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ON SOME CURVATURE TENSORS OF COMPLEX ANALYTIC AND
LOCALLY DECOMPOSABLE RIEMANNIAN SPACES WITH (!F?F)-
CONNECTION

Neda Stojkovic

1. Introduction. Let 9" be any differentiable n-dimensional manifold and
let T,(9) be the tangent space of the manifold 9t at any point p. The elements
of T,,(9M) are called vectors and are denoted by X,,, Y, Z,,.... The corresponding
C™ vector fields are denoted by X, Y, Z,.... These vector fields compose a real
vector space X(91). We denote by C*(9M) the collection of all real valued C'*°
functions defined on 9. More details about this and the notions mentioned below
can be found in [3], [5].

C° connection V on a manifold 9 is a mapping
V:X(OR) x X(ON) — X(M)

(notation: V : (X,Y) — VxY) such that for every f € C®(IM); X,Y,Z € X(M)
the following equalities are valid

Vx(Y + Z) =VxY +VxZ
VX_H/Z = VXZ +VvyZ
(1-1) foZZfVXZ
Vx(fY) = (Xf)Y = fVxY.
If A is any field of 1-forms, then we have
(1.2) (VxA)(Y)=XAY) - A(VxY).
Let V be any connection with torsion defined on a manifold 9™ and X,Y €
X(9M). It is possible to define two connections 'V and 2V so that we have
(1.3) 'VxY =VxY
and

(1.4) VxY = VxY +[X,Y],
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where [X, Y] is the commutator of vector fields X,Y".

For connections 'V and 2V there exist four fields of curvature tensors
\R(X,Y)Z, sR(X,Y)Z, 3R(X,Y)Z and 4R(X,Y)Z [9], defined by the following
relations

\{R(X,Y)Z ='Vx'VyZ —'Vy ' VxZ -'Vixv|Z
2R(X,Y)Z =*Vx*VyZ —'Vy NxZ —*Vixy|Z
(X,Y)zZ
(X,Y)Z

(1.5) 3R =2 Vx 1Vyz —IVY 2VxZ + VgVyXZ -1 VZVXyZ,
(16) 4 =2 Vx 1VyZ —IVY2VXZ+V§VYXZ _lvlvaZ;

=

’

The first Ricci transformation at any point p € 9t with respect to any pair
of vectors Y, Z, € Tp(9M) is the linear transformation

’1RYp,Zp : Tp () — T,(9M)
defined by the formula
IlRYp,Zp (Xp) =1R(Xp,Y)) Zp.
Ricci tensor { R (Y}, Z,) of a manifold 9t at a point p is the bilinear mapping
T,(M) x T,(M) - R
given by the relation
(L.7) 1R(Yp, Zp) = tr Ry, z,,

where by tr we denote the trace of a linear mapping.

The second Ricci transformation at an arbitrary point p € 9t with respect to
any pair of vectors Yy, Z, € T,(9) is the linear transformation

{I.’RYIHZP : Tp(gjt) - Tp(m)
defined by the formula
1Ry, z,(Xp) =1 R(Yp, Xp) Zp.
The Ricci tensor RY (Y,, Z,) of a manifold 9t at point p is the bilinear map-
ping
T,(M) x T,(M) - R
given by the relation

(1.8) IllR(Yp, Zp) = tI'IlIRYP,ZP-

The third Ricci transformation at a point p € 9% with respect to pair of
vectors Yy, Z, € T,(9M) is the linear transformation

IlnRYp,Zp : Tp(m) - Tp(m)
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defined by the formula
1'Rx,,z,(Xp) =1 R(Yy, Zp) Xp.

n

The Ricci tensor {"R(Yp, Z,) of a manifold 9 at a point p is the bilinear mapping
T,(ON) x T,(<M) - R

given by the relation

(1.9) V'R(Yy, Zp) = tr{'Ry, 2,

Ricci tensors corresponding to the other curvature tensors are defined analogously.

For brevity, when it is clear from the context what we mean, we will often
call “fields of tensors” simply “tensors” and vestors will be denoted like fields of
vectors without lower index p.

An almost complex structure on an evendimensional differentiable manifold
M?" [1, 4] is a field of endomorphisms of the tangent spaces such that
(1.10) F? =],
where I denotes the identity endomorphism. Such a manifold is an almost complex
space.

