THE $(\psi, \xi, \eta, \overline{g})$ STRUCTURE ON SUBSPACES OF THE SPACE WITH THE $\varphi(4, -2)$ STRUCTURE

Jovanka Nikić

Abstract. Let a tensor field φ , $\varphi \neq 0$, $\varphi \neq 1$, of type (1,1) and of class C^{∞} be given on M^n such that $\varphi^4 - \varphi^2 = 0$, and rank $\varphi = n - 1$. The structure $\Phi = 2\varphi - 1$ is an almost product structure. Φ induces on hypersurface K a Sato structure. In this paper it is proved that the structure Sato ψ induced by Φ on K^* is equal to the $\overline{\varphi}$. $(\overline{\varphi}$ is the restriction of the structure φ on K^*).

Introduction. In [1] Yano, Houh and Chen consider the structure called a $\varphi(4,-2)$ structure, defined by a tensor field φ of type (1,1) satisfying $\varphi^4 - \varphi^2 = 0$ and they study the existence of this structure.

In this paper we study a $\varphi(4, -2)$ structure of rank r = n - 1 and the restriction of the structure φ on the hypersurface K. In **3.** we shall examine the relation between the almost product structure $\Phi = 2\varphi^2 - 1$ and $\varphi/_{K^*}$.

1. **Preliminaries**. Let \mathcal{M}^n be an n-dimensional differentiable manifold of class C^{∞} , and let the $C^{\infty}(1,1)$ tensor fields f_1 and f_2 be given such that $f_1^2=1,\ f_1^2=0$. Then f_1 is an almost product structure, and f_2 is an almost tangent structure. Let a tensor field $\varphi, \varphi \neq 0$ and $\varphi \neq 1$, of type (1,1) and of class C^{∞} be given on \mathcal{M}^n such that $\varphi^4-\varphi^2=0$ and rank $\varphi=(\operatorname{rank} \varphi^2+\dim \mathcal{M}^n)/2=r$.

Let $\mathbf{l} = \varphi^2$, $\mathbf{m} = 1 - \varphi^2$, then $\varphi \mathbf{l} = \mathbf{l} \varphi = \varphi^3$, $\varphi \mathbf{m} = \mathbf{m} \varphi = \varphi - \varphi^3$, $\varphi^2 \mathbf{l} = \mathbf{l}^2 = \mathbf{l}$, $\varphi^2 \mathbf{m} = \mathbf{m} \varphi^2 = 0$.

Let $\Phi = 1 - \mathbf{m} = 2\varphi^2 - 1$. Then it is clear that Φ defines on \mathcal{M}^n an almost product structure if $\varphi^2 \neq 1$. Let L and M be the distributions corresponding to 1 and \mathbf{m} respectively. We assume that $\varphi' = \varphi/L$ is not the identity operator of L. Then φ acts on L as an almost product structure operator and on M as an almost tangent structure operator. Moreover, dim M = 2(n-r) and dim L = 2r - n. Such a structure φ is called a $\varphi(4, -2)$ structure of rank r.

AMS Subject Classification (1980): Primary 53 C 10, 53 C 15, 53 C 40, 51 H 20.

Key words and phrases: Almost product structure, structure Sato, hypersurface, restriction of the structure, almost paracontact Riemannian structure.

148 Jovanka Nikić

If the rank of φ is maximal, r=n, the $\varphi(4,-2)$ -structure is an almost product structure and if the rank of φ is minimal, 2r=n, the $\varphi(4,-2)$ -structure is an almost tangent structure.

