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ON THE OPERATIONS OVER RELATIONS IN THE RELATIONAL
MODEL OF DATA WITH TWO TYPES OF NULL VALUES

Gordana M. Pavlovié

Abstract. The relational model of data with two types of null values is considered. The
basis for defining operations in such a model is three-valued logic; thus, three-valued relations of
equality of tuples, relation membership, relation inclusion and equality, are introduced. Extended
operations of relational algebra [3] are defined (“true” and “maybe” operations, applicable to date
extended by null values). Properties of those operations, analogous to the properties of operations
of the basic relational algebra, are proved. Since the ability to change the order in which specific
operations are executed influences query optimization, extended operations are proved to have
that property too.

1. Introduction

Extended relational model of data with null values was considered from differ-
ent aspects in [5,7]. This paper attempts to define a generalization of Codd’s model
with only one type of null value [5], to the model with two types of null values.
Null values considered are the same as in [7]: undefined value (p) and unknown
value (w). Undefined value has the meaning “property unapplicable”. Unknown
value stands for any value from the domain, but not for the undefined value, ie. w
is unknown but defined value.

With each operation of the relational algebra [3] we associate two operations:
“true” and “maybe” operations. The result of “true” operation should contain
tuples which are known to satisfy the condition defining the corresponding usual
operation; result of “maybe” operation should contain tuples for which it is not
known if they satisfy that condition.

We also define three valued relations of equality of tuples, relation member-
ship and inclusion; the value set is {T, F,w}—“true”, “false” and “unknown”
(“maybe”).

For our extended relations and operations we prove some properaties as well
as some relationships between the operations, which are significant for query opti-
mization.
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2. Relational model of data with two types of null values.

In the relational model the data are arranged into one or more multicolumn
tables-called relations. Each column of the relations is labeled by distinct name of
the “attribute” represented by that column, and each attribute takes values from
the designated set called “domain” of that attribute. A row of a relation— a tuple—
is related to an entity which is characterized by the values of that tuple.

Formally, given sets D1, Do, ... , D, (domains, n > 0), n-ary relation R with
the attributes Ay, As, ..., A,, defined on these domains (denoted R(Ai, Aa,...,
Ap)), is a finite subset of the Cartesian product x{D; :i=1,2,... ,n}.

As opposed to the mathematical notion of a relation, relations which are used
here are time varying sets because some tuples may be deleted, inserted or modified.
The row and column order in this dynamic relation is unimportant.

The need for dealing with the incomplete information in the datebase arised
naturally, because some of the relevant data may be missing. The values, represent-
ing any kind of missing data are called “null” values. The two most important types
of null values are “unknown” (value which belongs to some domain but at present
is not known in the database), and “undefined” value—unapplicable property—for
example the property “spouse’s name” for someone who is not married. These two
kinds of nulls are considered in [7] using the denotational semantics and approx-
imation aspect, and the relations with “unknown” values are treated in [5] with
the operations of the relational algebra. In this section we define the extended
relational model with the unknown (w) and the undefined (p) values. Mathemati-
cal notions of equality of types, relation membership and inclusion are defined as
three valued relations. The set of truth values is {T, F,w},—“true”, “false” and
“maybe”; “maybe” has the meaning of unknown truth value and stands for 7' of
F'. Logical operations —, A, V in this three valued logic are defined as in [5]:

-|T Fuw AT Fuw V|T Fuw

[ FTw T|T Fwo T|T FT
F|\F F F F|\T F w
wlw w

F w|T ww

These three valued relations will provide a basis for defining operations of the
extended relational algebra (in the next section).

We use the usual notation for relations, tuples and operations on relations
and tuples ([2—5]); we also introduce the folowing notation and assumptions:

1. 2= (z1,%2,... ,&p), T1 = T3 = -+ =2p =2, n >0z € DU {p,w} for
any domain D;

2. X ={X1,Xs,...,X,}. where X1,Xs,...,X, are all of the attributes
of some relation R or tuple r;

3. 7(¢) is the truth value of the statement 1;7(¢)) € {T, F,w};

4. There is no attribute in any relation with all p values;
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5. There is no relation with a tuple p;
6. There are no two identical (character by character) tuples in a relation.

