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ON NONLINEAR EQUATIONS OF EVOLUTION
IN BANACH SPACES

Stanislav Szufla

Abstract. The paper contains an existence theorem and a Kneser-type theorem for the
problem z' = A(t)z + f(t,z), (0) = zo, where {A(t)}1c[o,q] is a family of linear operator gener-
ating an evolution operator U(t,s), and f is a continuous function satisfying a Kamke condition
with respect to the measure of noncompactness.

In this paper we shall give an existence theorem for mild solutions of the
Cauchy problem
g’ = A(t)z + f(t,2), 2(0) = 20, (1)

where {A(t)};c[0,q is a family of closed linear operators in a Banach space E and
f is a continuous function with values in E. Moreover, using the Browder-Gupta
connectedness principle [4], we shall show that the set of these solutions is a compact
Rys, i.e. it is homeomorphic to the intersection of decreasing sequence of compact
absolute retracts. Let us remark that our existence proof differs strongly from those
in known papers concerning (1) (see e.g. [2], [3], [8-10], [14]).

Let Q@ = {(t,5):0 < s <t <d}, B={z € E:||z — zo|| < b}, and let L(E)
denote the space of all bounded linear operators in E. We assume that {A(¢)}
generates an evolution operator U: Q) — L(E) with the following properties

(U1) the function (t,s) = U(t, s) is continuous on Q;

(U2) U(t,s)U(s,r) =U(t,r) and U(t,t) = I for all (¢, s), (s,7) € Q;

(U3) there exists a continuous function p: [0,d] — R, such that

t
U, s)]] < exp/p(r)dr for all (t,s) € Q.

Let us recall some definitions:
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A function u: [0, a] — E is called a mild solution of (1) if u is continuous and
satisfies

t
u(t) = U(t, 0)z0 + / U(t,5)f(s, u(s))ds @)
0

for all t € [0,a] (cf. [2]).
A function h:(0,d] x Ry — Ry is called a Kamke function if (i) h(¢,-) is
continuous for almost every ¢ € [0,d] and h(-,r) is measurable for every r € R, ;

(ii) for every bounded subset Z of (0,d] x Ry there exists a function mz
defined on (0, d] such that h(t,7) < mz(t) for (¢,r) € Z and mz is integrable on
[¢,d] for every small ¢ > 0;

(iii) for each ¢, 0 < ¢ < d, the identically zero function is the only absolutely
continuous function on [0, ¢] which satisfies u'(t) = h(t,u(t)) almost everywhere on
[0, c] and such that Dyu(0) = u(0) = 0 (cf. [7]).

For any bounded subset X of E the Hausdorff measure of noncompactness of
X — denoted B(X) — is defined to be the infimum of € > 0 such that X has a finite
e-net in E. For properties of 3 see [15].

Moreover, denote by u the Lebesgue measure in R.

Our fundamental result is given by the following

THEOREM 1. Assume that 1° f is a bounded continuous function from
[0,d] x B into E; 2° q is a function from (0,d] x Ry into Ry such that (t,r) —
p(t)r + q((t,r) is a Kamke function; 3° for any subset X of B and for any e > 0
there exists a closed subset J. of [0,d] such that pu([0,d]\J;) < e and

B(f(T x X)) < supq(t, B(X))
teT

for each closed subset T of J..

Then there exists at least one mild solution of (1) defined on a subinterval J

of [0,d].
REMARK. It can be easily verified that, in the case when ¢ is nondecreasing in
r, the condition 3° holds whenever f = f; + fa, where f; is a completely continuous
function and || f2 (¢, 2)— f2(t,9)|| < q(t,||z—y]|) for all z, y € B and for a.e. t € [0, d].
t
Proof. Let us put k(t,s) = exp [ p(r)dr, K = sup{k(t,s): (t,s) € Q} and

