PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 38(52), pp. 7--11 (1985) |
|
A TREE AXIOMDjuro KurepaMatematicki fakultet, Beograd, YugoslaviaAbstract: In connection with my previous results from 1935, and results of other mathematicians (Tarski, Erdös, Hanf, Keisler, Baumgartger$\ldots $) the following Tree (or Dendrity) Axiom is formulated: For any regular uncountable ordinal $n$ there exists a tree An of height (rank) $n$ such that $|X|< |n|$ for every level $X$ as well as for every subchain $X$ of An. In other words, the following assertion Dn holds: There exists a tree $T$ such that for every regular ordinal $n>\omega_0$ the conditions (2:0), (2:1), (2:2) hold. Full text of the article:
Electronic fulltext finalized on: 2 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|