Extended equality of the individual elements of a tuple (=) is defined by the
following table:

rea=y)| zeD z=waz=p

yeD |1(zx=y) w F
Yy=w w w F
y=p F F T

D is any domain and 7(z = y) is the truth value of the ordinary equality

(e {T,F}).

Definition 1. (Equality of tuples). (i) Tuples r(X),s(Y) are “true”-equal
(T equal, 7(r = s) = T), iff they are “true” equal on each attribute from X NY,
and on the atributes from XAY (XAY = (X\Y) U (Y\X)), the tuple which takes
value on them, has the value “p”; (i) r(X), s(Y) are not equal 7(r = s) = F)
iff there is an attribute from X N'Y on which they are not equal, or there is an
attribute from XAY on which any of the tuples has a value different from p; (iii)
r(X), s(Y) are “maybe” equal (w-equal, 7(r = s) = w), otherwise. Formally,
T(r = s) = r[X\Y] = pAs[Y\X] = pAAEQﬁY T(r[A] = s[A]); r[Z] denotes a
projection of a tuple r on attributes from Z.

The properties analogous to the reflexivity, symmetry and transitivity of the
ordinary equality are applied to the defined relation.

THEOREM 1. For the tuples r(X), s(X), t(Z), the following holds:
l.7(r=r)ye{T,w}; 2. 7(r=s)=71(s= r)

3a. 7(r=s)=TA7T(s=t) =T =>71(r=t) =
b.r(r=s)=wAt(s=t)=T=>71(r=t)=w

Proof. 1. and 2. follow from the definition of true and maybe equality. The
fact that 7(r =) may be w means that in two identical (character by character)
tuples (r,7) which contain w-values, some of the corresponding w-values may be
substituted by different values from the domain and also may be substituted by
the same values. In the first case two tuples become different, and in the second—
they become equal. Thus, it is unknown whether they are equal. Proof of 3 is in
the Appendix.

Remark 1. More general transitivity does not hold, and we cannot extend
the property 3. on both w-equalities in the antecedent of the implication, i.e. the
following does not hold: 7(r = s) € {w,T}AT(s =t) € {w,T} = 7(r =t) € {w,T};
for example, r = (2,w), s = (w,3), t = (4,w), 7(r =s) =w and 7(s = t) = w but
T(r=t)=F.

For 7(r = s) =T (or w) we shall write also r =7 s (or r =, ).
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In the definition of a relation membership we will use the partial order re-
lationship “to be more informative” and “to be more equally informative” —for
individual elements and tuples, denoted J and 1 respectively [6]. In every domain

extended with w,p,p Ja Jw, for a € D, D-any domain; x J y o yVvVz=y,
for z,y € D U {w, p}. For two n-tuples r(X), s(X), r s gze:fA/e\X(r[a] 3 s[A]).

The reason for defining the relationship 3 in such a way is the following: the
value w stands for any value from the domain, i.e. every value from the domain
contains more information than the value w. Using the same criterion, the value
p contains more information than any value from the domain, because none of the
values from the domain can take place of p without producing inconsistency (the
value cannot be, simultaneously, defined and undefined).

The relation R equipped with 3 is not a lattice. Indeed, R contains neither
the suppremum (4) nor the infimum (&) with respect to . Moreover if we adopt
the assumption that every relation R has a primary key which does not take the
null values [4], then every chain in R is represented by exactly one element, ie.
there will not be n-tuples comparable with J-relationship.

