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ON CHARACTERIZATIONS OF INNER-PRODUCT SPACES

O. P. Kapoor and Jagadish Prasad

Abstract. The generalized inner-product (z,y) in a normed linear space X is the right
Gateaux derivative of the functional ||z||2/2 at z in the direction of y. The orthogonality relation
for the generalized inner-product is ¢ L y < (z,y) = 0. Tapia has proved that X must be an
inner-product space if the generalized inner-product is either symmetric or linear in y, and Detlef
Laugwitz showed that if dimension X > 3 and the orthogonality for generalized inner-product is
symmetric, then X is an inner-product space. In this note we discuss this orthogonality relation
and provide alternative proofs of the results of Tapia and Laugwitz.

Let X be a real normed space and let g(x) = ||z|| be the norm functional.
Gy (z,y)(d_(z,y)) is the right (left) Gateaux derivative of ¢ at z in the direction of
y. The right Gateaux derivative of the functional z — ¢?(z)/2 at z in the direction
of y is called the generalized inner-product of z with y and is denoted by (z,y). We
will say x is G-orthogonal to y (z Lg y) if (xz,y) = 0. Since (z,y) = ||z|| ¢+ (z, ),
x Llgy < either x =0 or ¢4 (z,y) =0.

The following lemma collects some of the well-known properties of the
Gateaux derivatives of the norm.

LEMMA 1. Let z # 0, y,2z € X and a and b > 0 be numbers. Then
i) dr(my +2) < dr(z,y) + 4+ (=, 2).
(i)  d+(x,by) = bdy(z,y).
(111) Cj+(a$,y) = q’+($ay)) fOT a> 07
=—4_(x,y), for a < 0.

(IV) _(i+(-'L', _y) = q’*(xay) S q'+(a:,y)
v)  qu(=,-) is a linear functional if and only if

(j+(:l?, ) = (]’7(1’, )
(i) ld+(z,9)| < [lyll-
(vil)  ¢4(z,az + by) = al|z|| + bdy (z,y).

Proof. See James [3, page 272].
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Let us recall the notion of orthogonality in a normed linear space suggested
by Birkhoff [1] and discussed by James [3]. We say z is J-orthogonal to y (z L y)
if ||z + kz|| > ||z|| for all real k. Some of the useful facts about J-orthogonality are
given in the following:

LEMMA 2. (i) z Ly y = ax Ly by for all a and b.

(ii) For 0 # x and y € X, there exist numbers a and b such that © Lj ax +y
andbr+y Lyx.

(iii) The number a (respectively b) in (ii) is unique if and only if the space X
is smooth (respectively strictly convex).

(iv) x Ly y if and only if §+(z,y) > 0 and ¢4 (z,—y) > 0.

Proof. See James [3].

THEOREM 1. If z and y are linearly independent elements of X, then there
erists a unique number b such that x 1 g bx + y.

Proof. Take b = —d (x,y)/||z||. Then ¢y (z,bz +y) = bl|z|| + Q4 (z,y) = 0.
Thus x Lg bx + y. The uniqueness of b also follows.

For G-orthogonality there may be no number b such that bz +y Lg x, as the
following example shows.

Ezample 1. Consider R? with the norm ||(z1, z2)|| = |z1|+|z2|. Let z = (1,0)
and y = (0,1). We have

(s + &, DI = lI(s, DI /2
(Is+tl —1s])/t =1, for s> 0;

Gs(sa +y,0) = lim
= lim
t—)0+
= -1, for s <0.

Thus ¢ (sz + y,z) # 0 for all s.

THEOREM 2. (i) X is smooth if and only if z,y € X andx Lgy =2 Lg y.
(il) X s strictly convex if and only if ax +y Lg z and fr+y Lg xz = a = B.

Proof. If X is smooth, then z L ; y if and only if the Gateaux derivative of
the norm at x in the direction of y is zero. The orthogonalities are the same.

If X is not smoth, then there exist 0 # z and y such that z 1L; y and
z Lyz+y. Thenz Lg y and 2 Lg = +y. But that means ¢, (z,y) = 0 and
d(z,xz +y) =0 = ||z|| + ¢+ (z,y), which is false.

(ii) If X is strictly convex and ez +y Lg =, Bx +y Lg z, then ax +y L =z,
Bx +y L; x and therefore a = . If X is not strictly convex, then choose z and y
such that ||z]| = |lyl|=|lsz+ (1 —t)y||=1for 0 <t <1. For0<s <1

dr(s(z—wy) +y,2—y) (I(s + 1) (z =) +yll = [ls(z —y) +yl)/t = 0.

