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MIXED NORM SPACES OF ANALYTIC
AND HARMONIC FUNCTIONS, I

Miroslav Pavlovié

Abstract. For an increasing absolutely continuous function ¢ : (0,1) — (0, 4+00) we define
the spaces H(p,q,¢), p > 0, and h(p,q,¢), p > 1, (of analytic and harmonic functions f on the
unit disc, respectively) by the requirement that the function r — (1 — r)My(r, f), 0 < r < 1,
belongs to Lg(¢'(1 — r)dr/¢(1 — r)). These spaces are generalizations of those considered by
Shields and Williams [17, 18] and Mateljevi¢ and Pavlovié [13]. If p(2t) < Cy(t) we construct
certain equivalent norms and use them to find the duals of H(p, g, ) and h(p, g, ¢). In particular,
we have an improvement of the main result of [18]. Our main tools are a theorem of Hardy and
Littlewood on Cesaro means of power series and a new integrability theorem for power series with
positive coefficients.

0. Introduction

Throughout the paper h(U) is the class of all complex-valued harmonic func-
tions on the open unit disc U, ¢ is an increasing absolutely continuous function on
the interval (0, 1] with ¢(0+) =0, and 0 < ¢ < 0o. Let X be a quasi-normed space
contained in h(U) such that for every f € s(X) the function r — || f.||x, 0 <r < 1,
is measurable, where

s(X)={fehU): fre X forall re(0,1)},
while fe, |¢| <1, is defined by f¢(2) = f(£2), |2| < 1/|§|. We define

1/q

(0.1) 1% (a.0) = {/0 [p(1 _r)”fT‘HX]qdmtp(r)} [ es(X),

where
dmy(r)/dr =¢'(1—r)/e(1—r), 0<r<1l
We consider the spaces

X(q,(p) = {f € S(X) : ||f||X(q,<p) < OO}
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We shall mainly be concerned with the case when X is the usual Hardy space HP,
0 < p < co. In this case we have s(X) = H(U) and || f,||x = My(r, f), where H(U)
stands for the subspace of h(U) consisting of analytic functions, and

1/p

e ={ [ - fre P2y, g D).

The space H?(q,p) =: H(p, q, ), is defined in [13] by using the measure dr /(1 —7)
instead of dm,, but the present definition is more convenient for our purposes.
Note that if ¢(t) =t for some a > 0, then dm,(r) = adr /(1 — 7).

The spaces H (p, g, @), obtained by taking ((t) = t, have been considered by
many authors. The spaces H (p, g, ) are called Bergman spaces, although they were
introduced by Dzarbashian [3, 4]. However, many important theorems concerning
H(p, q,a) are contalned in Hardy’s and Litteewood works. See [5, 7] for information
and references.

One of interesting problems is to describe the dual (and the predual if it
exists) of H(p,q,p). The first result in this direction is due to Zakharyuta and
Yudovich [19]. Using some bounded projections from L¥¢(U) they found the dual
of H(p,p,c) with 1 < p < 0o. In a similar way Shields and Williams [17] solved
the duality problem for the space H(p,p, ), 1 < p < 00, where ¢ is a “normal”
function. Some other methods have been used by Duren, Romberg and Shields [6],
Flett [7] and Shapiro [16]. However, these methods do not work in the case p < 1,
g > 1 even if p(t) = t*.

Recently Shields and Williams [18] considered the spaces h* (o0, ), where

b ={f € h(U) : ||fll, < oo}, 0<p< oo,
||f||P=SUp{MP(T7f) :0<T< 1}7 f Eh(U)

They found the predual of h® (o0, ) for such functions ¢ as p(t) = 1/log(e/t),
0 < t < 1. In this case h* (00, ¢) is isomorphic to the dual of h'(1,¢), but this is
not true if ”h” is replaced by "H”.