Definition 2. (Relation membership) Given an n-tuple r, let G(r) be the set
of all n-tuples which are more informative than r or equally informative as r, and
which are “true” equal or “maybe” equal with r,i.e. G(r) ={s:sArAT(s=r) €
{T,w}}. Let M(r) denote the set of the maximums of all the chains from G(r), i.e.
M(r) = {m:alxxL : L is a chain from G(r)}. For a relation R(X) and a tuple r(Y),

(i) r is a “true” element of R(7(r € R) = T) iff every tuple s € M(r) is “true”

equal with some tuple ¢ from R;

(ii) 7 is “maybe” element of R(7(r € R) = w) iff it is “maybe” equal to a tuple

t from R, and r is not “true”element of R;

(iii) r is not an element of R(7(r € R) = F, otherwise. Formally,
def . .
reR) = A VT1(t=s) V1it=r
( ) (SEM(T‘) tER 7( ) teR g )

Remark 2. The definition of a “true” membership includes both the case
when the tuple r does not have w-values (M (r) = r, 7(r =t) =T for some t € R),
and the case when the tuple r has w-values, and, whatever combination of values
from the corressponding domains substitutes all w-values in r, the resulting tuple
s (which is in (M (r)), is “true” equal to some of the tuples from R. For example,

R(X1X2),
0 a

1 a
1 b

r(X1 : w, Xy : a, X3 : p), domain (X;) = {0,1}; 7(r € R) = T; M(r) =
{(0,a,p), (1,a,p)}.

Instead of 7(r € R) = T(7(r € R) = w), we shall also write r € R(r €, R),
and for a negation r ¢r R(r ¢, R).
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Definition. 3. (Inclusion and equality of relations) Given relations R(X),
SY), (RCS) def /\RT(T € 8); 7(® C 8) =T for every relations S; 7(R=S) =
rE

(R C S)A7(S C R).
Insetad of 7(R C S) = T, we shall also write R Cr S; similarly for C.,.

Remark 3. For the relations without nulls (w, p), the definitions 1-3 reduce to
the definitions of the corresponding two-valued relations (equality, set membership,
inclusion).

Remark. 4. For the equality of relations (Definition 3), the same theorem as
for tuples —Theorem 1, holds.

3. Operations in the extended model

In this section we define to operations of the extended relational algebra. As
in [5], for each operation from the basic relational model, we define two operations
— “true” (T') and “maybe” (w). The results of these operations consist of the
tuples which, recpectively, exactly and maybe satisfy the conditions defining the
operations.

Prior to defining the extended traditional set operations (union, intersection,
difference), we define the restriction operations of one relation with respect to
another.

Definition 4. (T, F,w-restriction of a relation with respect to another rela-
tion): For the relations R(X),S(Y),

R|TSd=ef{r:T€R/\r€TS}; , RloS={r:reRAre, Sk
RlpS={r:reRAT(r€S)=F}.

Remark 5. Restriction operation of one relation with respect to another
is a kind of “semijoin” operation [1], where “semijoin” is performed on all the
attributes of the relations. For example, R |7 SUR |, S could be represented
using the semijoin, as R(X = Y)S, where “ =”means =gor=,. For a relation R
without null values, R |r S is representable as R{(X =4 Y 1 S, and similarly
for R |, S. For a relation R with w-values, a representation of R | S using
the semijoin is not immediate and has to be more complicated. The reason for this
complication is in the fact that the definition of R |7 S uses a relation membership
and the definition of semijoin uses an equality of tuples; according to our definition
2, extended membership cannot be immediately substituted by the equality of some
tuples, in a way it could be done for two-valued logic and relations without null
values. For union compatible relations R, S [3] without null values, the operation
R |7 S reduces to the usual intersection RN S, and the operation R |p S reduces
to the usual set difference R\S(R |, S is empty).



156 Gordana M. Pavlovié

For R |r R we will write Ry (and similarly for R, ); these are, “true” and
“maybe” subsets of R. It is easy to show, using Definition 4 and Theorem 1 that
the following holds:

(*) (RT)T = RT and (Rw)w = Rw;
(**) reR=r¢€Rr or r€R,;
(**%) rer R=>rer Ry.