A connection °V is a symmetric affine F-connection if the following conditions

are fulfilled
(1.11) WxY =VyX +[X,Y],
OVxF)(Y) =0.

An almost complex manifold 91 is complex analytic if and only if its Nijenhuis
tensor vanishes [6], or if and only if there is a symmetric F-connection [7, 8].

A Kahler space is an evendimensional manifold with almost complex structure
F' and Riemannian metric g, which satisfies the following conditions
9g(FX,FY)=g(X,Y) X,Y €X(M)
(1.12) OVxF)(Y) =0,
0V being the Riemann-Christoffel connection formed with g.

An almost product structure on a manifold 9™ [12] is a field F' of endomor-
phisms of the tangent spaces such that

(1.13) F?=1.

A manifold with this structure is called an almost product space.

A locally product space [12] is an almost product space with symmetric F-
connection °V, so that we have

(1.14) OVxF)(Y) =0.
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An almost product manifold 9" is called a locally decomposable Riemannian
space [12] if in 9" a positive definite Riemannian metric tensor field g is given,
satisfying the conditions

F*=1I, g(FX,FY)=g(X,Y)
(1.15) OVxF)(Y) =0, X,Y € X(M),

where °V is the Riemann-Christofell connection formed with g.

A locally decomposable space can be covered by a separating coordinate sys-
tem [12], i.e. by a system of coordinate neighbourhoods (z*) such that in any
intersection of two coordinate neighbourhods (z!) and (z?) we have

2 = 2% (a%), 2V =¥ (a),

where the indices a,b,c,d,... range over 1,2,...,p and the indices z,y, 2,t,...
rangeover p+ 1, p+2,... ,p+ g = n. By 9MMP we denote the system of subspaces
defined by z¥ = 0, and by 91? the system of subspaces defined by z* = 0. Then
our space IMM" is locally the product 9P x 9M? of two spaces. With respect to a
separating coordinate system we also have

. 6t 0
=(% %)
J 0 —6y
Therefore

(1/16) p=F =p-q

M. Prvanovi¢ [10] has investigated covariant differentiation with respect to
the connections 'V and 2V on almost complex and almost product spaces and has
found that in a locally coordinate system

(1.17) Tt =°T% + Al + WAL FPF} + wAS FRF + wA, FPFy

(where A; & is any tensor of covariant type 2 and contravariant type 1, FJ’ is either an
almost complex structure and w = —1 or an almost product structure and w = +1)
is the most general form of connection such that

(VxF)(Y) = (CVxF)(Y) = CVxF)(Y).

This connection is called (}F,? F)-connection. We have considered connections
induced by special (1F,2F)-connections on an almost complex spaces [2].

In this paper we suppose that 24 = A® F, where A is a field of 1-forms and
find the invariants for transformations defined by relations (2.1) and (2.2) for com-
plex analytic space and (3.2) and (3.3) for locally decomposable Riemannian space,
i.e. we obtain the tensors independent on the field A4 satisfying some conditions.
Further, in the sence of Klein’s ”Erlangen’s” programm of geometry as the theory
of the invariants of certain group of transformations we investigate curvature ten-
sors 3R(X,Y)Z and 4R(X,Y)Z of this spaces. Especially, we find the conditions
of flatness of the spaces mentioned above.
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2. Complex analytic space. Let 92" (n > 1) be a complex analytic space.
This means, by [6, 7, 8], that on this space there exists an almost complex structure
F and a symmetric affine F-connection °V. We consider on this space 92" the
(1F,? F)-connection under the assumption

24k = F A;,

where A; is a field of 1-forms and Ff is a field of tensors of almost complex structure.
In that case the (1F,2F)-connection given by the formula (1.17) has the form

% =0T + FFA; + A Fok.