M =sup{||f(t,z)||:0 <t <d, € B}. We choose a number a such that 0 < a < d
and

t
|U(t,0)zo — zol| + M/k(t,s)ds <b forall ¢t €[0,a. (3)
0

Let J = [0, a]. Denote by C' the Banach space of continuous function J — E with
the usual supremum norm || - ||, and let B C C be the subset of those function
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with values in B. We introduce a mapping F' defined by

t
F(x)(t) =U(t,0)xo +/U(t, $)f(s,xz(s))ds (x e B, tel).
0
In view of (U1’) and (3), from the inequalities
|1F(z)(t) — F(z)(7)]| < [|[U(T,0)z0 — U(r,0)z0l| + M / IU(t,s) = U(r, 5)||ds+
0
+KM(t—T)

t
IIF(w)(t)—fcollSIIU(t,O)xo—xo||+M/k(t,8)ds (€ B, 0<7<t<a)
0

it follows that F(B) is an equicontinuous subset of B. On the other hand, if ,,
x € B and lim ||z, — z||. = 0, then by 1°, (U1') and the Lebesgue dominated
convergence theorem we get lim,_, o F(z,)(t) = F(z)(t) for t € J. From this we

deduce that F'is a continuous mapping B — B.

For any positive integer n we define a function u,, by

To if0<t<an,
un(t) = t—an .
Ut —an,0)z0 + [ Ut —an,s)f(s,un(s))ds ifa, <t<a
0

where a,, = a/n. Then u, € B and

un(t) = F(un)(ra(t)), (4)
where
0 ifo<t<a,
rn(t) = { ) .
t—a, ifa,<t<a

Since the set F(B) is equicontinuous, we have
Jim[un — F(an)] = 0. o)
Put V. = {up:n = 1,2,...} and W = F(V). For simplicity we introduce the

following notation:

V{t) = {a(t):z € V1, /U(t, $)£ (s, V(s))ds = {/U(t, $)f(5,2(s))ds: 7 € v} .

It is clear from (5) that the sets V, W are equicontinuous and

Be(V) = B.(W) and B(V(t)) = B(W(t)) for all t € J. (6)
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Hence, by Ambrosetti’s lemma [1; Th. 2.3], the function ¢t — v(t) = B(V(t)) is
continuous on J.

Let us fix 7, t, 0 < 7 < t < a. First we shall show that

(/Uts (s, V(s ) /kts (s,v(s))ds. (7)

By the Scorza-Dragoni theorem, for a given € > 0 there exists a closed subset D, of
J such that p(J\D,) < € and the function ¢ is uniformly continuous on D, x [0, b]
Choose § > 0 in such a way that

lg(s1,71) —q(s2,72)| <€ and |k(t,s1) — k(t,s2)| <e

for s1, s € De, 11, 79 € [0, ] satisfying |s; — s2| < ¢ and |r; — 72| < d, and choose
n such that 0 < 7 < § and |v(s1) —v(s2)| < d for s1, 52 € J with |s; — s3] < 7. We
divide the interval [r,t] into n parts

T=tg<t1 <<ty =t

in such a way that t; —t;_1 < nfori=1,...,n. Let D; = [t;_1,t;] N D, and
Vi ={x(s):z € V,s € D;}. In virtue of Ambrosetti’s lemma [1; Th. 2.2] we have

B(Vi) = sup{B(V(s)):s € Di} = v(si), (8)

where s; € D;. Moreover, by 3°, we may choose a closed subset J. of J such that
u(J\J:) < € and
B(f(T x V;)) < supgq(s, B(V3)) 9)

seT
for each closed T of J. and i =1,... ,n. Let

P=[ntlnD.NJ.,, S=[rt]\P and T; =D; N J..
Then

/U(t,s)f(s,V(s))ds C /U(t,s)f(s,V(s))ds+/U(t,s)f(s,V(s))ds,
P s

and therefore

B (/ U(t, s)f(s,V(s))ds)

<p (/ U(t,S)f(S,V(S))dS) +8 (/ U(t,S)f(s,V(S))dS) - (10)
P S
Further,

/U(ts)f(sV( dsCZ/Uts f(s,V(s) dscz,u ;)convy;,

P =1 i=1
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where Y; = {U(t,s)f(s,y):s € T;, y € V;}. Since the set {U(t,s):s € T;} is
compact, it is clear that

AYi) < Sup U (&, s)I1B(f(Ti x V7).