In the sequel, we make the assumption that there is no tuple which contains
w-values and which is “true” element of any of the relations; for example, it is not
possible that we have:

R(Xl Xz), domain (Xl) = {0, 1}.

w a

0 a

1 a
For the operation of restriction of one relation with respect to another it is easy
to prove properties such as: the operation of T-restriction is distributive with
respect to the union and intersection operations; the operation of F-restriction is
distributive with respect to the union and intersection on the left, and with respect
to them on the right it satisfies De Morgan’s laws (in certain cases some of these
assertions hold for “true” subsets of relations as operands).

Now, using the definitions 1-—4, we define “true” and “maybe” (T and w)
traditional set operations (union, intersection, difference and Cartesian product):

Definition 5. (Difference, union, intersection, Cartesian product) For the
relations R(X),S(Y),

L RArSYRr|rS; RwSER|,SUR, |rS;

2. For RU*S =RR®pUS ® p, where p is taken with the attributes leading
to the union compatible relations [3], “true” and “maybe” union is:

RUr S € (RU* )7 RU, S E (RU* 8).;
3. Ry S ¥ (Rr |7 S)[XNY]); RN, S ¥ (R, S)[XNY]U(S |, R)[XNY];
3. Rxr S Y Ry ® Sp; Rx,SYR®S\RxrS.

Remark 6. In the definition of “true” and “maybe” intersection, the operation
of projection on common attributes ([X NY7]) [3] is used.

For the defined operations it is possible to show (using the definitions, the
properties of T, F restrictions of one relation with respect to another and the
properties of “true” and “maybe” subsets of a relation) that the following theorem
holds:

THEOREM 2.1. The results of “true” and “maybe” operations are equal to
their “true” and “maybe” subsets;

2. (Rngp S)Ur (R\rS) C Rr:
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3. The operations U, N, Uy, N, are commutative, Ur and N are asso-
ciative, and U, Np are distributive with respect to each other;

4. The operation \1 is distributive with respect to U, Nt on the left, and
with respect to them on the right, it satisfies De Morgan’s laws;

5. (RS)r=Rx7S and (R®S), =Rx,S.

Remark 7. If X NY # @ (in the definition of the Cartesian product), the
common attributes have to be renamed in order to get the unique attribute names.

We now define some of the extended operations of the relational algebra,
which are not traditional set operations but which are characteristic for manipula-
tions with relations.

Definition 6. (f-restriction) Given a relation R(X), attributes A, B € X,
a constant k € domain (A) and 6 € {=, <, <, >>,#} R[A6rB]l ={r:r €
R A r[A)0rr[B]}; R[A6,B] = {r :r € RAr[A]0,r[B]}; a constant k may stands
for B and r[B] in this definition; x 67 y is a notation for 7(z-0y) = T and similarly

for z6,y. For 6 € {<, <, >, >}, 6-relationship is defined by the same table as
=-relationship ( where 6 stands for =), except for 7(p § p) =F; m(x #£y) =
~(r(z = y))-

Remark 8. Tt seems more natural to define §-relationship as a four-valued one
with 7(p < a) = p-undefined, instead of 7(p < a) = F. However, since we define
“true” and “maybe’ operations, it is unimportant if some tuples do not enter in the
result of these operations because it is “false” (F') that they satisfy some condition
or because that condition is not even defined for them.

Definition 7. (6-join) For the relations R(X) and S(Y), attributes A € X
and B € Y and € as in Definition 6,

R[A67B])S ¥ (R® S)[A6rB]; R[A6,B]S ¥ (R ® S)[A6.,B).

Remark 9. In the definitions 6, 7, for 8 just “=”, it may be, A,B C X (Y),
instead of A, B € X (Y).

Definition 7. Immediately implies the following property: (R[A67B]S U
R[A6,B]S)[X] C R (analogous to 6-join property in ordinary model).