Using the notion of a tensor as a multilinear transformation and the definition of a
connection given in section 1., we can write this relation in the following way

VxY =0 VxY + A(X)F(Y) + AF(X)A(Y)

and bearing in mind (1.3) and (1.4), we thus obtain the connections 'V,2 V in the
following form

(2.1) WxY =" VxY + AX)F(Y) + AF(X)Y,
(2.2) VxY =2 VxY + AY)F(X) + AF(Y)X,

Substituting (2.1) and (2.2) into (1.5), using (1.1) and (1.11), after some calculation
we get

sR(X,Y)Z = K(X,Y)Z + [ACVyFZ) - YAF(Z) + AF(Y)AF(Z)| X +

+ AY)AF(Z)F(X) + [ACVy Z) - Y A(Z) + AF(Y)A(Z)]F(X)—
(2.3) — AV)AZ)X = [ACVXFY) = XAF(Y) + AF(Y)AF(X)]Z~

— A(Y)AF(X)F(Z) - [ACVxY) — XAY) + AF(Y)A(X)|F(Z)

+ AX)A(Y)Z,

where by K(X < Y)Z we denote the curvature tensor corresponding to the sym-
metric connection °V:

(2.4) K(X,Y)Z="V%VyZ -"V{VxZ +°Vov,xZ -° Vov,v Z.
Let us now prove the following theorem:
THEOREM 2.1. The tensors

sR(X,Y)Z— LR(Y, Z)X -, R(FY, Z)FX -, R(X,Y)Z +,R(FX,Y)FZ]

2(n—1)
is independent on 1-form A, which is either:

a) covariantly constant with respect to the connection °V in any direction Y :

OVyA)(X) =Y AX) - ACVyX) =0
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or

b) the covariant derivative of A with respect to the connection °V in any
direction Y is equal to 'K(FX,Y)

Vy AX) =Y AX) - ACVyX) =' K(FX,Y).

Moreover, this tensor is equal to the tensor

1

K(X,Y)Z - =D

[K(Y,Z)X - K(FY,Z)FX ' K(X,Y)Z + K(FX,Y)FZ].

Proof. Let us prove the theorem under the assumption a). Due to the as-
sumption, the 1-form A is covariantly constant with respect to the affine symmetric
F-connection °V; using (1.2) we have

XA®Y) - A°VxY) =
and because of this relation the formula (2.3) has the form

sR(X,Y)Z = K(X,Y)Z + [AF(Y)AF(Z) — A(Y)A(Z)] X +
(2.6) +[A(Y)AF(Z) + AF(Y)A(Z)]F(X) — [AF(Y)AF(X)—
— AX)A(Y))Z - [AF(Y)A(X) + A(Y)AF(X)]F(Z).

Now we define the linear map
F-REE") - X(ON)
by the following relation
fX)=3 R(X,)Y)Z-K(X,Y)Z-

—[AF(Y)AF(2) = AY)A(2)]X — [A(Y)AF(Z) + AF(Z) A(2)]F (X)
+HAF(Y)AF(X) - A(X)A(Y)]Z + [AF(Y)A(X) + A(Y) AF (X)]F(2),

for any X,Y, Z € X(92").

Using the notion of first Ricci tensor, given by the relation (1.7), and relations
(1.10), (2.6) and

(2.7) trl=2n, trF =0,

where [ is the identity map, we can find the trace of the previously defined linear
map f, and from that we obtain

sR(Y, Z) =" K(Y, Z) = 2(n — D)[AF(Y)AF(Z) - AY)A(Z)] = 0,

or
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since by assumption we have n > 1. Let us substitute F'Y for Y in the last relation.
Using (1.10), we obtain
1

AY)AF(Z) — AF(Y)A(Z) = 2(n— 1)

[,3R(FY5 Z) - ’C(FYa Z)]a

Substituting the corresponding expressions given by the last two relations into (2.6),
after some calculation we obtain the equality

sR(X,Y)Z— LR(Y, Z)X —,R(FY,Z)FX -, R(X,Y)Z +,R(FX,Y)FZ]

2(n—1)

=K(X,Y)Z- [K(Y,Z)X —'K(FY, Z)FX—'K(X,Y)Z + K'(FX,Y)FZ).

2(n—-1)
Hence, we have proved the theorem in case a). In case b), the theorem is proved
similarly.

For K&hler spaces the following theorem holds:

THEOREM 2.2. If M2"(n > 1) is a Kdhler space with Riemann-Christoffel
connection °V and 1-form A satisfying one of the following conditions:

a) OVyA)(X)=0, or b) (°VyA)(X)='K(FX,Y)
and if the third Ricci §'R(X,Y) is equal to zero, then the curvature tensor
sR(X,Y)Z is equal to the curvature tensor K(X,Y)Z.

