PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 38 (52), 1985, pp. 193-201

A PROPERTY BETWEEN COMPACT AND STRONGLY
COUNTABLY COMPACT

DusSan Milovanéevié

Abstract. In this paper we consider a class of spaces called hypercountably compact
(hce)spaces. The class of countably compact and the class of strongly countably compact (scc)
spaces contain the class of hypercountably compact spaces. In example 2.1, we give a strongly
countably compact space which is not hypercountably compact. In the class of spaces satisfying
the first axiom of countability the notions hce and scc coincide (Theorem 2.3). Some equivalent
conditions for a space to be hcc are given in Theorem 2.2. The hcc property is not a continuous
invariant (Example 2.4). In section 3 we consider compact spaces which contain noncompact hce
(scc) spaces as subspaces. In section 4 we also consider strongly sequentially compact (ssc) spaces.

1. Introduction

The closure of a subset A of a space X is denoted by cl x (4). In this paper
we assume that all spaces are Hausdorff (Ts-spaces). For notations and definitions
not given here see [1], [3], [5].

Definition 1.1. [4]. A space X is strongly countably compact (scc) if every
countable subset in X has a compact closure in X.

Definition 1.2. A space X is hypercountably compact (hce) if the union of
every countable family of compact sets in X has a compact closure in X.

A topological space X is called countably compact if every countable open
cover of X has a finite subcover.

The following diagram illustrates the implications among the compactness
properties that we consider:

hypercountably _, strongly countably _, countably

compactness —
P compactness compactness compactness

Counterexamples show that the implications in the diagram are not reversible.
That countable compactness does not imply strongly countable compactness, see
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[3]. In example 2.1 the space is strongly countably compact but it is not hypercount-
ably compact. Let [0,w;) be the space of ordinals less than the first uncountable
ordinal with the order topology. The space [0,w;) is hypercountably compact but
is not compact: Let K = {K, : n € N} be a countable family of compact sets in
[0,w:1). Let a, = sup(K,), n € N. Since the least upper bound of any countable
subset of [0, w ) is countable and will be strictly less than wy, there exists a € [0,w1),
a = sup({a1 € [0,w1) : n € N}) and is strictly less than wy. The set K = [0,a] is
compact in [0,w1) and K,, C K for all n € N. Hence, by definition 1.2, the space
[0,w1) is hypercountably compact. The space [0,w1) fails to be compact since the
collection {[0,z) : © > w1} is an open cover with no finite subcover.

Let X be a topological T5-space. Then:

(1) exp(X) denotes the space of all non-empty closed subsets of X with finite
topology. The finite topology on exp(X) is the one generated by open collection on
the form (U1, Us,...,U,) = {F € exp(X) : F C J;_, U; and FNU; #0, for i =
1,2,...,n} where Uy, Us,,...,U, are open subsets of X. The finite topology on
exp(X) is also known as the exponential topology or the Vietoris topology. The
space exp(X) is known as the hyperspace of X (see [9], [10], [11]).

(2) K(X) denote the set of all non-empty compact subsets of X as a subspace
of exp(X).

(3) KB (X) = K(K(X)), LM (X) =KK™ (X)),n=2,3,...
(4) Fo(X) ={F C X : F has at most n points} C K(X).
(5) F(X) = {F C X : F is finite} C K(X).

Definition 1.3. [1] A quasi-ordered and directed set (5, <) is No-directed if
for every countable subset Sy = {s1,2,...,8n,...} C S there exists an s € S such
that s, <s,forallm € N.

2. Relationship between hcc and scc spaces
and some properties of hcc spaces

It is clear that every hcc space is a scc space. The following example shows
that not every strongly countably compact space is hypercountably compact.