In the relational model without null values, a result of the natural join opera-
tion [3] is obtained from the result of = join operation by projection; the same
will hold for the operation of “true” natural join (xr) in our model with two
types of null values. In obtaining a result of “maybe” natural join (}) in the
same way from a result of =, join operation, we wish to keep from every tuple
t € R[A =, B]S(t[4] =, t[B]), one of the projections on the corresponding pair
of attributes from A, B, which is “more informative” than another or “equally in-
formative” as another. Doing so, we save as much as possible of the “quantity of
information” in the result of w-join. For example, for the relations
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R(ABC), S(BC D)
a 2 w w 1 1
b w 1 w w 1
R[B,C =, B,C]S(A B C B' ¢' D) and R%, S(A B C D).
a 2 w w 1 1 a 2 1 1
a 2 w w w1 a 2 w 1
b w 1 w 1 1 b w 1 1
b w 1 w w 1

For the first tuple (a,2,w,w,1,1) from R[B, C =, B,C]S, among the pro-
jections on B, B’ (and C,C"), we chose the projection on B (and C'), because
pairs (B :2, C :w) and (B' : w,C" : 1) can be equal only if both of them are equal

o (2,1). If we choose a four-tuple (a,2,w, 1) to represent six-tuple (a,2,w,w,1,1)
from R[B,C =, B,C]S in R %, S-instead of (a,2,1,1), we loose the information
that the former one may be in the result of *,-join only if w represents just 1.

To formalize what we said above, we introduce the following operation of an
extended—selective—projection: let the attributes of a relation R be grouped in
three groups X = {X1,...,X;}, Y = {N,...Y;}, Z = {Z,...,Z;}, some of
which may be empty and some of which may contain the common attributes; the
corresponding attributes from Y and Z have comparable domains. We define the
projection of the relation R on the attribute set {X, J}, where J; =Y; or J; = Z;
(for i = 1,2,...,j), depending upon which one of the projections r[Y;], r[Z;], for
every tuple r from R, is “more or equally informative” (and rename J-attributes
Y, again) in the following way:

R[X, [Y Vv 2)] = {sup{r[X,Y], r[(X,Z]} : r € RAT[Y] =, r[Z]};

supremum is taken with respect to the relationship 3.

Now we deduce, using projection and selective projection, the result of the
extended natural join operation from the result of the extended =-join operation
in the following way:

Definition 8. (Natural join) For the relations R(X),S(Y) and the sets of
attributes AC X, BCY,

R[A 7 B]S = (R[A =1 B]S)[X,Y\B]J;
R[A*, B)S = (R[4 =, B|S)[(X\4) U (Y\B), (4V B)].
Remark 10. When A = B = X NY, the “true” and “maybe” operations of

natural join are written as R xS and R, S.

The following theorem is analogous to the corresponding inclusion in the
model without null values:

THEOREM 3. 1. 7(((R[A *r B]S)[X])r C Ry) = T;
2. 7((R[A *r B]S U R[A %, B]S)[X] C R) € {T,w}.
Proof of theorem is in the Appendix.
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Definition 9. (Division) For the relations R(X), S(Y), let gr(¢) be, as in [3],
the set {s: (t7s) € R}; for AC X, BCY, “rue” and “maybe” quotients are:

R[A <7 B]S ¥ {t:t € RIX\A] A S[B] Cr gr(t)};

R[A+, B]S ¥ {t:t e R[X\A] A S[B] C., gr(t)}.

The operation defined in named “division” because it has the following prop-
erty (analogous to that in the basic model):

THEOREM 4. 1. (R X1 S) +1 ST = Ry (for St # @);
2. (RxyS)+y Sy =R (for S, # 2);
3. (R Xw S) ~r St =R, (fOr ST 75 @).
Proof of the theorem uses the following lemma:

LEMMA 1. (RlURQ)[A+TB]S = Rl[A+TB]SUR2[A+TB]S, if S ;é J, and
Ry, Ry are union compatible relations [3], Ri[X\A]UR2[X\A] = @&; analogously
for the operation +,,.

