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ON PARA-A-EISTEIN MANIFOLDS

B. B. Sinha and Ramesh Sharma

1. Introduction. An n-dimensional smooth manifold M,, with a tensor field
f of type (1.1.), a vector field T, a I-form A and a Riemannian matric g is said
to be an almost paracontact Riemannian manifold if [2]

(1.1) (@) fP=1-AQT
(1.1) () 9(F X, fY) = g(X,Y) — A(X)A(Y).

It can be shown that
(1.2) AT)=1, fT=0, Af=0, rank(f)=n—1
whence it follows that

9(T,T) =1, '"f(X,Y) =" f(V, X)

'f being defined by 'f(X,Y) = g(fX,Y) and X,Y standing for arbitrary vector
fields on M,.

If D be the Riemannian connexion induced on M,, by g such that [3]
(1.3) (DxA)Y + (DyA)X =2'f(X,Y)

then the almost paracontact Riemannian manifold M, is termed a paracontact
Riemannian manifold. A paracontact Riemannian manifold M, whose [-form A
is closed, that is

(1.4) (DxA)Y — (DyA)X =0
(1.5) (Dx f)Y = 2A(X)A(Y)T — g(X,Y)T — A(Y)X

is called a normal paracontact Riemannian manifold. It is easy to show that the
torsion tensor N — (dA) ® T' = 0, where N is the Nijenhuis tensor of f.
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2. Para-A-Einstein manifold. We define a para-A-Einstein manifold as a
normal para contact Riemannian manifold whose Ricci tensor is given by [1]

(2.1) Ric(X,Y) =ag(X,Y) + cA(X)A(Y)
where a and c¢ are scalar functions. Obviously, we have

(2.2) Ric(fX,Y) = Ric(X fY),
Ric(T,T) =a+c.

THEOREM 2.1. The Riccian curvature of a para-A-Einstein manifold in the
direction of T 1is equal to —(n —1).

Proof. From (1.3) and (1.4), we get
(2.4) DxT = fX.
From (1.5) and (2.4) we find the curvature tensor K satisfying
(2.5) K(X,Y,T)=AX)Y — A(Y)X.
Contracting (2.5), we get
(2.6) Ric(Y,T) = —-(n - 1)A®Y).
Substituting T for Y in it we have the theorem.

THEOREM 2.2. The functions a and c of the defining equation (2.1) are
constants, provided tr. f = 0.

Proof. Equation (2.3) and theorem (2.1) imply a + ¢ = 1 — n. So we need
only to show that a is constant. From (2.1), on contraction, we get r = na + ¢
which, on differentiation, yields

(2.7 Xr=nX,+ X.=(n-1)X,,

where r is the scalar curvature. Again from (2.1) we have R(X) = aX + cA(X)T
which, on differentiation along Y, yields

(DyR)X = (Ya)X + (Ye)A(X)T + ¢(Dy A)(X)T + cA(X)DyT.
The above equation assumes the form
(DyR)X =Ya+ (Yo)AX)T +  f(X,Y)T + cAX)fY

due to (2.4). Contracting in with respect to Y, we get (div R)X = X, + (T,) A(X).
Using the identity (div R)X = X,/2 and (2.7), we get

(2.8) (n — 3)X, = 2(T,) A(X).
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Putting X =T in it, we get
(n—3)T, =2T, = -2T,
giving T, = 0 and hence T, = 0. Consequently (2.8) yields X, = 0.

We now give a condition for a normal paracontact Riemannian manifold to
be a para-A-Einstein manifold. With the help of (1.5) we can show for a normal
paracontact Riemannian manifold that

K(X,Y,f2) = f(K(X,Y, Z)) + 2{A(Y) f(X, 2)T — A(X)'f(Y, Z)T
(2.9) +AY)A(2) fX - AX)A2) Y} - f(X, 2)Y +' f(V,2)X
-9, 2)fX +g(X, Z)fY.
Contracting it with respect to X we find
(2.10) Ric(Y, fZ) = (CIK)(Y, 2) +(n—2)'f(Y, Z)+ (C1L){2A(Y)Z(Z) - 9(Y, Z)}
where C] denotes contraction at the first slot and K def K.
(2.11) (CIK)(Y, Z) = (CIK)(Z,Y),
From (2.10) and (2.11) it is obvious that
(2.12) Ric(X, fY) = Ric(fX,Y).

