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CHARACTERIZATIONS OF SOME DISTRIBUTIONS
CONNECTED WITH EXTREMAL-TYPE DISTRIBUTIONS

Slobodanka Janjié

Abstract. It is shown that the class of distribution functions, which preserve the type when
submitted to the operation of screening the maxima coincides with the three types of distributions
obtained as limiting in a special case of the transfer theorem for maxima.

In [1], a limit theorem for the sequence of maxima of a random number
of independent, identically distributed random variables is proved, which runs as
follows:

Let us suppose that the following sequences are given:
1) sequence of integres ki, k, — 00, n — +00;
2) vp-nonnegative, integer valued random variables;

3) &ur-independent random variables for each n and independent of the variables
Un, such that P{&,, < 2} = F(2).

THEOREM [1]. If, when n = +oo, the following conditions

A) P{max{&n1;&n2;---;&nk,. } <z} = ®(2),
B) P{uvn/kn <z} —> A(z)
are satisfied, then
P{max{gnl; En2;- -5 é.m/n} < 'Z'} — ¥(z),

where ¥(x) = 0+°°[<I>(:c)]sz(z).

In [1] it was pointed out that as a special case of the theorem, when k, = n,
the random index v, has a geometric distribution function with parameter a,, = 1/n
and &, = (& — Ap)/Bn, where &, k = 1,2,... are independent, identically
distributed random variables with the distribution function F(z), A, and B,, are
appropriately chosen constants (it is well known that in this case the distribution
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®(z) is of the extremal type) — then the three following distribution functions are
limiting

1. ¥(z)=1/1+e77), —o0 < < 400;
2. U(z)=1/1+2"9%), a>0,0<z < +oo; (1)
3. ¥(z)=1/(1+ (—x)%), a>0,-c0<z<0,

the first of them being the well known logistic distribution.

Our intention is to characterize the three types of distributions mentioned
above.

Let us consider the following operation: X1, Xs,...,Xg,... be a sequence of
independent, identically distributed random variables with the distribution func-
tion F(z). Let us form the variables V7 = X; Y = max{X;;X»},...,Y; =
max{X1;Xo;...; X¢},.... For given p(0 < p < 1), we eliminate (independent-
ly of the others) the variable Yj, with probability p. Let us denote by Fj,(z) the
distribution function of the first retained variable. Then we have:

+oo
_ k—1 2)NF = qF(z)
By =0 0@) = 1 @

where g =1—p,p+q=1.

We are interested in the class of random variables for which the distribution
function Fp(z) (2) of the first retained maximum has, for every p, the same type
as the distribution F(z). In other words, let us suppose that, for each p,q(p,q >
0,p + g = 1) there exist real numbers a(g) > 0 and b(q) such that the following
equation holds:

q¢F (x)
1—pF(x)
We want to find the class of random variables whose distribution functions satisfy
the equation (3) for some a(g) > 0 and b(q), 0 < ¢ < 1. The following two theorems

will give all solutions (F'(x),a(q),b(q)), —00 < £ < 400, 0 < ¢ < 1, of the functional
equation (3). The case of degenerated F'(x) is not considered since it is trivial.

= F(a(q)x +b(q)), —o0 <z < +00. (3)

THEOREM 1. Let us suppose that in the equation (8), the function a(q) is
identically equal to one. Then the pair (F(x),b(q)) is the solution of the equation
(8) if nnd only if

Fz)=1/14ce™*"), —co<z<400, a>0, ¢>0 4)
and

b(g) = (Ing)/e, 0<g<1. ()

Proof. The direct part of the theorem is proved immediately by inspection.
Now, let us prove the converse: if the equation

qF (z)

W:F(w-"b(q)): —0 < x < 400 (6)
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holds, then (4) and (5) follow.
From (6) it follows that the function b(g), 0 < ¢ < 1; has no zero, because if
there exists a go such that b(go) = 0, then (6) becomes
g F(z)
1—(1-q)F(x)

whence F(z) takes only values 0 or 1, contrary to our assumption that F'(z) is
nondegenerated.

= F(),

Let us show that F'(z) > 0, for every z. If there existed an z¢ such that
F(z9) = 0, then from (6) we would have F(zo +nb(g)) = 0 and F(zq — nb(q)) =0,
n = 1,2,..., which for b(q) > 0, as well as for b(¢) < 0, implies the impossible
F(4+00) = 0. Since F(z) > 0, for every z, we can write F(z) = 1/(1 + v(z)),
—00 < x < 400, where v(z) > 0, v(+00) = 0, v(—00) = +o0. It is easy to check
that in terms of the function v(x), the equation (6) reduces to the following simpler
form

v(z) = qu(z +b(q))- (7)

We shall show that b(q) is increasing and b(q) < 0 for every 0 < ¢ < 1.
If, for some qo, we had b(go) > 0, then from (7) we should have for every z and
n=1,2,... that v(z) = ¢fv(z + nb(qgo)), which means that v(z) = 0, contrary to
our assumption. So, we must have b(g) < 0.