Thus, by (U3), (8) and (9), there exist a;, ; € T; such that

B(Y:) < k(t, ai)q(7i, v(si)).

Consequently,

g ( / U(t,S)f(s,V(S))ds) < Y HTk(t g v (1)

P

On the other hand, by 2°, there exists an integrable function m:[7,t] = R4 (de-
pendent only on 7, t) such that

q(s,r) <m(s) for r<s<tand 0<r<b.
Therefore
W(TIk(t 03)a(ri,o(s9) < [ Kt s)als, o(o)ds + [ m(s)ds + Ke(T),
T; T;
and hence, owing to (11),

t

t
8 (/ U(t,s)f(s,V(s))ds) < /k(t,s)q(s,v(s))ds-l—e/m(s)ds-}-Ke(t—T) (12)

P T

Furthermore, as [|U(t,s)f(s, 2(s))|| < KM for all z € B and s € .J, we have
B (/ U(t,S)f(S,V(S))dS) < KMp(S). (13)
5

From (10), (12) and (13) it follows that

g (/ Utt, S)f(s,V(S))ds)

T

t t
< /k(t,s)q(s,v(s))ds+a/m(s)ds+Ka(t—T)+KMu(S).

Since u(S) < 2e and the above inequality holds for every £ > 0, we obtain

(7).



62 Stanislav Szufla

Consider now the function w defined by

w(s) = sup{[|f(s,2) = f(5,9)|l: 2,y € B, ||z — zol| < ¢(s), [ly —xoll < c(s)},

where ¢(s) = min(b, supg<,<, [|[U(r,0)zo — zo|| + KM s). The function w is a modi-
fication of the function introduced by Olech in [11]. We shall prove that w is lower
equicontinuous on (0, a) and continuous at 0. For given s € (0,a) and € > 0 there
are z, y € B such that

lle = zoll < ¢(s), lly—xoll < c(s) and w(s) —e/2 < ||f(s,2) — f(s,9)ll.

As f and c are continuous, there exists § < 0 such that

1f(r,u) = f(s,2)[| <e/4 and ||f(r,2) - f(s,9)]| < e/4

forall r € J, u,z € B with [r —s| <9, |lu—z| < and ||z — y|| < J, and there
exists 7 > 0 such that |c(r) —c(s)| < d for all » € J with |r —s| < 7. Hence, putting

e(r e(r)

T (s o)
we have [|u, — zo|| < ¢(r), [|2 — zol| < ¢(r), |lur — 2| < 6, ||z — yl| < &

w(s) —e/2 < ||f(s,2) = F(s; 9|l < I f (s, 2) — f(r, ur)ll
+ I (ryur) = F(r,ze)l + [1f(ry20) = fs,9)[] S w(r) +€/2,
so that w(s) < w(r) + € for r € J with |r — s| < 5. This proves that w is lower

semicontinuous at s. The continuity of w at 0 is an immediate consequence of the
fact that f and ¢ are continuous and w(0) = ¢(0) = 0.

From (4) and the definitions of ¢ and w it follows that

;(.’L’—Z’o)—f‘.’ﬂo and 2z, = (y — z0) + =0,

|un(s) — zo|| < c(s) for s€ J and n=1,2,...,

and . . ,
/ Ut 5) 1 (5, um(s))ds — / U(t, 5)f (s, un(s))ds|| < K / w(s)ds
for m,n =1,2,.... Hence

¢
(/U (t,8)f(s,V(s))ds ) <K /w(s)ds. (14)

Since for any z € B
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we have

t
BEV)(@) < UG DIBEV)(T)) + 8 (/ U(t,S)f(s,V(S))d8> :

Consequently, by (6) and (U3),

v(t) < exp (/p(s)ds) v(T) + B (/ U(t,s)f(s,V(s))ds) .