Ezample 2.1. (A strongly countably compact space which is not hypercount-
ably compact). Let [0,w;] ([0,wo]) be the the space of ordinals less than or equal
to the first uncountable ordinal (first countable ordinal) with the order topology.
Let X7 = [0,w1] X [0,wp]. Since ordinal space [0,a] (a is any ordinal) is compact
and Hausdorff, so is the Tychonoff product X;. Since every compact Hausdorff
space is normal, X; is normal. Let Xy = [0,w:] X [0,wo] — {(w1,n) : n € [0,wp)}
be subspace of X;. Then X, is noncompact and normal in the subspace topology.
Furthermore, X5 is hypercountably compact: Let D = {K,, € K(X3) : n € N} be
a countable family of compact sets in X» and let (w1,wp) & K, for all n € N. The
sequences D' = {K] € K([0,w1)) : n € N} and D" = {K}! € K([0,w;1) : n € N}
are projections of D onto [0,w] and [0,wg). Sets K|, and K] are compact and
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K], C [0,wy), K} C[0,wp) for all n € N. Let a, = sup(K},), n € N. Since the
least upper bound of any countable subset of [0,w;) is countable and is strictly
less than w; there exists a € [0,w;), a = sup({a, € [0,w1) : n € N}) and strictly
les than w;. The set K = [0,a) x [0,wq] is compact in X, and K, C K for al
n € N. If (w1,w2) € K, for infinite number of members K,, € D, then the set
K' =[0,a] x [0,wo] U ([0,w1] X {wo}) is compact in X5 and K,, C K' for alln € N.
Hence X is a hypercountably compact space. Let X3 = Xo U {p}, (p & X2) be the
one-point compactification of X». So we get the followig diagram

(0,00)  vevei (w1,wp)

(0,0) oo (w1,0)
which we will call the space X3. Then:

(1) X3 is compact and a T space.

(2) X3 is not Hausdorff since the point p and (w1,wg) have no disjoint neigh-
borhoods.

(3) The point (w1,wp) is an accumulation (limit) point of X3.

(4) Let X4y = X3 = {(w1,wo)} be a subspace of X3. The set A = {(a,wo) :
0 < a < wp} is a subset of X4. Furthermore, the set A is a closed subset of Xy
homeomorphic to [0,w;). Hence X, is not compact since the space [0,w;) is not
compact.

(5) The space X4 is Hausdorff but it is not regular since the point p and the
set A= {(a,wo) : 0 < a < w;} have no disjoint neighborhoods.

(6) Let A = {ap, € X : n € N} be any countable subset of X, and let
p € A. Then A = {(@n,yn) : Tn € [0,w1),yn € [0,wo);n € N} where {z, €
[0,w1) :m € N} C [0,w1) and {y, € [0,wo] : n € N} C [0,wp]. Let a be an upper
bound for the z,; a < w; since w; has uncountably many predecessors, while a
has only countably many. Thus the set [0, a] x [0,wp] is closed and compact in Xj4.
Furthermore, A C [0,a] X [0,wp). Then cl x,(A4) C [0,a] x [0,wo] and ¢l x, (A) is a
compact subset of X4. Hence Xy is a strongly countably compast space.

(7) The space X4 is not hypercountably compact because there exists a count-
able family F = {([0,w1) x {k}) U{p} : £ = 0,1,2,...} of non-empty compact
subsets of family X4 such that:

cx,(|F]) = cdx, (U{([0,w1) x {k}) U{p} : £ =0,1,...}) = X4. Hence the
space X4 is scc but not hcc.

The following result gives a characterization of hce spaces.

THEOREM 2.2. Let X be a Tx-space. The following are equivalent:

(1) X is hypercounlably compact,
(2) K(X) is Ro-directed by inclusion,
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Proof. Tt is clear that (1) <> (2). Let {K, € K(K(X)) : n € N} be a countable
table family of compact sets in K(X). Then |K,| = U{K € K,} € K(X') for
all n € N. Since X is a hce space then cl x((J{|K,| : n € N}) € K(X) which
implies that exp(cl x (J{|Kn| : n € N})) is a compact subset of K(X) and K, C
exp(cl x (U{|Kn| : n € N})) for all n € N. Hence K(X) is a hce space and (1) « (5).