Let us consider ¢ = ¢;¢2. According to (7),

v(z +b(g)) = v(z)/q = v(z)/(q142) = v(z + b(q1) + b(g2));

hence, we conclude that
b(g1g2) = b(q1) + b(g2) (8)

Since b(g) < 0, 0 < g < 1, it follows from (8) that b(q) is strictly increasing. From
(7) and from the monotonicity of F(x) and b(g), the continuity of F'(z) and b(q)
follows.

If we make a substitution f(z) = b(e™?) then (8) reduces to f(z+y) = f(z)+
f(y), z,y > 0. The general solution of the preceding equation is [2]: f(z) = —az,
xz >0, a > 0. We have here a > 0 because b(q) < 0, 0 < ¢ < 1. Comming back to
the function b(g), we have b(q) = f(—Ilng) = alng, a > 0.

One solution of the functional equation (7) is obvious, namely v (x) = e *%,
—00 < £ < 400, @ > 0. Let us now suppose that the equation (7) has also

another solution v (z). In order to determine vy (), let us consider the ratio g(z) =
va(x)/v1(z). From (7) we have

va(z +b(q)) wva(x)
(

g9(z+b(q)) = =

n@ b)) o = g(x), —0 < < oo

whence the function g(x) is constant g(z) = ¢, —00 < £ < +00. Therefore, every
solution of (7) is of the form v(z) = ce™*®, —00 < z < 400, a > 0, ¢ > 0.
So we have proved that every solution of (6) is the distribution function F(z) =
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1/(1 + ce™*®), —0 < < 400, a > 0, ¢ > 0, which belongs to the logistic
distribution type. From (6) it follows that b(¢) =Ilng/a,0< ¢<1,a>0. O

THEOREM 2. Let us suppose that the function a(q) in the functional equation
(3) is not identically equal to one. Then the triple (F'(x),a(q),b(q)) is the solution
of the equation (3) if and only if
_JO z<pf
) F(w)_{l/(1+7(w—ﬂ)‘a), z>pB, a>0, v>,0 (9)
a(g) = ¢"/%, ble) = A1 —¢"/%), 0<g<1, a>0,
or
b) F(IL'): 1/(1+’7(_w+/6)a)7 $>ﬂ> a>07 ’Y>07
1 z>p
a(g) = q7"%, blg) = B(1—-¢7"/*), 0<g<1, a>0,
(10)
Proof In one direction the theorem is proved immediately by inspection. Now
let us prove the converse, i.e. that if the equation
gF (z)
1-(1-q)F(z)
holds, then all the solutions are of the form (9) or ( 10).
From (11) it follows that for an arbitrary number 3,
gF(z + B)
1-(1-q)F(z+p)
is valid. Let us fix a number ¢ such that a(q) # 1, 0 < ¢ < 1. For such a g, let us

denote by 3, a number which satisfies the following equation: 3, = a(q)84 + b(q),
wherefrom we have

= F(a(g)z +b(g)), a(g) >0, a(g) #1, 0<g<1 (11)

= F(a(g)z + a(q)B + b(q)) (12)

By =b(g)/(1 —a(q))- (13)
Let us denote
®,(z) = F(z + Bq). (14)
For such a g, the equality (12) for the function ®,(z) reduces to
q®,(x
) _ g, (a(g)2). (15)

1= (1—q)%(z)

It follows from (15) that either ®,(0) = 0 or ®,(0) = 1. Let us prove that. Indeed
for £ = 0, it follows from (15) that
7%,(0)
PP _,(0);
—a-ga,0 Y

hence
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and so, since ¢ < 1, ®,(0) could take only two values: 0 and 1.
First we shall consider the following case:

a) ®,(0) = 0. We shall show that ®,(0) > 0 for every z > 0. Let us suppose
the contrary, i.e. that for some zy > 0 we have ®,(x9) = 0. For our fixed g, the
function a(q) could be either strictly less ot strictly greater than 1 (because we
chose ¢ so that a(q) # 1 is valid). Let us suppose that a(q) > 1. Then it follows
from (15) that for each n € N, 0 = ®,((a(q)"z) — ®,(—00) is valid, contrary to
our assumption that we deal with nondegenerated distribution functions.