In [1] it has been proved that a necessary and sufficient condition for an n-dimensional manifold to admit a tensor field φ , $\varphi \neq 0$ and $\varphi \neq 1$ of type (1,1) defining a $\varphi(4,-2)$ -structure is that the group of the tangent bundle of the manifold be reduced to the group $0(h) \times 0(2r-n-h) \times 0(n-r) \times 0(n-r)$ $h = \dim L_1$, L_1 being the subspace of L corresponding to the eigen value +1 of φ :

With respect to the adapted frame the tensors g_{ij} and φ^i_j have the components

$$g = \begin{bmatrix} E_h & 0 & 0 & 0 \\ 0 & E_{2r-n-h} & 0 & 0 \\ 0 & 0 & E_{n-r} & 0 \\ 0 & 0 & 0 & E_{n-r} \end{bmatrix} \quad \varphi = \begin{bmatrix} E_h & 0 & 0 & 0 \\ 0 & -E_{2r-n-h} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & E_{n-r} & 0 \end{bmatrix}$$

I. Sato [2] introduced and studied almost paracontact Riemannian manifold V with the structure (ψ, ξ, η, g) that is, an n-dimensional differentiable manifold with a tensor field ψ of type (1,1), a positive definite Riemannian metric g, a vector field ξ and a 1-form η satisfying

(1)
$$\psi^2 = I - \otimes \xi$$
, $\psi \xi = 0$, $\eta \psi = 0$, $\eta(\xi) = 1$,

(2)
$$\eta(X) = g(\xi, X), \ g(\psi X, \psi Y) = g(X, Y) - \eta(X)\eta(Y), \ X, Y \in \mathcal{X}(V)$$

where I is the identity and $\mathcal{X}(V)$ denotes the set of differentiable vector fields on V. Such a manifold is called an almost paracontact Riemannian manifold, and its structure an almost paracontact Riemannian structure. A structure which satisfies only condition (1) is called a Sato structure. The following theorem is proved in [4].

Theorem 1.1. The almost product structure Φ induces on a hypersurface the Sato stucture ψ in the following way

$$\Phi B = B\psi \oplus (\eta \otimes N), \quad \Phi N = B\xi,$$

where B is the differential of the immersion i Kinto \mathcal{M}^n .

and

$$\begin{split} \Phi N &= B\xi, & \Phi^2 N = \Phi B\xi, \\ N &= (B\psi \oplus (\eta \otimes N))\xi, & N &= B\psi \xi + \eta(\xi)N, & N &= N. \end{split}$$

2. The structure $(\overline{\psi}, \xi, \eta, \overline{g})$, on K. We shall assume that rank $\varphi = n - 1$. Then M is a 2-dimensional manifold. Let K be a hypersurface in \mathcal{M}^n orthogonal on vector

$$N = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -1 \\ 0 \end{bmatrix} \quad \text{in } \mathcal{M}^n.$$

Let $\overline{\varphi},\overline{m}$ and \overline{g} be restrictions of the structure φ and tensors m and g on K, and let

$$\xi = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad n-1 \quad \eta = \underbrace{(0, \dots, 0, 1)}_{n-1}.$$

 $\overline{\varphi}$, \overline{m} and \overline{g} have matrixes of the form

$$\overline{\varphi} = \begin{bmatrix} E_h & 0 & 0 \\ 0 & -E_{2r-n-h} & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \overline{m} = \begin{bmatrix} 0_h & 0 & 0 \\ 0 & 0_{2r-n-h} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \overline{g} = \begin{bmatrix} E_h & 0 & 0 \\ 0 & E_{2r-n-h} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem 2.1. $\overline{\varphi}$ is a Sato structure.

Proof. Since $\overline{\varphi}^2 = 1 - \overline{m}$, multiplying the corresponding matrixes it is clear that $\overline{m} = \xi \eta$, $\overline{\varphi}^2 = I - \eta \otimes \xi$, $\overline{\varphi} \xi = 0$, $\overline{\varphi} \overline{\eta} = 0$, $\xi(\eta) = 1$, and moreover:

Theorem 2.2. $(\overline{\varphi},\,\xi,\,\eta,\overline{g})$ is an almost paracontact Riemannian structure on K.

Proof. It is clear that $\eta(X) = \overline{g}(\xi, X)$, $\overline{g}(\overline{\varphi}X, \overline{\varphi}Y) = \overline{g}(X, Y) - \eta(X)\eta(Y)$ which prves the theorem.