In this paper we present a new approach to the duality problem for H(p, q, )
which can be used whenever 0 < p, ¢ < oo and

(0.2) sup (2t)/p(t) < oo (0 <t < 1/2).
If this condition is satisfied we say that ¢ is quasi-normal. If, in addition,
(0.3) sup p(at)/p(t) <1 (0<t<1)

for some a > 0 then ¢ is said to be normal.

Our method is based on an extension of the following result of Mateljevi¢ and
Pavlovi¢ [13].

THEOREM A. Let Ap(2) = 3 ;. 27, where Jo = {0,1} and J,, = (j : 2" <
j<2mtl 1} forn>1. If1<p< oo and @ is normal then

{/[gol—r (. f))od /1—r} {Z[so " A *fllp]"}l/q,feﬂ(U)-
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This theorem does not hold if p < 1 or if ¢ is not normal, and we shall use
some polynomials more complicated than A,,. Namely, for any lacunary sequence
w = {A, }§° of positive integers and any integer N > 0 we shall construct a sequence
Wy = Wn,N,A, 1 > 0, of harmonic polynomials satisyfing the following conditions:

(0.4) f= iwn x f forall fe h(U),

n=0

with the series uniformly converging on compact subsets of U;
(0.5) Wn(j) =0 if |j| € [An-1,An) (A1 :=0);
(0.6) lwn * fllx < Cllfllx, f€X, n>0

where X = H?, p > 1/(N +1), and C is a positive real constant not depending on
fyn.

The construction of the sequence {w,} will be given in Section 2. A theorem
of Hardy and Littlewood [9] concerning Cesaro means of power series plays the
central role in the proof of (0.6).

Our main result asserts that if ¢(1/),) behaves like 27" then

o0

1/q
(0.7) 1 £l x (g,0) ~ {Z[s@(l/kn)llwn *fIIX]”} , fes(X),

n=0

where X = H?, p > 1/(N + 1), or X = h?, p > 1. In fact, the conditions (0.6) and
(0.7) are satisfied if X is an arbitrary Banach ” A-space” (to be defined in Section
1). The proof of the main result is given in Sections 3, 4 and is based on a new
integrability theorem for lacunary power series with positive coefficients.

Using the above properties of {w,, } one can reduce some problems for X (g, )
to the analogous ones for X. In Section 5 we show how to calculate the dual of
X (g, p) if the dual of X is known. In particular, we have a solution to the duality
problem for H(p,q,¢), p > 0, and for h(p,q,¢) := hP(q, ), p > 1, where ¢ is an
arbitrary quasi-normal function. For example, it follows from our duality theorem
and the Fefferman theorem that the dual of H(1,q, ) is isomorphic to the space
BMOA (¢',¢), where BMOA is the space of analytic functions of bounded mean
oscilation. The dual of h(p,q,¢), p > 1, is isomorphic to h(p',q¢',¢), and this
generalizes Theorem 4 [18]. See also Section 6.

If ¢ is a normal function then the dual of H(p,q,¢) is simpler than in the
general case (Section 7). If p > 1 it is isomorphic to H (oo, q', ). Furthermore, in
this case the spaces H(p,q,¢) and H(1,q,%), where, ¢(t) = ¢(t)t'/?~! have the
same dual.

In Part IT we shall consider the coefficient multipliers from X (g, ) to Y (g, 9).
For example, we shall prove that if ¥(t) = x(¢(t)), where x is normal, then
H(p,q,¢) and H(p,q,) are isomorphic via a multiplier transform; this gener-
alizes the well-known theorem of Hardy and Littlewood on fractional integration
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and differentiation in H (g, p,a). We shall also present a solution to a problem of
Shields and Williams [18, Problem B].

1. A-Spaces

Let h(Ug) denote the class of all harmonic functions on the disc Ug = {z :
|z| < R}, R > 0. For a non-empty set E of integers let

he(Ur) = {f € h(Ug) : supp (f) C E},

where f is uniquely determined by

fz)= i f(n)r'"'ema, 2z =re'’ € Ug.

n=-—0oo

A quasi-normed space X is said to be an A-space if there exists a set E such
that the following conditions hold.