THEOREM 2.3. In order that a normal paracontact Riemannian manifold M,
may be a para-A-Einstein manifold it is necessary and sufficient that the symmetric
tensors C1 K and'f should be linearly dependent.

Proof . The theorem follows in consequence of equations (2.10), (2.1), (1.1)a,
(2.6) and Theorem 2.2.

THEOREM 2.4. In a para-A-Finstein manifold, the symmetric (0,2)- tensor
Ci K is parallel along the vector field T.

Proof. We have
(2.13) (CI1K)(Y,Z)=(a—n+2)'f(Y,2)

due to (2.10) and (2.1). Differentiating it along T" we have (DrCi/K)(Y,Z) = 0
due to (1.5).

THEOREM 2.5. For a para-A-Einstein manifold, the Lie-derivatives of the
Ricci tensor and C1 K are given by

(2.14) LrRic = (2a/(a —n+ 2))C{ K,
(2.15) Lr(C/R) = 2(a—n+2)(g — A® A).

Proof . Tt is easy to show for a normal paracontact Riemannian manifold that
LrA=0, Lvf =0, Lrg=2"f, LITf = 2(9 —A® A)
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From these relations and Lie-derivation of the equations (2.1) and (2.13) along
T, the theorem follows.

3. Examples. Ezample (3.1) From [3] it is known that a neighborhood of
each point of a manifold of constant curvature is a normal paracontact Einstein
manifold which is therefore a trivial example of a para-A-Einstein manifold with
c=0.

Ezample (3.2). Next, we give an example of non-trivial para-A-Einstein man-
ifold. Consider a 2(m + 1)—dimensional almost product and almost decomposable
manifold My (,41) with structure tensor F' such that the complementary distri-
butions (having no common direction) may be of the same real dimension m + 1.
Suppose that M, 1) is of almost constant curvature [5]. Then its curvature
tensor K is given by

(3.1) 'K(X,Y,Z,W) =k[G(X,W)G(Y,Z) - G(X,Z)G(Y,W)

+I F(X7W)IF(Y~'7Z) - F(X7Z) ~! F(X,Z)IF(?,W)]
where k is a constant, G is the metric tensor of My(,,41) and X,Y,Z,W are
arbitrary vector fields on it. Let Ma,,+1 be a hypersurface in MQ(mH) and Mo, t1
be a normal paracontact Riemannian manifold with structure tensors f,T,A,g.
Then it can be shown [4] that
(3.2(a)) HX =-X+ AX)T,
(3.2(b)) C'H = —2n,
where H is the second fundamental tensor of type (1.1) of the hypersurface. Since
the dimension of the hypersurface is odd we can adapt an orthonormal frame
€1+ s€m, fe1,..., fem, T on Moy, 1, with respect to which C] f vanishes. Con-
sequently divT vanishes in view of (2.4) [3]. If B be the differential of the inclusion
map b : Mami1 = My(pmq1), substituting BX, BY, BW for X,Y,Z, W in (3.1), we
have
(3.3) 'K(BX,BY,BZ,BW) = [9(X,W)g(Y,Z) — g(X, Z)g(Y,W)

+I f(Xa W)If(Y7 Z) —! f(Xa Z)If(Y7 W)]7

where we have used the transformation FBX = BfX + A(X)N, N being the unit
normal vector field to the hypersurface.

Using Gauss characteristic equation in (3.3) and contractin, we get
Ric(Y,Z) + h(HZ) — (C1H)h(Y, Z) = k[A(Y)A(Z) + (2m — 1)g(Y, Z)].
Using (3.2)(a), (3.2)(b) frequently in the above equation, we find
Ric(Y,Z) — 2m —1){g(Y,Z) - AV)A(Z)} = k{(2m - 1)g9(Y,Z) + A(Y)A(Z)}

which implies Ric(Y, Z) = (k+1)(2m —1)g(Y, Z) + (k+ 1 —2m)A(Y)A(Z), show-
ing that the normal paracontact Riemannian hypersurface of almost product and
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almost decomposable manifold of almost constant curvature and whose comple-
mentary distributions have equal dimensions is a para-A-Einstein manifold.

It is notable that the scalar curvature of the enveloping manifold My, 1) is
equal to 4n(n + 1)k.
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