \end{split}$$

It suffices to show that $|zF'(z)/F(z)-p| \le p-\alpha$ for $|z| < r_1$. Now

(3)
$$\left| \frac{zF'(z)}{F(z)} - p \right| = \left| \frac{-\Sigma(m-p)(1+(m-1)\lambda)a_m z^m}{(1+(p-1)\lambda)a_p z^p - \Sigma(1+(m-1)\lambda)a_m z^m} \right|$$

$$\leq \frac{\Sigma(m-p)(1+(m-1)\lambda)a_m |z|^{m-p}}{|(1+(p-1)\lambda)a_p - \Sigma(1+(m-1)\lambda)a_m |z|^{m-p}} .$$

Consider the values of z for which $|z| < r_1$, so that

$$|z|^{m-p} \le \frac{(p-\alpha)(1+(p-1)\lambda)}{(m-\alpha)(1+(m-1)\lambda)} \cdot \frac{C_m}{D}$$
 holds. Then

$$\begin{split} \Sigma \frac{1+(m-1)\lambda}{1+(p-1)\lambda} \cdot a_m \mid z \mid^{m-p} & \leq \Sigma \frac{(p-\alpha)}{(m-\alpha)} \cdot \frac{C_m}{D} a_m \\ & \leq \Sigma \frac{C_m}{D} a_m < a_p, \text{ which is true by (1)}. \end{split}$$

Thus, the expression within the modulus sign in the denominator of the right hand side of (3), for the considered values of z is positive and so we have

$$\left| \frac{zF'(z)}{(Fz)} - p \right| \leq \frac{\sum (m-p)(1 + (m-1)\lambda)a_m \mid z \mid^{m-p}}{(1 + (p-1)\lambda)a_p - \sum (1 + (m-1)\lambda)a_p \mid z \mid^{m-p}} \leq p - \alpha \text{ if } \sum (m-\alpha)(1 + (m-1)\lambda)a_m \mid z \mid^{m-p} \leq (p-\alpha)(1 + (p-1)\lambda)a_p,$$

that is, if

(4)
$$\Sigma \frac{(m-\alpha)(1+(m-1)\lambda)a_m \mid z \mid^{m-p}}{(p-\alpha)(1+(p-1)\lambda)a_p} \le 1.$$

By Lemma 1 we have $f \in S_p^*(A,B)$ if and only if $\sum \frac{C_m a_m}{D a_p} \leq 1$. Hence (4) is true if

$$\frac{(m-\alpha)(1+(m-1)\lambda)}{(p-\alpha)(1+(p-1)\lambda)} \mid z \mid^{m-p} \leq \frac{C_m}{D},$$

that is, if

$$\mid z \mid \leq \left[\frac{(p-\alpha)(1+(p-1)\lambda)}{(m-\alpha)(1+(m-1)\lambda)} \cdot \frac{C_m}{D} \right]^{1/(m-p)}.$$

To see the *p*-valence of F in $|z| < r_1$, we observe that zF'(z)/F(z) is regular in $|z| < r_1$ and hence Re(zF'(z)/F(z)) is harmonic in that disc. For $r < r_1$ and $z = re^{i\theta}$, $\frac{1}{2\pi} \int\limits_0^{2\pi} \text{Re} \frac{zF'(z)}{F(z)} d\theta = p$, showing that F is p-valent in $|z| < r_1$.

Hence the proof follows. The extremal function is given by $f(z) = a_p z^p - (Da_p/C_m)z^m$.

Remark. We obtain Theorem 2 in [1] as a particular case.

Corollary 2. If $f \in S_p^*(A,B)$, then f is p-valently starlike of order α , $0 \le \alpha < 1$, in

$$|z| < \inf_{m} \left[\frac{(p-\alpha)}{(m-\alpha)} \cdot \frac{C_m}{D} \right]^{1/(m-p)}, \ m=k+1, k+2, \dots$$

Proof. Put $\lambda = 0$ in Theorem 1.

Corollary 3. If $f \in S_p^*(A,B)$, then f is p-valently convex of order β , $0 \le \beta < 1$, in

$$\mid z \mid < \inf_{m} \left[\frac{p}{m} \cdot \frac{(p-\beta)}{(m-\beta)} \cdot \frac{C_{m}}{D} \right]^{1/(m-p)}, \ m = k+1, \dots$$

Proof. Put $\lambda = 1$ in Theorem 1 and note that zf'(z) is starlike of order β if and only if f(z) is convex of order β .

Remark. For $k=p=1,\ A=2\alpha-1,\ B=1,\ \beta=0,$ Corollary 3 reduces to Theorem 8 in [2].

Corollary 4. If $f \in S_p^*(A,B)$ and $F(z) = \frac{(z^c f(z))'}{1+c}$, $c=1,2,\ldots,z\in E$, then F is p-valently starlike of order $\alpha,\ 0\leq \alpha < 1,\ in$

$$|z| \le \inf_{m} \left[\frac{(p-\alpha)(p+c)}{(m-\alpha)(m+p)} \cdot \frac{C_m}{D} \right]^{1/(m-p)}.$$

Proof. Put $\lambda = 1/(c+1)$ in Theorem 1.