Proof. Let us define the linear map
9:X(?") — X(M>")
by the following relation

g(X) =3 R(Ya Z)X - K(Ya Z)X_

—[AF(Z)AF(X) — A(Z2)A(X)]Y — [A(Z)AF(X) + AF(Z)A(X)]F(Y)

— [AF(2)AF(Y) — A(Y)A(Z)]X + [AF(Z)A(Y) + A(Z)AF(Y)]F(X),
for any X,Y,Z € X(9>"). Since °V is a Riemann-Christoffel connection, bearing
in mind the notation (2.4) and the definition of the third Ricci tensor given by the

formula (1.9), we get
"K(Y,Z)=0.

Using the notion of the third Ricci tensor given by the relation (1.9), and the
relations (1.10), (2.6), (2.7), we can compute the trace of the linear map g defined
above; it follows that

s R(Y,Z) +2(n - D)[AF(Z)F(Y) — A(Z2)A(Y)] =0,
and due to n > 1, we get

]_ 1

AWAZ) = AF(V)AF(2) = 505 T R(FY, 2).
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If we substitute F'Y for Y in the last relation, keeping in mind (1.10) we get

1
2(n—1)

AF(Y)A(Z) + A(Y)AF(Z) = "R(FY, Z).

Using the last two relations, the expression (2.6) can be written in the following
form

sR(X,Y)Z = K(X,Y)Z +

1
3 = )[—”’R(Y ,Z)X +5' R(FY,Z)F X+
+y'R(X,Y)Z - R(FY,X)FZ).
The conclusion follows from this formula and from the assumption that the third
Ricci tensor §'R(X,Y") vanishes.
Theorem 2.2 in case b) can be proved similarly.

Let us now consider the curvature tensor 4R(X,Y)Z given by the formula
(1.6). Similarly as in the case curvature tensor 3R(X,Y)Z we prove the following
two theorems.

THEOREM 2.3. The tensor

JR(X,Y)Z - "R(X,Z)Y ! R(FX, Z)FY - R(X,Y)Z+

2(n —1)"
+{ R(FX,Y)FZ]

is independent on 1-form A, which is covariantly constant with respect to the con-
nection °V and it is equal to the tensor

K(X,Y)Z -

1 " " o
2(n_1)[ K(X,Z)Y -" K(FX,Z)FY " K(X,Y)Z

+" K(FX,Y)FZ].
Proof . Substituting (2.1) and (2.2) into (1.6) and using (1.1), (1.11), after a
long calculation we find
JRX,Y)Z = K(X,Y)Z + [AF(CVyZ)X — YAF(Z)]X + [ACVy Z)—
- YA2)]F(X) - [AF(°VxY) - XAF(Y)|Z - [A(°VxY) - X A(Y)|F(Z)
+ [AF(X)AF(Z) - AAX)AZ)]Y + [A(X)AF(Z) + AF(X)A(Z)]F(Y)
—[AF(X)AF(Y) — A(X)A(Y)]Z — [A(X)AF(Y) + AF(X)A(Y)]F(Z),
and from here, using the relation (2.5) for covariantly constant 1-form A, we have
JR(X,Y)Z = K(X,Y)Z + |[AF(X)AF(Z) — A(X)A(Z)Y +
(2.8) + [AF(X)A(Z) + A(X)AF(Z)]F(Y) — [AF(X)AF(Y)—
+ AX)AY)Z - [AF(X)AY) + A(X)AF(Y)|F(2).
If we define the corresponding linear map

h: X(M?") — X(M*")

AF(
AF(
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by
hY)=4 R(X,Y)Z - K(X,Y)Z + [AF(X)AF(Z) — A(X)A(Z)]Y —
—[AF(X)A(Z)+ A(X)AF(Z)|F(Y) — [AF(X)AF(Y)—
- AX)AY))Z - [AF(X)A(Y) + AX)AF(Y)|F(Z),
and calculate its trace we get as in the previous case
"R(X,Z) -"K(X,Z)—2(n - 1)AF(X)AF(Z) - A(X)A(Z)] =0.
Since n > 1, from here we have

1

AF(X)AF(Z) — A(X)A(Z) = 2(n —1)

[{R(X, Z) =" K(X, Z)].