(4) = (1): Suppose that K£(X) is a scc space and let K{K, € K(X) : n €
N} be any countable family of compact subsets of X. Then cl|caurx)(K) is a
compact subspace of K(X). Since cl cqx(x)(K) is compact we have (see [11])
|l jcair (x)(K)| = U{K € clicakx)(K)} is a compact subset of X and K, C
el | caire (x)(K)| = U{K € cl|cak(x)(K)} for all n € N. Hence X is a hce space.

)
(1) = (4): Since (1) — (5) and (5) — (4) we have (1) — (4).
(5) = (1): Since (5) — (4) and (4) = (1) we have (5) — (1).
(5) <> (6): Can be obtained in similar way.
(5) — (3): Since (5) — (4) and (4) — (3) we have (5) — (3).
= (5):

(3) = (5): Let K(X) be countably compact and let K = {K,, € K(X) :
n € N} be a countable family of K(X) increasing by inclusion. Since K(X) is
countably compact there exists a K € K(X) such that K is an accumulation
point of K. Let F = clx(U{K, € K}) = clx(U{K, € K(X) : n € N}) and
let (U1,U2,...,Uy,) be a basic open set containing F. Then F C |J;%, U, and
FNU; #0forie{1,2,...,m}. Then for each n € N we have that K,, C J{U; :
i € {1,2,...,m}} and for all 4+ € {1,...,m} there exists an n; € N such that
UNK,, #0. Let ng = max({n; : i € {1,2,...,m}}). Then for each n > ng we have
K,NnU; #0,i € {1,2,...,m} and it follows that K, € (U,Us,...,U,). Hence
F is an accumulation point of K. Since K(X) is countably compact, F' € K(X).
Furthermore; for each K € K(X), K # F, we have that K is not an accumulation
point of K: Let K # F. Then there is a point z € K and = ¢ F of there is a point
r€Fandz ¢ K.

Case I: z € K and ¢ € F. Since F C X is compact and X in Hausdorff,
there exists an open set U, containing z such that U, N F = (. Then F & YU,(*
and K € )U,{. Furthermore, for each n € N, we have K,, &€ )U,( and K €> U, <.
Hence K is not an accumulation point of K.

Casell: z € F and x ¢ K. Since X is Hausdorff and K, F' are compact subsets
of X, there exist open neighborhoods U of K and U of = such that U N U, = 0.
Then K € (U) and F ¢ (U) which implies that K,, ¢ (U) for all n €N. Hence K is
not an accumulation point of X = {K, € K(X):n € N}. Since F = cl x (U{K, €

“)U( stands for {F € exp(X) : FNU # 0}.
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K}) = x(U{Kn € K(X) : n € N}) is contained in K£(X) by 2.1, the space X is
hypercountably compact.

Suppose that £ = {K, € K(X) : n € N} is not increasing by inclusion.
Then the family K' = {K], € K(X) : n € N} with K], = |J;_, K; is increasing by
inclusion and, by the foregoing, there exists a compact set F” of X such that F' =
clx(U{K' € K'}). Since for each n € N we have K,, C K/, F = cl x(U{K. € K})
is a compact subset of X. Hence X is hypercountably compact. This completes
the proof.

THEOREM 2.3. Let X be a first countable strongly countably compact T-space.
The X is a hypercountably compact space.

Proof. To prove 2.3, it suffices by 2.2, to show that K(X) is a scc space.
Since X is a first countable T»-space, then K(x) is also a first countable T» space
(see [11]). Let F denote the family of all finite subsets of X. Then F C K(X)
and cl x(x)(F) = K(X) (see [9], [11]). Let K be any countable family of compact
sets in X, K = {K,, € K(X) : n € N}. Since K(X) is a first countable space
and cl x(x)(F) = K(X), then for each K, € K there exists A = {A% . k € N}
such that K = el ey (AM) (K = {{z} : z € K,} is a compact subset of K(X)
homeomorphic to K,) for all n € N. The family A = {A} : (k,n) € N x N} is also
a countable family and |A| = [J{A} : (k,n) € N x N} is also a countable subset
in X. Since X is a strongly countably compact space, then K = clx(|A]) is a
compact subset of X and exp(K) is also a compact subset of X(X). Now we have
K € exp(K) C K(X), and exp(K) is a compact subset od KX(X) which implies that
cl(x)(K) C exp(K). Hence cl(x)(K) is a compact subset of X(X) and K(X) is
an scc space. This completes the proof.