Proofs of Lemma 1 and Theorem 4 are in the Appendix.

Remark 11. All other combinations of “true” and “maybe” operations of
Cartesian product and division, and “true” and “maybe” subsets of S (for example
(R x1 S) +1 S) do not give interesting results; they are either @ or they depend
on the relationship between S, S, S,.

Remark 12. All the defined operations of the extended relational algebra,
when applied to the relations without null values, reduce to the operations for the
basic relational model [3].

Now, using the operations of the relational algebra and the extended relational
algebra, we can express every query in the relational database with two types of
null values. For example, let us have the databese with the following relations:
LECTURES (Students # Subject Profesor) PROFESSORS (Name Position)

n1 A X; X;  assoc. prof.
o A w X5  professor
n3 A X3 X3 assit. prof.
n1 B X5 X,  asist. prof.
o B w Xy  profesor

The query: find the number of all students who are positively (or maybe)
taking lectures on the subject “A” from assistant professors, we express as:

(PROFESSORS[Position=7 “assist.pr.”] ¥ LECTURES [Subject=7 “A”])
[Student #]

(PROFESSORS|Position=7,, “assist.pr.”] *r, LECTURES [Subject=r,, “A”])
[Stud.#]
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where, in the second expression, not all of the operations (restrictions and join) are
T-operations

4. On the order in which the operations are performed

For the operations of the relational algebra, it may be very important in
which order the operations are performed over the operand relations, if the result
is to be obtained in the most effective way. For example, if we have to perform the
operations of the Cartesian product over two relations and the restriction over one
of them, it is significant that the restriction may precede the Cartesian product,
because the product is a very expensive operation and it is desirable to perform it
over as small sets as possible.

For the extended operations on the relational algebra, we exhibit some pos-
sibilities of changing order in performing the operations.

THEOREM 5. For the relations R(X), S(Y) and the attributes A,B € X or
A BCX,CCX,DCY,

la. (R x7 S)[A6r Bl = (R[AOr B]) xr S, XNY =g;

1b. (R® S)[A0r B] = (R[A6rB])® S;

le. (R x, S)[A6,B]=(R[A6,B]) x, S;

2a. (R[A67 B))[C] = (R[C])[A6r BJ;

2b. analogous for 6,,-restriction (A, B € X)

3a. (R[C 1 D]S)[A6r B] = (R[A 61 B))[C *r D]S;

3b. (R[C x, D]S)[A6, B]) C (R[A8, B)[C *, D]S.
Proof of this theorem is in the Appendix.

&

&

Any constant ¢ € domain (A) in Theorem 5 may stand for B. The following
example shows that the converse inclusion in 3b. does not hold:

R(ABC),S(BE D), (RI{B,C} x.{B.C}}S)[B=, C]=T(AB¢ D)[B=, C| = &
(=T1) and

(RIB = C)[{B, O} #.{B,C}]S= R A BC)[{B,C} .,{B,C}}S=T2AA BG D);
T1CT2 but T2 ¢ T1.

5. Conclusion

In this paper we presented the relational model of data with two types of null
values. Null values considered in this model are undefined value (p) and unknown
value (w). We assumed that the w-value is unknown but defined value. The given
definitions can be easily modified in order to extend w to include the undefined
value p, too, so that the properties proved in the paper still hold.

The results presented in the paper are:
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(i) Extended three-valued relations of the equality of tuples, relation membership
and inclusion are defined. We proved the properties for the extended equality of
tuples (=), which are analogous to the reflexivity, symmetry and transitivity of the
usual two-valued equality (Theorem 1). The definition of these extended relations
was found to be the common need when defining the extended operations of the
relational algebra.

(ii) With some operations of the relational algebra we associated two operations—
“true” and “maybe” (T' and w) operations. Their results contain, respectively,
tuples which are known to satisfy the condition of the corresponding usual opera-
tion, and for which it is unknown whether they satisfy that condition. For these
operations we exhibited the properties analogous to the properties of the corre-
sponding usual operations of the relational algebra (theorems 2, 3, 4).