Substituting FX for X in the last relation and using (1.10) we get

1
2(n—1)

A(X)AF(Z) — AF(X)A(Z) = ['R(FX,Z) " K(FX, Z)].

Let us substitute the corresponding expression from the last two relations into (2.8).
Then it yields

WR(X,Y)Z — ﬁ "R(X,Z)Y = R(FX,Z)FY | R(X,Y)Z+
n —
+iR(FX,Y)FZ] = K(X,Y)Z — 2= 1) ["K(X,Y)Z~—
n —

~"K(FX,Z)FY -"K(X,Y)Z +" K(FX,Y)FZ],
as required.

THEOREM 2.4. If I-form A is covariantly constant with respect to the
Riemann-Christoffel connection °V of Kdihlar spece M>"(n > 1) and the Ricci
tensor YR(X,Y) vanishes, then the curvature tensor 4R(X,Y)Z is equal to the
curvature tensor K(X,Y)Z.

Proof. This theorem can be proved analogously to Theorem 2.2 using the
linear map k:X(OM2") — X(IM?")
k(Z) =4 R(X,)Y)Z - K(X,Y)Z-
—[AF(X)AF(Z) — A(X)A(Z2)]Y — [AF(X)A(Z) + A(X)AF(Z)]F(Y)
+ [AF(X)AF(Y) — A(X)A(Y)]Z + [AF(X)A(Y) + A(X)AF(Y)]F(2),

for any X,Y € X(92").
We emphasize that, unlike Theorems 2.1 and 2.2, Theorems 2.3 and 2.4 are
not valid under the assumption

OVyA)(X) =" K(FX,Y).
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3. Locally decomposable Riemannian space. Let us consider the same
problem for locally decomposable Riemannian space IM™, (n > 2,p > 1, ¢ > 1), as
we did for complex analytic space. In this section we use the notation

n—2 %)
3.1 a=—-—"_= = ]
ey ) A T
This time, the results we obtain have various geometric interpretations.

The (} F,2 F)-connection on locally decomposable Riemannian space 91" given
by (1.17) in the case

) 1 )
where A; is a field of 1-forms, and F,; tensor of almost product structure has the
form
I =0 Uip + AjFi + Ao F} 0y,

Using the notion of connection in the sense of Koszul given by (1.1) we can write
this relation in the following way

(3.2) 'WWxY = VxY + AX)F(Y) + AF(X)Y.
In addition, we also define the second connection
(3.3) VxY =2VxY + AY)F(X) + AF(Y)X.

Keeping in mind (1.1). (1.13), (1.14), (2.4), (3.2) and (3.3), the curvature tensor
3R(X,Y)Z given by the relation (1.5) after a long calculation, can be represented
in the following form
sR(X,Y)Z = K(X,Y)Z+
+[AC°VyFZ) - YAF(Z) + AF(Y)AF(Z) + A(Y)A(Z)]X
(3.4) +[ACOVyZ) - Y A(Z)+ AF(Y)A(Z) + A(Y)AF(Z)|F(X)
—[ACVXxFY) - XAF(Y) + AF(Y)AF(X) + AY)A(X)|Z
—[ACVxY) = XA®Y) + AY)AF(X) + A(X)AF(Y)|F(Z).

Using this formula for the curvature tensor sR(X,Y)Z, under different as-
sumptions for 1-form 4 we prove the following theorems.

THEOREM 3.1. Let 9™ be a locally decomposable Riemannian space with a
field of 1-forms A which is either

a) covariantly constant with respect to the Riemann-Christoffel connection
0V, that is
CVyA(X) =0

b) VyA)(X) = g(X,Y).
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Then the tensor field
sR(X,Y)Z +o[R(Y,Z)X +5 (FY,Z)FX -, R(X,Y)Z -, R(FX,Y)FZ]
+ BGR(FY, Z)X 45 R(Y,Z)FX -, R(FX,Y)Z —, R(X,Y)FZ]

is independent on the field of 1-forms A and it is equal to the field of product
projective curvature tensors [1]. Here a, 3 are constants given by (3.1).