Theorem 2. Let $f \in K_p(A,B)$ and $F(z) = (1-\lambda)f(z) + \lambda z f'(z), \quad \lambda \geq 0, \quad z \in E$. Then $\frac{(F'/d')}{(1+(p-1)\lambda)} \in P(A_1,B)$, where $A_1 = \frac{A\lambda p + (1-\lambda)B}{1+(p-1)\lambda}$, if $\lambda < \frac{1+B}{1+B-p(A+1)}$ and

 $p<\frac{1+B}{1+A}.$ In particular F is p-valently close-to-convex in E if $\lambda<\frac{1+B}{1+B-p(A+1)}$ and $p<\frac{1+B}{1+A}.$ Also F is p-valently convex of order $\alpha,\ 0\leq\alpha<1,\ in\mid z\mid< r_1.$ This bound is sharp.

Proof. Since $f \in K_p(A, B)$. We have

$$\begin{split} \frac{F'(z)}{f'(z)} &= (1-\lambda) + \lambda \left(1 + \frac{zf''(z)}{f'(z)}\right) = 1 - \lambda + \lambda p \frac{1 + Aw(z)}{1 + Bw(z)} \\ &= \frac{(1 + (p-1)\lambda) + (A\lambda p + B(1-\lambda))w(z)}{1 + Bw(z)}, \text{ where } w \in H. \end{split}$$

Therefore

$$\frac{1}{(1+(p-1)\lambda)} \frac{F'(z)}{f'(z)} = \frac{1+A_1 w(z)}{1+Bw(z)} \text{ where } A_1 = \frac{A\lambda+p+B(1-\lambda)}{1+\lambda(p-1)}.$$

Evidently $A_1 < B$ since A < B and $A_1 > -1$, provided $\lambda < \frac{B+1}{1+B-p(A+1)}$ and $p < \frac{1+B}{1+A}$. Therefore, $\frac{(F'/f')}{1+(p-1)\lambda} \cdot \in P(A_1,B)$ with $-1 < A_1 < B \le 1$. In particular Re F'/f' > 0. Further since f is p-valently convex, it follows that F is p-valent by a theorem of Umezewa [3, Theorem 1]. It follows that F, if p-valently close-to-convex in E if $\lambda < \frac{B+1}{B+1-p(A+1)}$ and $p < \frac{B+1}{A+1}$. We now prove that F(z) is convex of order α , $0 \le \alpha < 1$, in $|z| < r_1$ where r_1 is as given in Theorem 1. $zF'(z) = (1-\lambda)zf'(z) + \lambda z(zf'(z))'$ for $z \in E$. $f \in K_p(A,B)$ if and only if $zf' \in S_p^*(A,B)$. Applying Theorem 1 to zf' we conclude that zF'(z) is p-valently starlike of order α for $|z| < r_1$. So, F is p-valently convex of order α for $|z| < r_1$. The extremal function is given by $f(z) = a_p z^p - (Dpa_p/mC_m)z^m$.

Remark. We get Theorem 3 in [1] as a special case.

LEMMA 2. Let $f \in T_1$, $a_1 = 1$. Then $f \in P^*(A, B)$ if and only if

$$(5) \Sigma m(B+1)a_m \le B - A.$$

Proof. Proof of Lemma 2 is similar to the proof of Lemma 1 and is hence omitted.

Theorem 3. Let $f \in P^*(A,B)$ and $F(z) = (1-\lambda)f(z) + \lambda z f'(z)$ for $z \in E, \ \lambda \geq 0$. Then

Re
$$F'(z) > \beta$$
, $0 \le \beta < 1$, for $|z| < r_2 = \inf_{m} \left[\frac{(1-\beta)}{1 + (m-1)\lambda} \frac{B+1}{B-A} \right]^{1/(m-1)}$

and the bound is sharp.

Proof. It suffices to show that $|F'(z) - 1| \le 1 - \beta$ for $|z| < r_2$. Since $f \in P^*(A, B)$, using Lemma 2, we see that (5) holds. Since $F'(z) = 1 - \sum m(1 + \beta)$

 $(m-1)\lambda)a_mz^{m-1},$ using (5), we see that $\mid F'(z)-1\mid \leq \Sigma m(1+(m-1)\lambda)a_m\mid z\mid ^{m-1}\leq 1-\beta$ provided

(6)
$$\frac{m(1+(m-1)\lambda)}{1-\beta} \mid z \mid^{m-1} \le \frac{m(B+1)}{B-A}.$$

Now (6) holds if $|z| \le \left[\frac{(1-\beta)}{1+(m-1)\lambda} \cdot \frac{B+1}{B-A}\right]^{1/(m-1)}$, and the proof follows.

The extremal function is $f(z) = z - \frac{B-A}{m(B+1)}z^m$.

Remark. Theorem 4 in [1] arises as a special case.