I. X C hg(U), the inclusion being continuous.

II. hg(Ugr) C X for all R > 1. More precisely, the restriction map f — f|u
is a continuous operator from hg(Ug) to X.

III. If f € X then f; € X and

Ifell < [IFII for [€] <1.

We suppose hg(Ug) is endowed with the topology of uniform convergence
on compact subsets of Ug. Recall that a quasi-norm ||.|| on a linear space X is
characterized by the following properties: 1. f = 0if ||f||=0; 2. ||Af|| = |A|-||f;
3. |If +4ll < C|fll + Cllgl|, where C < oo is independent of f,g € X. Note also
that if X satisfies Conditions I, II, then

s(X) = he(U).

It is hard to verify that H? and h?, 0 < p < oo, are A-spaces. Many classical
sequence spaces may be regarded as being A-spaces. For example, the space [P,
0 < p < o0, may be identified with the class of those f € H(U) for which

o] 1/p
1flp = {Z If(n)”} < oo.

Further examples are Hardy-Orlicz spaces [11] and Orlicz sequence spaces.

Let P be the set of all harmonic polynomials (i.e. of those f € h(U) for which
the support of f is finite). It follows from II that P N hg(U) C X. We denote by
X° the closure PN hg(U) in X.

PROPOSITION 1.1. For an A-space X the following assertions hold.

(a) X° is an A-space and X(q,p) = X°(q,¢).
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(b) X(q,p) is a complete A-space.

(C) Iff € X(qatp)’ q < 00, then ”fE - f”X(q,ga) — 0 as § =1 (|€| S 1)
(d) If g < oo then X(g,¢)° = X(q, ).

Proof. The proof of (a) is straightforward. It is also easy to see that YV :=
X (g, ) is a quasi-normed space satisfying Conaition III. Let f € hg(Ug), R > 1.
Then f € X and ||fr]lx < ||fllx(0 < r < 1). Using this and (0.1) we obtain
Iflly < Ifllxg=/9p(1) where ¢~/9 := 1 for ¢ = co. This implies hg(Ug) C Y
with the continuous inclusion. On the other hand, if f € Y and 0 < p < 1 then
fo € he(Uy,) C X. Since ||f-||x, 0 < r <1, is a non-decreasing function (by IIT)
we have

1/q

£y 2 { [ o = Dlldxlrdm, ()} = Ifallva/ol0) - (o)

This implies Y C hg(U).
To prove that Y is complete let {f"}§° be a Cauchy sequence in X = X (g, ¢).
In view of Conditions I, IT and the completeness of hg(U), there exists f € hg(U)

such that ||f™ — f.|| = 0 as n — oo, for all 7, 0 < r < 1. Using Fatou’s lemma we
obtain ||f™ — f|ly < lim, inf||f™ — f"||y, and this concludes the proof of (b).

For the proof of (c) observe that, whenever 0 < r < 1, f¢, tends to f, in the
topology of hg(Uy/,) as § = 1 (2| < 1). Hence, by IT, || fe, — f+|| =+ 0 as § — 1.
On the other hand, ||fe, — frllx < Cllfe. |lx + Cllfrllx < 2C||f2]|x, where C' < 00
is independent of r. Now the required result follows from the Lebesgue dominated
convergence theorem.

The assertion (d) is a consequence of (c) and the following proposition.

PROPOSITION 1.2. Let f € Y, where Y is an A-space. Then the following
statements are equivalent: (i) f € Y°; (ii) ||fe — fll = 0 as £ = 1 (£ € U): (iii)
lfr=fll=0asr— 1.

Proof. (iii) = (i). Let ¢ — 0 and choose r so that ||f, — f|] < e. Since
fr € Y° (Proposition 1.1 (a)) there exists g € PNY such that ||g— f.|| < . Hence
If =gl <C|f = frl]| + C||fr — gl| < 2Ce, where C is independent of .