Proof. Let us prove the theorem in case a). Due to the assumption that
1-form A is covariantly constant with respect to the connection °V, (2.5) is valid.
Keping in mind this fact the relation (3.4) can be written in the simpler form

(3.5) sR(X,Y)Z =K(X,Y)Z+
+AF(Y)AF(Z) + AY)A(Z2)X + [AF(Y)A(Z) + AY)AF(Z)|FX
—[AFY)AF(X) + A)A(X)]Z - [AY)AF(X) + A(X)AF(Y)|FZ.
Let us define a linear map
f:x(") - x(m")
by the following relation

f(X) =3 R(X,Y)Z - K(X,Y)Z—
— [AF(Y)AF(Z) + A(Y)A(Z))X - [AF(Y)A(Z) + AY)AF(2)|FX
+[AF(Y)AF(X) = A(Y)A(X)]Z + [A(Y)AF(X) + A(X)AF(Y)F 2.

If we determine the trace of this linear map, using (1.7), (1.13)(1.16), (3.5) we
obtain

IR(Y, Z) =' K(Y, Z)+
(3.6) + (n— 2)[AY)AZ) + AF(Y)AF(Z)]+
+ Q[AF(Y)A(Z) + A(Y)AF(Z)).

Substituting FY for Y in (3.6) we get

LR(FY, Z) =' K(FY, Z)+
+(n—2)[AF(Y)A(Z) + A(Y)AF(2)]
+ plAY)A(Z) + AF(Y)AF(Z)],

where we used (1.13). Let us multiply (3.6) by ¢ and (3.7) by (n—2). Subtracting
the relations so obtained we find

AF(Y)A(Z) + A(Y)F(Z) =
1 ! ! !
(3.8) = m[%R(Y, Z) — (n—2)5R(FY, Z) - ¢'K(Y, Z)+
+ (n - 2)'K(FY, Z)).
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Let us substitute FY for Y in the relation (3.8). By (1.13) we have
AF(YYAF(Z) + AY)A(Z) =
- m[wgnwx 7) - (n—2)4R(Y, 2) — ¢ K(FY, Z)+
+ (n —2)'K(Y, Z)].
Using (3.8), (3.9) and the notation in (3.1), the relation (3.5) can be transformed,
so that we get
sR(X,Y)Z + a[yR(Y, 2)Z +, R(FY, Z)FX —, R(X,Y)Z - R(FX,Y)FZ]+
+ BER(FY, Z)X +5 R(Y,Z)FX - R(FX,Y)Z -3 R(X,Y)FZ] =
=K(X,Y)Z + o[ K(Y,Z2)X +' K(FY,Z)FX,-'K(X,Y)Z~-
~'"K(FX,Y)FZ + B[K(FY,Z)X +' K(Y,Z)FX ' K(FX,Y)Z—
~'"K(X,Y)FZ,
and taking account of [11] the theorem is proved in case a).
The theorem can be proved similarly i case b).
From the preceding theorem we immediately obtain the following.

COROLLARY 3.1. Let O™ be a locally decomposable Riemannian space, with
a field of 1-forms A which is either:

a) covariantly constant with respect to the Riemann-Christoffel connection,
or

b) CVyA)(X) =g(X,Y).
Then we have
sR(X,Y)Z =a[§R(X,Y)Z +; R(FX,Y)FZ -3 R(Y, Z)X —; R(FY, Z)FX]
+ BLR(FX,Y)Z +4 R(X,Y)FZ -4 R(FY, Z)X —, R(Y, Z)FX]
if and only if M™ is a space of separately constant curvature.

THEOREM 3.2. Let 9™ be a locally decomposamble Riemannian space, with
a filed of 1-forms A which is either:

a) covariantly constant with respect to the Riemann-Christoffel connection
°V, or

b) CVxA)(X) = g(X,Y)
and with curvature tensor sR(X,Y)Z which is equal to zero. Then the space IN™
is flat.