Lemma 3. Let $f \in T_p$ and let $f^{(p-1)}$ be univalent in E. Then

(7)
$$\Sigma[m(m-1)\dots(m-p+1)]a_m \le p! a_p.$$

Proof. Suppose $\Sigma[m(m-1)\dots(m-p+1)]a_m=p!a_p+\varepsilon,\ \varepsilon>0$. Then there exists a positive integer N>p such that

(8)
$$\sum_{m=k+1}^{N} [m(m-1)...(m-p+1)]a_m > p!a_p + \varepsilon/2.$$

 $\text{Let } \left(\frac{p! a_p}{p! a_p + \varepsilon/2} \right)^{1/(N-p)} < z < 1 \text{, so that } z^{N-p} > \frac{p! a_p}{p! a_p + \varepsilon/2}. \text{ Also } z^{m-p} > z^{N-p}$ for m < N, since z < 1. Using these two inequalities and (8), we have

$$\begin{split} f^{(p)}(z) &= p! a_p - \Sigma[m(m-1)\dots(m-p+1)] a_m z^{m-p} \\ &\leq p! a_p - \sum_{m=k+1}^N [m(m-1)\dots(m-p+1)] a_m z^{m-p} \\ &\leq p! a_p - z^{N-p} \sum_{m=k+1}^N [m(m-1)\dots(m-p+1)] a_m \\ &< p! a_p - (p! a_p + \varepsilon/2) z^{N-p} < 0, \end{split}$$

and $f^{(p)}(0) = p!a_p > 0$. Therefore, there exists a point z_0 with $0 < z_0 < \left(\frac{p!a_p}{p!a_p+\varepsilon/2}\right)^{1/(N-p)} < 1$ such that $f^{(p)}(z_0) = 0$. This contradicts the univalence of $f^{(p-1)}(z)$ for $z \in E$. Hence the lemma.

Remarks 1. Putting $p=1,\ a_p=1,$ this lemma reduces to Theorem 3 in [2].

2. Applying Corollary 1 with $\alpha = 0$ to $f^{(p-1)}(z)$ which belongs to the class T_1 , we see that condition (7) is necessary and sufficient for $f^{(p-1)}$ to be starlike univalent.

Theorem 4. Let $f \in T_p$ and let $f^{(p-1)}$ be univalent in E. Suppose $F(z) = (1-\lambda)f(z) + \lambda z f'(z), \ \lambda \geq 0, \ z \in E$. Then $\operatorname{Re}\{zF'(z)/F(z)\} < \alpha, \ 0 \leq \alpha < 1$, for

$$|z| < r_3 = \inf_{m} \left[\frac{(p-\alpha)[1+(p-1)\lambda]}{(m-\alpha)[1+(m-1)\lambda]} \frac{m(m-1)\dots(m-p+1)}{p!} \right]^{1/(m-p)}$$

and the bound is sharp.

Proof. Let $F(z)=(1-\lambda)f(z)+\lambda zf'(z)$. Then inequality (3) holds. Now, since $f\in T_p$, by Lemma 3 inequality (7) holds. Consider the values of z for which $\mid z\mid < r_3$ so that $\mid z\mid ^{m-p} \leq \frac{(p-\alpha)(1+(p-1)\alpha)}{(m-\alpha)(1+(m-1)\lambda)} \cdot \frac{m(m-1)\dots(m-p+1)}{p!}$.

Then

$$\Sigma \frac{1 + (m-1)\lambda}{1 + (p-1)\lambda} a_m \mid z \mid^{m-p} \le \Sigma \frac{(p-\alpha)}{(m-\alpha)} \frac{m(m-1)\dots(m-p+1)}{p!} a_m
< \Sigma \frac{m(m-1)\dots(m-p+1)}{p!} a_m
< a_p, by(7).$$

Therefore as in the proof of Theorem 1, we can write $|zF'(z)/F(z) - p| \le p - \alpha$ provided (4) holds. Using (7), we see inequality (4) also holds provided

$$\frac{(m-\alpha)(1+(m-1)\lambda)}{(p-\alpha)(1+(p-1)\lambda)} \mid z \mid^{m-p} \le \frac{m(m-1)\dots(m-p+1)}{p!}, \text{ that is, if } \\ \mid z \mid \le \left[\frac{(p-\alpha)(1+(p-1)\lambda)}{(m-\alpha)(1+(m-1)\lambda)} \cdot \frac{m(m-1)\dots(m-p+1)}{p!} \right]^{1/(m-p)}.$$

The proof follows. The extremal function is given by

$$f(z) = a_p z^p - \frac{p! a_p}{m(m-1) \dots (m-p+1)} z^m.$$

It is easy to verify the univalence of $f^{(p-1)}(z)$ in E.

REFERENCES

- S. S. Bhoosnurmath, S. R. Swamy, Analytic functions with negative coefficients, Indian J. Pure Appl. Math., 12(6) (1981), 738-742.
- [2] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- [3] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.

Ramanujan Institute for Advanced Study in Mathematics (Received 10 04 1982) University of Madras, Madras, 600 005, India