(i) = (ii). It is easily verified that (ii) holds for f € P. Let f € Y,let e > 0
and choose g € PNY so that [|f —g[| <e. Since [lge — fell = [[(g — el < llg — £l

we get
If = fell < 2Ce + Cllg — gell, 1] < 1.

Finally, we choose b > 0 so that | — 1| < ¢ implies [|g — g¢|| < €. This concludes
the proof because the implication (ii) = (iii) is clear.

Next we consider some properties of dual spaces. The dual X' of a quasi-
normed space X is the linear space of all bounded linear functionals on X, and is
endowed with the norm

LIl = sup{|L(F)| - f € X, [Ifllx <1}
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Let X,Y € h(U) be quasi-normed spaces. A function g € h(U) is said to be
a multiplier from X to Y if the map f — f x g acts as a bounded linear operator
from X to Y. If X, Y are A-spaces then

(X =2Y):={ges(X)ns(Y): g is a multiplier from X to Y}
is a quasi-normed space with the quasi-norm

lgllx,y = sup{llf *gllv : feX, [Ifllx <1}.

Here f * g stands for the convolution of f,g € h(U):

Frgz) = > fmglgyr™m?, z=re’ eU.

For an A-space X let X* = (X — h*). Let h(U) be the subspace of h*
consisting of those functions which are continuous on the closed unit disc U.

PROPOSITION 1.3. Let X be a complete A-space such that X = X°. Then
the following assertions hold.
(a) If L € X' then there erists a unique function g € (X — h(U)) such that
L(f)=f=*9(Q1), f€ X.
(b) X* = (X — h(U)).
(c) If L(f) = f*xg(1), f € X, where g € (X — h(U)), then L € X' and
LIl = llgllx- -

Proof. (a) Let s(X) = hg(U) and define h, € X by h, = 0if n € E,
and hy(re??) = rlnlein? if n € E. If L € X' define g € hg(U) by §(n) = L(hy).
Let ¢ = pe € U. Since f¢ € hg(Uy/g) C X the series 3% f(n)hnolmleit is
convergent in X, whence f x g(§) = L(fe), for all f € X. On the other hand, by
Proposition 1.2 and the assumption X = X°, L(fe) — L(f,) as £ — a, for all
a € U. This implies f xg € h(U) (for all f € X) and L(f) = f *g(1). The function
g belongs to (X — h(D) because |f * g(€)] = [L(fe)| < ILIIfiusll = ILIIFI] for
& € U. The uniqueness of g is obvious.

(b) Let g € X* and define Lg, |§| < 1, by Le(f) = f*g(§), f € X. Then
{L¢ : |€] < 1} is a bounded subset of X'. On the other hand, if f € PN X and
|a| =1 then the limit of L;(f) as £ — a exists, because f x g € P. Since PN X is
dense in X and X is complete we conclude that the above limit exists for all f € X.

Therefore g belongs to (X — h(U)). The inclusion (X — h(U)) C X* is obvious.
The proof of (¢) is straingtforward.
Since (X°)* = X* we have the following consequence of Proposition 1.3.

PRrROPOSITION 1.4. If X is a Banach A-space then
[fllx =sup{llf * gllc : g € X~ llgllx- <1}, feX°.

As an application we have
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PROPOSITION 1.5. Let X be a Banach A-space and let g be a harmonic
polynomial. Then [|f * gllx < [|flIxllgllh fe€X.