Proof . Let us prove the theorem in case a). It follows directly from theorem
3.1, that a space 9™ is of s separately constant curvature if 3R(X,Y)Z = 0, for
any X,Y,Z € X9M"). We want to prove that the space is not only of separately
constant curvature but also flat. For that reason we define the linear map.

g:X(M") - X(m")
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by the following relation;

f(Z) =3 R(X,Y)Z - K(X,Y)Z—
—[AF(Y)AF(Z) + A(Y)A(Z)]X — [AF(Y)A(Z) + A(Y)AF (Z)|F(X)
+HAF(Y)AF(X) + A(Y)(A(X)]Z + [A(Y)AF(X) + A(X)AF(Y)]F(Z).

Since °V is a Riemann-Christoffel connection, taking into account (1.9) and (2.4),
we obtain

"K(X,Y) =0,
and determining the trace of the previously defined linear map, we prove as in
previous cases that the following equality

sR(X,Y)Z + o['R(Z,Y)X +' R(FZ,Y)FX —!! R(X,Y)Z -/ R(FX,Y)FZ]+
FAUR(FZ,Y)X +1' R(Z,Y)FX = R(FX,Y)Z - R(X,Y)FZ] = K(X,Y)Z

is valid in both cases a) and b), and from that the conclusion of the theorem follows
directly.

Let us now consider the curvature tensor 4R(X,Y)Z given by the formula
(1.6). Similarly as in the previous case we prove that two following theorems are
valid:

THEOREM 3.3. Let O™ be a locally decomposable Riemannian space, with a
field of 1-forms A, which is covariantly constant with respect to Rieman-Christoffel
connection °V. Then the tensor field

1RX,)Y)Z + o[fR(X,2)Y +] R(FX,Z)FY - R(X,Y)Z-

N R(FX,Y)FZ) + B[IR(FX, Z)Y +! R(X, Z)FY —! (FX,Y)Z

{1 R(X,Y)FZ]
where «, 3 are constants given by (3.1), is independent on the field of 1-forms A
and has opposite value of tensor field of product-projective curvature P(Y,X)Z.

Proof . Substituting expressions (3.2) and (3.3) for corresponding connection
in the formula (1.6) for curvature tensor 4R(X,Y)Z, and using the notations (2.4),
(3.1) and the relations (1.1), (1.13) we get

tRX,Y)Z =K(X,Y)Z+

+[A(°CVYZ) -YA(Z)F(X)+ [AF(°VyZ) - YAF(Z2)|X

—[ACVxY) - XAY)F(Z) - [AF(°VxY) - XAF(Y)|Z

+ [A(X)A(Z) + AF(X)AF(Z)])Y + [A(X)AF(Z) + AF(X)A(Z)|F(Y)

—[AX)AY) + AF(X)AF(Y)]|Z — [A(X)AF(Y) + AF(X)AY)|F(Z).
Since a field of 1-forms A is covariantly constant, is satisfies the formula (1.2), and
therefore the foregoing relation can be written in a simpler form;
(3.10)

WRX,)Y)VZ =K(X,Y)Z+
+[AX)A(Z) + AF(X)AF(Z2)]Y +
—[AX)AY) + AF(X)AF(Y))|Z —

[A(X)AF(Z) + AF(X)A(Z)]F(Y)
[A(X)AF(Y) + AF(X)A(Y)|F(Z).
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If we define a linear map f:X(9) — X(IM) by
f(Y) =4 R(X,Y)Z - K(X,Y)Z—
—[AX)A(Z) + AF(X)AF(2)Y — [A(X)AF(Z) + AF(X)A(Z)]F(Y)
+[AX)AY) + AF(X)AF(Y)]|Z + [A(X)AF(Y) + AF(X)A(Y)F(2),
for any X,Y, Z € X(9M) and then find the trace of this linear map, bearing in mind
(1.8), (1.13), (1.16) and (3.10), we obtain
TR(X,Z)="K(X,Z)+
+ (n = 2)[A(X)A(Z) + AF(X)AF(Z)]+
+ ¢[A(X)AF(Z) + AF(X)A(Z)],
and from that, if we substitute F'X for X, we have

"R(FX,Z) =" K(FX,Z) + (n— 2)[AF(X)A(Z) + A(X)AF(Z)]
+ ¢[AF(X)AF(Z) + A(X)A(Z)]-

Solving the system of linear equations given by the two last relations we find
AF(X)A(Z) + A( VAF(Z) = o"K(FX,Z) =} R(FX, Z)]+
+B"K(X, Z) = R(X, Z)]

AX)A(Z) + AF(X)AF(Z) = o"K(X, Z) = R(X, Z)]+
+ﬂ[” (FX,Z) -} R(FX,Z)].