v(t) —ov(r) < (exp/p(s)ds - exp/Tp(s)ds) exp (
0 0
min (K/w(s)ds,exp <O/p(s)ds> T/exp (—0/

T

In view of (7) and (14), this implies that

(15)

/p(s)ds) v(T)+
0
14

) (s,v(s))ds)

t T t
v(t)—v(r) <N (exp/p(s)ds - exp/p(s)ds) +K/w(s)ds for 0<7T<t<a,

0 0

N = rglea}(v(r) exp (—/p(s)ds) ,

0

p(r)d

for0<7<t<a.
In particular, from (15) it follows that

T

where

which proves that the function v is absolutely continuous on J. This fact, plus (15)
implies the inequality

V(1) < p(7)v(r) + min(Kw(r), q(r,v(r))) for almost every 7 € J. (16)
Obviously v(0) = (W (0)) = B({ze}) = 0.

By 2° and Lemma 1 from [11], the function z = 0 is the only absolutely
continuous function satisfying almost everywhere the equation

2 = p(t)z + min(Kw(t), q(t,2))

and the initial condition z(0) = 0. Hence, applying the theorem on differential
inequalities (cf. [5], [12]), from (16) we deduce that v(t) = 0 for all t € J. Therefore,
by (5) and Ambrosetti’s lemma [1; Th. 2.3] we obtain

Be(V) = Be(W) = supu(t) =0,
teJ
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i.e. V is relatively compact in C'. Consequently, we can find a subsequence (up;)

of (u,) which converges in C to a limit u. In view of (5), this implies that ||u —

F(u)||e = limj_ oo ||n; — F(un,;)|lc = 0. Thus u = F(u), i.e. u is a solution of (2).
The next result is a Kneser type theorem for (1).

THEOREM 2.  Suppose that the assumptions 1° — 3° are fulfilled and in
addition the function q is nondecreasing in r. Then the set of all mild solutions of
(1) on J is a compact Ry.

Proof. Let us put
(2) = { z, forx € B
PR w0+ b(@ — 20)/ ||z — 20|, for = € E\B
and
g(t, ) = f(t,p(x)) for (t,2) € JxE.
Then g is a continuous function from J x E into E and ||g(¢,z)|| < M for (¢,z) €
J x E. Moreover, as
p(X) C zo + Up<a<1AX,

we have B(p(X)) < B(X) for any bounded subset X of E. Since the function
r — q(t,r) is nondecreasing, from this we deduce that the function g satisfies 3°.

Consider the mapping G defined by
t
G(z)(t) =U(t,0)zo + /U(t,s)g(s,x(s))ds (zeC, teld).
0

Similarly as for F' in the proof of Theorem 1, it can be shown that G is a continuous
mapping C — B and the image G(C) is equicontinuous. Further, for any positive
integer n, we define a mapping G,, by
Gn(z)(t) = G(z)(rn(t)) (x€C, teld),
where
0 ifo<t<a/n
rat) = { t—a/n ifa/n<t<a.
It can be easily verified (see e.g. [19]) that
(i) Gy, is continuous:
(if) limp— 00 Gn(z) = G(z) uniformly in z € C;
(iii) I — G,, in a homeomorphism C — C.
Now we shall show that I — GG is a proper mapping, that is
(I —G)"'(Y) is compact for any compact subset Y of C. (17)

Let Y be a given compact subset of C, and let (u,) be an infinite sequence in
(I - G)~1(Y). Since up, — G(u,) € Y for n = 1,2,..., we can find a subsequence
(un;) of (up) and y € Y such that

lim ||unJ - G(unj) - y”c =0.

j—oo
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Putting V = {uy,:j = 1,2,...} and repeating the argument (with slight modifica-
tions) from the proof of Theorem 1, we infer that the set V is relatively compact
in C. This proves (17).

Applying now Theorem 7 from [4], we conclude that the set (I — G)~1(0) is

compact Rs. As ||G(z)(t)|| < bfor all z € C and t € J, (I — G)~1(0) is equal to
the set of all mild solutions of (1) on J.
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