It can be shown that every continuous image of an scc space is an scc space.
The following example shows that the continuous image of a hce need not be an
hce space.

Ezample 2.4. Let X = [0,w1] X [0,wo] — {(w1,2) : € [1,wp)} be the subspace
of the product [0,w1] % [0,wg]. Then, by example 2.1, X is normal and hypercount-
ably compact in the subspace topology. Let Y = X4 where X, is the space in
example 2.1. The mapping f : X — Y is defined by f(z) = z, for all z # (w;,0)
and f(w1,0) = p is continuous surjection. The space X is hce, but Y is not a hee
space.

Remark. A continuous surjection f : X — Y is a compact-covering if when-
ever B is a compact set in Y, there exits a compact set A in X such that (4) = B.
If f: X - Y is a compact-covering mapping and X is a hcc space, then Y is hce.

We now state, without proof, some properties of hcc spaces.
PROPOSITON 2.5. A closed subset A of a hce space X is itself hcc.

PROPOSITION 2.6. Each hcc subset of a first countable To-space X is closed
mn X.
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Ezample 2.7. Let X = [0,w;] and A = [0,w1) C X. The subset A is hcc but
A is not closed in X. The space X = [0,w;] is a Ty-space but is not first countable.

PROPOSITION 2.8. Let (X, -a € A) be a family of non-empty spaces. Then
the product space X = [[{z, : a € A} is hee if and only if X, is hee for each a € A,

3. P-points, weak P-points and some characterizations

Definition 3.1. Let X be a topological Th-space.

(1) A point p € X is said to be a P-point provided that each intersection of
countably many neighbourhoods od p is a neighbourhood of p.

(2) A point p € X is a weak P-point if p ¢ cl x(F) for each countable
F c X - {p}.

It is easy to see that every P-point is a weak P-point. In example 2.1, the
point (w1,wo) is a weak P-point but is not a P-point.

THEOREM 3.2. Let X be a compact T>-space and p € X be a limit point in X.
Then:

(1) The subspace X — {p} is an scc space if and only if the point p is a weak
P-point.

(2) The subspace X — {p} is a hcc space if and only if the point p is a P-po
m t.

Proof. X — {p} is an open noncompact subset of X.

(1) Suppose that X — {p} is an scc space and let A C X — {p} be a countable
set. Then cl x_gp1(A) = clx(A) is a compact set in X — {p} and p ¢ cl x(4).
Hence point p is a weak P-point in X.

Conversely, suppose that p is a weak P-point in X. Let A C X{p} be a
countable set. Then p ¢ cl x(A) which implies that cl x (A4) = cl x_{;,)(4). Since
cl x(A) is a compact (the space X is compact and Hausdorff) subset in X, then
cl x_{p}(A) is a compact subset in X — {p}. Hence, subspace X — {p} is an space.

(2) Suppose that X — {p} is an hcc space and let {U,(p) : » € N} be any
countable family of open neighbourhoods of the point p in X. Then N{U,(p) : n €
N} =U{X-U.(p):n€ N} and X —U,(p) C X —{p} C X is a compact set for all
n € N. Since X — {p} is a hcc space there exists a compact set K C X — {p} such
that X —Up(p) C K for all n € N. The set U = X — K is an open neighbourhood
of pin X. Therefore, X — K C (\{Un(p) : n € N}. Hence p is a P-point in X.

Conversely, suppose that p is a P-point in X and let {K, : n € N} be
any countable family of compact sets in X — {p}. Then [J {K, : n € N} =
({X —K, :n € N} and X — K, is an open neighbourhood of p in X for alln € N.
Since p is a P-point in X, there exists an open neighbourhood U of p such that
UC({X -K,:ne€ N}. Therefore, K, CX —U foreachn € N and X —U is a
compact subset of X — {p}. Hence, by definition 1.2, subspace X — {p} is an hcc
space. This completes the proof.



