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JUSTIFCATION OF THE AVERAGING METHOD FOR
FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH MAXIMUMS

D. D. Bainov, S. D. Milusheva

Abstract. The averaging method is justified for a class of functional-differential equations
with maximums.

In recent years the theory of functional-differential equations with maximums
have been developed [1], [2], in connection with their applications to various auto-
matic control problems.

The development of effective approximation methods for such equations is of
great interest since their solution in closed form is impossible even in the linear
case.

The present paper is devoted to the justification of the averaging method for
an initial value problem associated to a vector functional-differential equation of
neutral type with maximums. In applications the maximum arises when the control
law corresponds to the maximal deviation of the regulated quantity. If the control
law takes into account also the maximal velocity of deviation of this quantity then
the process is governed by a neutral type equation with maximums.

Consider the system of functional-differential equations
z(t) = eX(t,2(t), max{z(s) : s € [t — h,t]},
max{i(s) : s € [t — h,t]}, t>0, (1)
z(t) = p(t),£(t) = ¢(t), —h<t<0,
where z € R™, h is a positive constant
max{z(s) : s € [t — h,t]} =
= (max{z1(s) : s € [t — h,t]},...,max{z,(s) : s € [t — h,t]}),
max{z(s) : s € [t — h,t]} =
= (max{#1(s) : s € [t — h,t]},...,max{z,(s) : s € [t — h,1]}),
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(t) is the initial function and € > 0 is a small parameter.

Suppose that the limit

exists. Then the averaged first approximation system is

£(t) = eX(£(t)), €(0) = 2(0). 3)
Note that if z = (z1,...,2,) then |lz]| = [, 27] /2 1y definition.

The following theorem gives conditions for proximity between the solutions
z(t) and ¢(t) of the initial value problems (1) and (3).

THEOREM. Let the following conditions be fulfilled:

1. The function X (t,x,y, z) is continuous in the domain Q(t,x,y, z) = Q(t) X
Qz) x Qy) x Q(z), where Q(t) = [0,00), Q(z) = Ny) and (2) are domains in
R"™. The function ¢(t) is continuous and takes values in Q(z) for t € [—h,0],
o(t) € Qz).

2. The function X (t,z,y,2) satisfies the inequalities

IX(t 2y, 2)| < M, [| X(E,2,y,2) = X (T, 2, ¢/, 2')|[| < M|z — 2" || +[ly — ¢/l +
[|z = 2'||) in the domain Q(t,x,y,z), where M and X are positive constants.

3. The limit (2) exists for each x € Q(x). The functon X (x) is continuous in

4. For each e € (0,&0], € =const > 0 the initial value problem (1) has a unique
continuous solution x(t) on the interval 0 <t < Le~!.

5. For each £ € (0,g¢] the intial value problem (3) has a unique contin-
uous solution &£(t), such that £(t) belongs to the domain Q(x) together with its
p-neighborhood for 0 <t < Le~! (p =const > 0).

Then for each n > 0 and L > 0 there exists ¢g = e9(n, L) > 0 such that
|z(t) — £(#)]| < m for 0 < e <egp and O <t < Le~L.

Proof. The solutions of (1) and (3) can be represented in the form

+6/tX(0,a:(0),max{;c(s) 15 € [0 —h,0]}, max{z(s) : s € [0 — h,0]})dl, (4)
0

t
) + E/ &(theta)) (5)
0
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Subtracting (5) from (4) one obtains

t

/[X(H),a:(ﬂ),max{:c(s) cs€[0—h 6],

0

llz(t) —E@)I <e

max{(s) : s € [0 — h, 0]}) — X (£(6))]d0| <
(6)

< s/ [| X (0, max{z(s) : s € [ — h,6]}+

EIl +.[2

[1x®).€0).60).0 - (@0

The following estimations for 0 < ¢ < Le~! hold true in view of the conditions of
the theorem:

n=| /[X(O,m(ﬁ),max{w(s) .5 €[0—h,0]},
0

max{i(s) : s € [§ — h,0]}) — X(8,£(6),£(6), 0)]d9“ <

t

< EA/ [lz(6) — €@l + || max{z(s) : s € [0 — A, 6]} — £(O)I+

0

t
+|| max{i(s) : s € [0 — h,0]}[]d6 < 5)\/ ll2(6) — £(8)||do+ (7)

¢
+5)\/ || max{z(s) : s € [0 — h, 0]} —z(0)|| + ||=(8) — 6(0)||]d0+
0

t
+5A/ [ max{i(s) : s € [0 — h, 0]} ]|d6 < m/ 12(0) — £(0)||do+
0 0

+eA[(24 + 2ehM + max(B,eM))h + (h + 1)/nM L],

L= H/ (0,£(0 X dGH (8)
< 2)\ML2/m+F(5 m) = a(e,m),
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where A= sup |[lo(t)l, B= sup [lo(t)ll;
t€[—h,0] tE[—h,0]

m—1

F(s,m)lezé(““ ,g,)+mzlq>( ) ;
=0

1=

kL
+0<§cn<ax ®o(e,&k), & =¢ (—) , k,meNT,

gEm
®(t,8) = H%/[x(eagagao) -X
0

Note that for each & € Q(z) the function ®(¢,£) tends to zero as t — oo

Hence choosing m sufficiently large and e sufficiently small the value of a(e, m) can
be made arbitrary small [3]. Thus it follows from (6)—(8)

, ®ole, ) = 3111<>LT<I’(T/6 , ).

t
llz(t) — @) < 6(e,m) + QEA/ ll(6) — £(6)l46, 9)
0

whevr

d(e,m) = e\[2A + 2ehM + max(B,eM))h + (h + 1)v/nM L] + a(e,m)
Applying the Gronwall-Bellman lemma to (9) one gets

lz(t) — £@)]] < 6(e,m) exp{2AL} for 0 <t < le™*
which completes the proof of the theorem
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