(iii) For the extended operations of the Cartesian product, restriction, natural join
and projection, it is shown that the order in performing these operations can be
changed (Theorem 5). This property could be very useful in query optimization.

This is only one aspect of the relational data model with two types of null
values. In the paper following this one we present another aspect of the extended
relational model with two types of null values—functional and multivalued depen-
dencies and their extended properties.

Appendix

Proof of Theorem 1.3. In this proof, a. will indicate the case a, and b.-the
case b from the formulation of the theorem.
a. T

A 7(s =t) =T, the following holds ((1) — (4)) :

Since 7(r =s) = {

(1) r[X\Y] = pAs[Y\X] = p,

@) {a. (VA € X NY)(r[A] = s[A] A s[A] # w)
b. VAEX NY)(7(r[A]=5[A] # F)A(FBA€ XNY ) (r(r[A]=s[A]) #T),

(3) s[Y\Z]pAt[Z\Y]=p and

(4) (VA € Y N Z)(s[4] = t[4]); (1)—(4) imply (1°) and (2’): item(1") ¢[X\(Y N
Z)=p and t[Z\(XNY)] =p (it is because (1) and (3) imply s[Y'\(X N
Z)] = p, which with (2) and (4) imply r[(XNY)\Z] = p and t[(YNZ2)\X] = p,
and the corresponding set equalities between the attribute sets on which we
project 7, s, t, hold)

@) {a. VAe XNYNZ)(r[A] = t{A]Ar[A] #w

b. VeXNYNZ)(r(r[A]=t[A]) ZFA(FAe XNY NZ)(r(r[A] =t[A]) #T)

From (1') we obtain, by projection, (1") and (1"):

(1) [X\Z] = p and HZ\X] = j

(1) 7[X N Z)\Y] = (X 1 Z)\Y] = j; (1") and (2') imply (2"):



162 Gordana M. Pavlovié

@) { a- (VA e XNZ)(r[A] = t[A] Ar[4] #w)
b- VAeX N Z)(r(r[A]=t[A]#F)A (A€ XN Z)(7(r[A] = t[A]) £T);
From (1”) and (2”) we obtain 7(r =t) = {a. Thw.

Proof of Theorem 3.

1. r € ((R[A #r B])S)[X]) + T implies that
r € ((R[A »1 B]S)[X]) and r €7 (R[A *7 B]S)[X]; now from definitions 7,8,
r € Rand r €1 R, i.e. r € Ry; it implies (using (x)), 7(r € Ry) = T;

2. r € (R[A =r B]S U R[A %, B])S)[X] implies (using Definition 8) r € R)
or 3s € R)(3t € S)(r[X\A] = s[X\A] A r[A4] = sup{s[A4], t[B]} A s[4] =, ¢[B]);
according to Definiton 1, r € R. or (Is € R)(r =, s), and by Definition 2, we have
7(€ R) € {T,w}.

Proof of Lemma 1. t € (RiURs)[A<+r B]S implies that t € (R UR2)[X\A]A
S[B] Cr gr,ur(t);

= (t (S Rl[X\A] Vte RQ[X\A]) /\S[B] Cr {’LL : (t’\u) eERrRU Rz}

= (t € Ri[X\A]Vt e R[X\A) AS[B] Cr {u:(t"u) € R}V S[B] Cr

{u: (t"u) € R2}) (because R1[X\A] N Rx[X\A] = 2)

= (t € Ri[X\A] A S[B] Cr gr,(t))(t € Ra[X\A] A S[B] Cr gr, (t))-all other
cases are impossible, because of the hypothesis of lemma;

=>t€ Ri[A+7 B]SVte€ R:[A+71 B]S,ie. t € Ri[A+1 B]SURy[A +1 B]S;

Convese inclusion is trivial; quite analogously for the operation =+, .