A property between compact strongly countably compact 199

COROLLARY 3.3. Let X be a compact Ts-space and p € X be a limit point in
X. If P is a weak P-point which is not a P-point, then the subspace X — {p} is a
strongly countably compact space which is not a hypercountably compact space.

Ezample 3.4. Let BN denote the Stone-Cech compactification of positive
integers N and N* = BN — N. Kunen in [7] has shown using Martin’s Axiom that
there exists a weak P-point p in N* which is not a P-point. By corollary 3.3, the
space X = N* — {p} is an example of strongly conntably compact space which is
not hypercountably compact space.

4. Strongly sequentially compact (ssr) spaces

Definition 4.1. A space X is strongly sequentially compact (ssc) if K(X) is
sequentially compact.

PROPOSITION 4.2. FEwvery strongly sequentially compact space is sequentially
compact.

Proof. The subspace X = {{z} € K(X) : z € X} C K£(X) is a closed subset
of the sequentially compact (X) and X is homeomorphic to X. Since K(X) is
sequentially compact, so is X.

The converse is not, necessarily true. There exist spaces which are sequentially
compact but not strongly sequentially compact. Such an example will be given after
the following lemma.

LEMMA 4.3. [1]. If a compact space Y is a continuous image of the remainder
cX — z(X) of a compactificatioin cX a locally compact space X, then the space X
has a compactification ¢ X < c¢X with the remainder homeomorphic to Y.

Applying transfinite induction we get a continuous mapping f : BN — N —
[0,w1] onto the space [0,w;] of all ordinal numbers less than or equal to the first
uncountable ordinal wq [1, p. 296].

Applying Lemma 3.3, there exists a compactification g/N of the space N
whoose remainder gN — N coincides with [0,w;]. The space gN —w; is a separable,
locally compact, first countable and sequentially compact normal space which is
not a compact space. Since the space X = gN — {w} is separable it is not strongly
countably compact. Suppose that K(X) is sequentially compact. Then K(X) is
countably compact and by Theorem 2.2, X = gN — {w; } would be hypercountably
compact which is impossible. Therefore, X is an example of a sequentially compact
space, which is not strongly sequentially compact.

Remarks. (a) The space SN is not sequentialy compact. This can be also
proved directly: to sequence 1,2,..., of point of SN does not contain any conver-
gent subsequence, since for every increasing sequence k1 < ky < ... of positive
integers the sets A = {k1,ks,...} and B = {ka, ks, ...} have disjoint closures in
BN and this implies that the sequence ki, k2, k3, ... does not converge.
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(b) By Proposition 2.8 the space X = SN x [0,w;) is a hypercountably
compact but is not sequentially compact because SN x {zg}, T € [0,w;) is a
closed subspace of X homeomorphic to SN.

(c) The space X = BN x X4 (X4 is the space in example 2.1) is strongly
countably compact which is not hypercountably compact. By (b) the space X is
not sequentially compact.

THEOREM 4.4. Fvery strongly sequentially compact space is hypercountably
compact.

Proof. Let K(X) be a sequentially compact space. Then it is countably
compact. By Theorem 2.2, X is an hce space. This completes the proof.

PROPOSITION 4.5. A closed subset of a strongly sequentially compact space is
itself strongly sequentially compact.

Proof. Let X be strongly sequentially compact and Y be a closed subset of
X. Clearly K(Y) = £(X) nexp(Y). By [11], exp(Y)) is a closed subset of exp(X).
Hence K(Y) is a closed subset of K(X) and K(Y) is sequentially compact. By
definition 4.1, Y is strongly sequentially compact. This completes the proof.

Remarks. (a) The space BN is compact (hypercountably compact) but not
strongly sequentially compact.

(b) The space X = [0,w;) is strongly sequentially compact but not compact.
(c) The space X = [0, wp] is both compact and strongly sequentially compact.

The following diagram ilustrates the implications which exist among the prop-
erties of compactness that we consider:

hypercountably compact

compact
strongly sequentially
sequentially compact
compact

strongly countably compact

countably compact
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