If a(g) < 1, then we have from (15): ®,(zo/(a(q))"”) = ®4(+o0) =0, n —
+00, which is impossible. So, we proved that if ®,(0) = 0, then the function ®,(z)
is never zero for x > 0.

Now, let us consider the case:

b) ®,(0) = 1. Let us show that then 0 < ®,(z) < 1, for every z < 0. Let us
suppose that for some zo < 0 we have ®,(zo) = 0. If a(q) < 1, then it follows from
(15) that 0 = ®,((a(q))"z) = ®,(0-), n — +oo; hence ®,(z) is degenerated at
zero. If a(q) > 1, we have as n — +o00, 0 = ®,(z/(a(q))™) = ®,(0_), and hence
again we have that ®,(x) is degenerated at zero, which is impossible. So, we must
have ®,(z) > 0 for every < O. Let us show that ®,(z) < 1, for every z < O. Let
us suppose that ®,(z¢) = 1 for some z¢ < 0. If a(g) < 1, then, when n — 400 we
have ®,((a(g))"z) = ®,(—o0) = 1 which is impossible; if a(g) > 1, it follows from
(15), that, when n — 400, we have ®,(zo/(a(q))™) = ®,(—00) = 1, which is again
impossible. So we have proved that 0 < ®,(z) < 1, for every z < 0.

Now we shall prove that there is no ¢(0 < ¢ < 1) such that a(q) = 1. If for

some qo, we had a(gg) = 1, then (11) would become
g F'(z)

1—(1-gqo)F(z)
In Theorem 1 we proved that it follows from (16) that F'(z) > 0 for every x. Let
us show that from (16) it follows that F(z) < 1, for every xz. If F(xo) = 1 for
some Tg, then from (16) it follows that if b(go) < 0, we have that, as n — +oo,
1 = F(zo + nb(q)) = F(—o0), and if b(qe) > 0 we have that, as n — +oo,
1= F(zo — nb(go)) = F(—00), both cases both impossible. If b(go) = 0, it follows
that F'(z) takes only the values 0 or 1, which is contrary to our assumptions. So
we have that if a(g) = 1 for some qg, then 0 < F(z) < 1, —00 < z < +o00.
But, by assumption a(q) is not identically equal to 1, which means that there
exists a ¢ such that a(q) # 1. We already showed that for such a ¢ the function
®,(0) = F(8,) takes only the values 0 or 1, contrary to the condition O < F(z) <1,
—0 < T < +00, obtained from the assumption that there exists a go such that
a(go) = 1. Hence, from the supposition that there exists at least one g such that
a(q) # 1, it follows that a(q) # 1 for every 0 < g < 1.

Let us consider two numbers ¢; and ¢z, ¢1 # g2 such that the corresponding
Ba1> Bgs» (13) are not equal, Bq, # B4,. Let us suppose that 8, < Bg,. If @4,(0) =0,
then we have that @4, (z) > 0, for > 0, or, equivalently

F(Bu) =0, F(z+pB,)>0, z>0. (17)

= F(z + b(g0))- (16)



184 Janjié

We know that ®,,(0) could be 0 or 1. Let ®,,(0) = 0 and consequently &,,(z) >0
for x > 0. Hence F(8,,) = 0, contrary to (17). Let ®4,(0) = 1. But then we have
®,4,(x) > 0, for every x < 0, contrary to (17).

Let us suppose that ®,4, (0) = 1, wherefrom we have
F(B,)=1, 0<F(z+p,)<1l, z<O. (18)

If ®,,(0) =0, we have F(z + ,,) = 0 for £ < 0, contrary to (18). If &,,(0) =1,
we have
F(B8,)=1, 0<F(z+f,)<1, z<0. (19)

But, from (18) we have F(8,,) = 1, contrary to (19) which states that there must
be F(B,,) = 1, since By, < fBqs-

From the assumption that there are numbers g;, g2 such that 84, # 5,4, we
obtained a contradiction, which proves that all 3,, 0 < ¢ < 1, are equal. Let us
denote by g the following expression, which, as it is shown, does not depend on ¢:
B=>5b(g)/(1—a(q)), 0 < g < 1. Next, let ®(z) = F(z+ ). In terms of the function
®(z), the equation (11) reduces to

q%(z)
1-(1-q)%(z)

It is already shown that either ®(0) = 0 or ®(0) = 1. We shall consider each of
these cases separately.