= lim
t—>0+
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Thus sz +y Lg x for 0 < s < 1 where x = z — y. That completes the proof
of the theorem.

The following result is Theorem 3.5 of James [3]. In view of the results above,
we are able to give a shorter proof of it.

THEOREM 3. Iff in a normed linear space X, the G-orthogonality is symmetric
(x Lg y = y Lg x), then the J-orthogonality is also symmetric and X is both
strictly convex and smoth.

Proof. Suppose x and y are linear idependent elements of X such that az +
y Llg ¢ and Bz +y Lg z. Then the symmetry of G-orthogonality a = 8 =
—¢+(z,y)/||z||- Therefore X is strictly convex.

Suppose X is not smooth. Then there exist z,y € X such that z L; y but
not z Lg y. Chose b # 0 such that y Lg by + . Then by + = Lg y. Since G-
orthogonality implies J-orthogonality therefore by + 21 L ; y which contradicts the
strict convexity of the space. Hence X is smooth and both of the orthogonalities
are the same. That gives the result.

COROLLARY 1. (Laugwitz [4, Theorem 4)). Let X be a normed linear space of
dimension > 3. Then X is an inner-product space if and only if (z,y) = 0 implies

(y,z) = 0.
Proof. If X is an inner product space, then the generalized inner-product is
the inner-product and therefore (z,y) =0 = (y,z) = 0.

If (z,y) = 0= (y,z) = 0, then by Theorem 3, J-orthogonality is symmetric.
Since the dimension is greater than two, X must be the inner-product space (Day
[2, Theorem 6.4]).

Tapia [6] proved that X must be an inner-product space if the generalized
inner-product is either linear or symmetric. Laugwitz [4] gave a geometric proof of
the same result. In the following we provide another simple proof.

THEOREM 4. For a normed linear space X the following are equivalent:
(i) X is an inner product space

(i) lzll = llyll = limp— oo (lInz + yll — [lz +nyll) =0

(i) (z,y) =(y,z) forallz andy € X

(iv) (=z,y) is linear in x for each y € X.

Proof. (i) = (ii) is straightforward.
(ii) = (iii) Let ||z|| = ||ly||- Then

(2,9) = llall ¢4(z,v) = llel| lim (l}nz + y]| ~ Inc])
n— o0

= lyll lim (llnz + ]| ~ llnyl)

n—0o0
= lyll tim (o + 1| ~ [lz +nyl| + [}z +ny]] ~ Iy
— Nyl tim (i + yll + gl

n—o0
= lylld(z,9) = (v, ).
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If ||| # |lyll, then || ||z]ly]| = || ||ly||lz|| and the argument above yields
(@,y) = llzllg+ (=, y) = ¢+ (@, lzlly) — ¢+ (llyllz, [|z]ly)
= ¢y (lzlly, lyllz) + llylld+ (v, ) = (y, ).

(iii) = (iv). Since G-orthogonality is symmetric, by Theorem 3, X is smooth
and (z,y) = ||z]|¢+(z,y) is linear in y. From this using (iii) we see that

a(z1,y) + b(22,y) = (y,a21) + (y, br2) = (y, az1 + bx2) = (az1 + b2, y).
Therefore (x,y) is linear in z for each y € X.

(iv) = (i) Let [jz]| = [lyl| = 1.

Iz +ylld+(z +y,9) = llz + ylld+(z +y,2 +y - 2)
= |lz + ylI* + llo + yllds (= +y, —2)

] ) (1)
= llz +yl* + llelld+ (2, —2) + llylld+ (y, —2)
= llz +yll* + ll2ll* + llylld+ (v, —=)
lz + yllds (= + y,9) = llzlld+ (=, y) — llylld+(y,y) @
= llyll* + llzllg+ (=, )
From (1) and (2) we have
lz +yll* = lyll* + ll2]1* + lzlld+ (2, y) = lylld+ (y, —2) 3)
=2+ |lzlld+(=,y) — llylld+(y, —2)-
Replacing y by —y in (3) gives
lz —ylI* = 2 + ||zlld+ (2, —y) — llylld+ (~y, —2) )
=2+ [|zllds (=, —y) + llylld+ (v, —).
Adding (3) and (4) yields
lz +ylI” +llz = ylI* = 4+ (44 (2, y) + ¢+ (x, ~y) > 4.
Thus, if in the space X (iv) holds, then
lzll = llyll = 1 = llz +yl* + llz —yII” > 4, (S)

which is a characterization of inner product spaces due to Scheonberg [5]. That
completes the proof of the theorem.

Remark. The implication (ii) of Theorem 4 is due to James [3, Theorem 6.3].
Our proof is different.
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