If we substitute the corresponding expressions from the last two relations into (3.10)
we have

WR(X,Y)Z + a[fR(X,2)Y +{ R(FX,Z)F(Y) =} R(X,Y)Z —{ R(FX,Y)F(Z)]
+BUR(FX, Z)Y +{ R(X, Z)F(Y) = R(FX,Y)Z —{ R(X,Y)F(Z)] =
=K(X,Y)Z +o["K(X,Z)+" K(FX,Z)F(Y)-" K(X,Y)Z =" K(FX,Y)F(Z)]
+8['K(FX,2)Y +" K(X,Z)F(Y)-" K(FX,Y)Z -" K(X,Y)F(Z)].
Since K(X,Y)Z = —K(Y,X)Z we have "K(X,Y) = —'K(X,Y) and hence
(3.11) can be written in the following way
WRX,)Y)Z +a[fR(X,2)Y + R(FX,Z)F(Y) =] R(X,Y)Z —{ R(FX,Y)F(Z)
+BLR(FX, Z)Y +{ R(X, Z)F(Y) = R(FX,Y)Z —{ R(X,Y)F(Z)]
=-KY,X)Z-o[K(X,Z)Y +' K(FX,Z)F(Y)-'K(X,Y)Z
—'K(FX,Y)F(Z) - B[K(FX,2)Y +' K(X, Z)F(Y) ' K(FX,Y)Z
~-'"K(X,Y)F(Z)].
This concludes the proof of theorem 3.3.
From the previous theorem we immediately obtain the following.
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COROLLARY 3.2. Let O™ be a locally decomposable Riemannian space, with

a field of 1-forms A, which is covariantly constant with respect to the Riemann-
Chritoffel connection °V. Then we have

1R(X,)Y)Z = o[yR(X,Y)Z +| R(FX,Y)F(Z) | R(X,Z2)Y —{ R(FX,Z)F(Y)]

+BAR(FX,Y)Z +{ R(X,Y)F(Z) —{ R(FX, 2)Y - R(X, Z)F(Y)]

if and only if a space IM™ is of separately constant curvature.

THEOREM 3.4. Let IM™ be a locally decomposable Riemannian space, with
a field of 1-forms A, which is covariantly constant with respect to the Riemann-
Christoffel connection °V and with a field of curvature tensors 4R(X,Y)Z which
is equal to zero. Then the space M™ is flat.

Proof. From Theorem 3.3 it follows directly that if 4R(X,Y)Z = 0, then a
space IN" is a space of separately constant curvature. To prove that a space is also
a flat space, we define a linear map h:X(IM™) — X(9M™) by the following relation

WZ) =4 R(X,Y)Z - K(X,Y)Z~
— [A(X)A(Z) + AF(X)AF(Z)]Y — [A(X)AF(Z) + AF(X)A(Z)|F(Y)
+ [AX)A(Y) + AF(X)AF(Y))Z + [A(X)AF(Y) + AF(X) A(Y)|F(Z)

Since °V is a Riemann-Christoffel connection, we have
"K(X,Y)=0

and therefore, determining the trace of the previously defined linear map, we can
prove as before that

JRX,Y)Z 4+ ol'R(X,Y)Z +' R(FX,Y)F(Z) - R(X, Z)Y —
"R(FX,Z)FY)] + B[I'R(FX,Y)Z + R(X,Y)F(Z) - R(FX, Z)Y —
—i{ R(X,Z)F(Y)] = K(X,Y)Z

and from here the conclusion of Theorem 3.4 follows directly.

Note that for locally decomposable Riemannian spaces and for complex ana-
lytic spaces the theorems related to the curvature tensor 4R(X,Y)Z are valid only
under the assumptions that the field of 1-forms A is covariantly constant. Besides
that assumptions for a field of 1-forms A, which are related to the curvature tensor
sR(X,Y)Z, are different for locally decomposable Riemannian space and complex
analytic space.
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