In Theorem 1.1. it is proved that an almost product structure induces on a hypersurface a Sato structure. From this and from Theorems 2.1 and 2.2. we obtain the following:

Theorem 2.3. The almost product structure $\Phi = 2\varphi^2 - 1$ induces on K a structure Sato moreover an almost paracontact Riemannian structure.

3. Relation between ψ and the $(\overline{\varphi}, \xi, \eta, \overline{g})$ structure. We shall examine what conditions must be satisfied so that the structure ψ induced by $\Phi = 2\varphi^2 - 1$ on K^* is equal to the structure $\overline{\varphi}$.

150 Jovanka Nikić

Let K^* be the subspace of K whose vectors have the form

$$x=\left[egin{array}{c} x_1\ dots\ x_h\ 0_1\ dots\ 0_{2r-n-h}\ z_1 \end{array}
ight]$$

Theorem 3.1. The almost product structure Φ induces on K^* the Sato structure $\overline{\varphi}$.

Proof. We shall prove the relations $\Phi B=B\overline{\varphi}\oplus(\eta\otimes N)$ and $\Phi N=B\xi$ on K^* . That $\Phi N=B\xi$ is clear using

$$\Phi = \begin{bmatrix} E_h & 0 & 0 & 0 \\ 0 & E_{2r-n-h} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

To prove the relation $\Phi B = B\overline{\varphi} \oplus (\eta \otimes N)$ on K^* , we shall prove $BX = \Phi B(\overline{\varphi}X) + \eta(X)\Phi(N)$ for the vectors $X \in K^*$.

Let $X \in K$, we obtain

$$BX = \begin{bmatrix} x_1 \\ \vdots \\ x_h \\ y_1 \\ \vdots \\ y_{2r-n-h} \\ z_1 \\ 0 \end{bmatrix}, \quad \Phi B(\overline{\varphi}X) + \eta(X)\Phi(N) = \Phi \begin{bmatrix} x_1 \\ \vdots \\ x_h \\ -y_1 \\ \vdots \\ y_{2r-n-h} \\ 0 \\ 0 \end{bmatrix} + z_1 \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_h \\ -y_1 \\ \vdots \\ x_h \\ -y_1 \\ \vdots \\ y_{2r-n-h} \\ z_1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_h \\ -y_1 \\ \vdots \\ y_{2r-n-h} \\ z_1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_h \\ -y_1 \\ \vdots \\ -y_{2r-n-h} \\ z_1 \\ 0 \end{bmatrix}$$

when $y_1 = 0, \dots y_{2r-n-h} = 0$. From this it is easy to see that $\Phi B = B\overline{\varphi} \oplus (\eta \otimes N)$ only on the space K^* . This proves the Theorem.

Since $\overline{\varphi}$ and \overline{g} satisfy the following on $K^*: \eta(X) = \overline{g}(\xi, X), \ g(\overline{\varphi}X, \overline{\varphi}Y) = g(X, Y) - \eta(X)\eta(Y)$, we have

Theorem 3.2. The almost product structure Φ induces on K^* the almost paracontant Riemannian structure $(\overline{\varphi}, \xi, \eta, \overline{g})$.

REFERENCES

- [1] K. Yano, C.Houh, B. Chen, Structures defined by a tensor field φ of type (1,1) satisfying $\varphi^4 \pm \varphi^2 = 0$, Tensor, N. S. **23** (1972) 81–87.
- [2] I. Sato, On a structure similar to the almost contact structure, Tensor, N.S. 30 (1976), 219-224.
- [3] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.
- [4] Miyzawa, Hypersurface immersed in an almost product Riemannian manifold, Tensor, N.S. 33 (1979) 114-122.

Univerzitet u Novom Sadu Fakultet tehničkih nauka Institut za primenjene osnovne discipline 21000 Novi Sad Jugoslavija (Received 29 07 1982)