Proof of Theorem 4.
1. (RXTS)+TST={t:t:T‘AS/\TERT/\SEST}+TST
= {T‘ :r € RpAST Cr ngTs(T‘)} = {7‘ :r € RrAST Cr ST} = Rr;
2. (RxuyS)+wSu={t:t=r"sAr € RAs€ SA(r € R,Vs € Sy,)}+wSu
={t:t=r"sA((re RrAs€eS,)V(reR,ANs€S8))}+, S,
= (Lemma 1){t:t =r"sAr € Rr As € S,} +u Su
U{t:t=r"sAreR,As€S}+, 8,
={r:ir€Rr NS, C, S,}U{r:re€ R,AS, Cy, Su}=RrUR,=R;
3. (RxyS)+1r St =Lemma 1){t:t=r"sAr € Rr As€ S,}+r St
U{t:t=r"sAre€R,As€S}+1 St
{r:r€ RpAST Cr S,}U{r:r€ R,ASr Cr S} =@UR, =R,

Proof of Theorem 5.
la. (R XT S)[AGTB] = (RT ® ST)[A(QTB] = {t teERT®ST A t[A]HTt[B]}
= {t:t=r"sAr€Rgp As € SpAr[Al0rr[B]} = {r:r € RrAr[Al0rr[B]} ® St

= {r :r € Ry ANr[A)0rr[B]}r ® St (none of the tuples from Rr takes
w-values)
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= (R[AGTB])T ® ST = (R[AQTB]) X7 S;
1b. analogously to 1a;
le. (RxyS)A0,B]={t:t€e ROSAt¢& Rr @ St ANt[Al0 t[B]} ={t:te
R ® S ANt[A]0,t[B]}(t ¢ Rr ® St because t[A]f,t[B], which means that ¢ takes
w-values)

={t:t=r"sAr e RAs€ SAr[Alf,r[B]} ={r:r € RAT[A]f,r[B]} ® S

= (R[46,B] ® S = ((R[48,B]) ® S)\((R[A8,B))r ® Sr) (the set
(R[A6,B])r is empty because all tuples from R[Af,,B] contain w-values)

= (R[A6,B] %, S;
2a. (R[A07B))[C] = {r : v € RAr[A)67r[B]}[C] =
{u : u € R[C] A u[A)6ru[B]} = (R[C])[A81 B];

2b. analogously to 2a;
3a. (R[C xr D]S)[A0rB] = ((R[C =7 D]S)[X,Y\D)])[AbrB]
(R ® SDIC =r D))[X,Y\D])[467B]
(((R® S))[C =r D))[A6rB])[X,Y\D] (because of 2a.)
((R® S)[A0rB)[C =7 D))[X,Y\D] (commutativity of conjuction)
((

(

R[A07B)) ® S][C =r D))[X,Y\D] ( because of 1b.)
((R[A6rB))[C =1 D]S)[X,Y\D] = (R[A0rB])[C *r D]S (definitions

7,8)};
3b. t € (R[C %, D]S)[A6,B] means, by definition 8, that
t € (R[C =, DIS)[(X\C)U(Y\D), (CV D)][Ab,,B]; it is equivalent to
(1) (3r € R)(3s € S)(r[C] = s[D] A t{X\C] = r[X\C]] A t[C] =
= sup{r[C]s[D]}) A (t[A]6.,t[B]; (1) implies that
(t[A] = r[A] V t[A]V O r[A]) A (t[B] = r[B] v t[B] 3 r[B]), especially
(2) t[A] 3 r[A] At[B] 3 r[B]; since t[A]6,,¢[B] implies
(3) (t[A] =w At[B] # p) V (t[A] # p At[B] = w), from (2) and (3) we have

(r[A] = wAr[B] # p) V (r[A4] # p Ar[B] = w) and it exactly means (by
definition of 6,,) that

(4) r[Al6,r[B]. (1) and (4) imply ¢t € (R[A6,,B])[C %, D]S.
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