=®(a(q)z), 0<g<1. (20)

a) case ®(0) = 0. Since in this case ®(z) > 0 for every z > 0, we can write
®(z) =1/(1+ v(x)), z > 0, where v(z) > 0, v(+o00) = 0. Equation (20) becomes
1/(1+q 'v(@)) = 1/(1 +v(a(g)z)) or

¢v(z) = v(a(q)s). (21)

Let us show that a(q) is increasing and a(g) < 1 for every 0 < ¢ < 1. If a(q) > 1 for
some ¢ then from (21) we have: v(z) = ¢"v((a(¢))"z), x > 0, n = 1,2,..., which
means that v(z) = 0. So it must be that a(g) < 1 for 0 < ¢ < 1. Let us consider
g = qiq2 where 0 < ¢y < 1,0 < ¢ < 1. From (21) we have v(z) = qu(a(q)z) =
q192v(a(q1)a(gz)z), wherefrom

a(q1g2) = a(q1)a(q)- (22)

Since a(q) < 1for 0 < g < 1 it follows that a(q) is strictly increasing. The continuity
of the functions ®(z) and a(q) follows from (20). Let us find the solution of (20).
Let f(z) = Ina(e™®), z > 0. The continuity of f(z) follows from the continuity
of a(q); from a(q) < 1 it follows that f(z) < 0. In terms of f(z), (22) becomes
flx+vy) = f(z)+ f(y), z,y > 0. The general solution of the preceding equation is
(21): f(z) = —z/a, a > 0, wherefrom a(q) = e/(-1"9 =¢'/* o >0,0< g < 1.
So, equation (21) reduces to

¢ v(z) =v(g"), >0, O<q<1, a>0. (23)
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One solution of (23) is obvious, namely v1(z) = 2%, @ > 0. Let us suppose
that this is not the only solution of (23), and let »5(x) be the other solution of (23).
Let us consider the ratio g(z) = va(z)/v1(z), z > 0.

By virtue of (23) we have
vao(g"/*x) _ wa()

Voag) = = =g(x) >0, 0<qg<1.
g(q ) V]_(ql/a.'ﬂ) Vl(.Z') g( ) q

Hence the function g(z) is constant g(z) = v > 0 and the general solution of (21)
isv(z) =vz~*, z2>0,a>0,v >0, so that in case (0) = 0 we have

B _Jo <
F(m)—q’(m_ﬂ)_{1/(1+7(:c—ﬂ)—“), >0, a>0, v>0,

a(q):ql/a, 0<g<l1, a>0,

and from the equation 3 = b(q)/(1 — a(q)) we obtain b(q) = (1 —¢'/*),0< ¢ < 1,
a > 0.

b) Case ®(0) = 1. We already know that ®(z) > 0 for z < 0, and hence we can
write ®(z) = 1/(1 + v(z)), z < 0, where v(z) > 0, v(—o0) = +o00. From (20) we
have 1/(1 + ¢ *v(z)) = 1/(1 + v(a(q)z)), £ < 0, or

¢ 'v(z) = v(a(g)2). (24)

In this case we have a(q) > 1 for 0 < ¢ < 1. If, for some ¢, we had a(q) < 1, then
it would follow from (24) that for z < 0 and n = 1,2,... v(z) = ¢"v((a(q))"x),
wherefrom v(z) = 0, which is impossible. Now we shall prove that a(q) is decreas-
ing. Let us consider ¢ = ¢1¢2, 0 < ¢1 < 1, 0 < g2 < 1; it follows from (24) that
v(z) = qv(a(q)z) = q1gav(a(g1)a(g), or, equivalently

a(q1g2) = a(q1)a(gz)- (25)

Since a(g) > 1 for every 0 < ¢ < 1, it follows that a(q) is decreasing. The continuity
of ®(z) and a(g) is the consequence of equation (20). We solve the equation (25)
by the substitution f(z) = Ina(e®), £ < 0. Since a(gq) > 1, we have f(z) > 0.
The continuity of f(z) follows from the continuity of a(g). From (25) we get
flx+y) = f(z) + fy), z,y < 0, and the general solution of this equation is
f(z) = —z/a, z <0, a > 0. Hence we have a(q) a(q) = /"9 =g~/ 0 < ¢ < 1,
a > 0 and we see that (24) reduces to

g 'v(z) =v(g"/x), <0, 0<g<1, a>0. (26)
One solution of (26) is obvious vi(z) = (—x)%, @ > 0, x < 0. Let us denote by
vs(x) another solution of (26); we have

—-1/a
/e (g )  w(z
o(q~ o) = ngql/ax; _ ngw; —g(z), £<0, 0<q<1.




186 Janjié

It follows that g(z) is a constant function, g(x) = v > 0, and so the general solution
of (24) is v(z) = y(—2x)*, £ < 0, @ > 0, v > 0. So, in the case b), we have

F(x)z{}/(1+v(—m+ﬂ)°‘), ﬁ;g a>0, 7>0,

alg) =g~ "%, blg) =p(l—q¢ /), 0<g< 1. O
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