Proof. Since f * g is a polynomial we may apply Proposition 1.4 to obtain

Ifr * gllx =sup{[lfr * g *hlloo - [[Pllx- <1}, 0 <7 <1,

It is well-known and easy to see that [[(fr * h) * g|loc < ||fr * hllcollgl]1- Hence
fr*gllx < Ifrllxllglls < IIfllx]lglli- Now the desired result is verified because

£ *gllx = I(f *g)ellx = If *gllx (r—17).
2. On the sequence {w,}

In what follows A = {A,}5° is a lacunary sequence of positive integers
(A41/An = ¢ > 1) and N is a positive integer. We shall construct a sequence
W = {w,}§° satisfying the conditions mentioned in Introduction. In fact, we can
do somewhat more: this sequence satisfies

n
ij * f
=0

The letter ”C” denotes an arbitrary positive real constant which need not be the
same on each occurrence.

It is clear that (2.1) implies (0.6). And it is a consequence of (0.4) and (2.1)

that .
Hf =Y wixf
j=0

(2.1)

‘ <Cllflx, feX, n>0.
X

=0 (n—o0) for feX°.

,

THEOREM 2.1. There ezists a sequence W = {w, }5° satisfying the conditions
(0.4), (0.5) and (2.1) for all Banach A-spaces X and for oll X € {H? : p >
1/(N +1)}.

In the case of H? spaces the proof depends on the following theorem of Hardy
and Littlewood [9]. An elegant elemetary proof is found by Colzani [2].

THEOREM HL. If X = H?, p > 1/(N + 1), then

(2.2) log fllx <Clifllx, feX, n>o0.

Here oY f, n =0,1,2,..., are the (C. N) means of the series 3 f(k)r/* eik?.
They are defined for all f € h(U) by 0N f = K, x Kpq1 % --- % Ky 1 * f, where

n
i |s| is0
K,(re?) = Z (1— L) plsleist
. n+1

Using Proposition 1.5 and the well-known fact that ||K,|l1 = 1 we obtain the
following variant of Fejer’s theorem.
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THEOREM 2.2. If X is a Banach A-space then the condition (2.2) with C =1
holds.

For our purposes it is convenient to replace o2 f by K, n * f, where

0 _ o EIRR
K, n(re") = Z (1— n+1> rlsleis?

§=—n

LEMMA 2.1. If an A-space X satisfies (2.2) then
IKn,n* fllx <Cllfllx, fe€X, n>0.

Proof. It is clear that there exist A;, (n >0, 1 <j < N) such that
t \V & J t
1-— = A; 1-
(1-75) ~Zael(-55)

for all real t. Takingt =n+2,...,n+ N we see that |4;,| < C(n+ 1)~V where
C depends only on N. This implies

N N
1Ko fllx = |13 Ajnot | <CY (n+1 Nlonfllx, feX,
j=1 j=1
T
where C depends only on N. This concludes the proof.
Proof of Theorem 2.1. For a fixed n > 0 define the matrix By, (t) = {bm;(t)}
(0<m, j <N)by

b (1) = pYA— 0<j<N-1,
" A mntm(t), § =N,

where
1—t/A)N, 0<t<As
0, t> As.

&0 = {

The function
n(t) := det By (t)/ det B,(0), t>0.

satisfies the condition

(2.3) () =0 for t>A,yn, and 7,(t) =1 for 0 <t < Ay

The first equality holds because z, ., (t) = 0 for all ¢ > A\,;n and 0 <
m < N. To prove the rest of (2.3) observe that the function 7, coincides on the
segment [0, A,] with a polynomial of degree < N. Thus, it suffices to show that
d*n,(0)/dth = 0 for 1 < k < N. And this is immediate from the identity

n+m

&by (0)/dt* = B! (JZ ) (1A k
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by using the usual differentiation rule for determinants.
Now we define the sequence {w,} by wo(k) = no(|k|) and
Wn (k) = (k) = mn-1([k]), n2>1, —o0<k< o0
It follows from (2.3) that the condition (0.5) is satisfied. We also have

(2.4) > (k) =1, —o0 <k < oo.
n=1

If f is a harmonic polynomial then (0.4) holds because of (2.4) and the fact that
wy, x f = 0 for sufficiently large n. The general case of (0.4) is now obtained by
using (2.1), X = h*°. It remains to verity the validity of (2.1).

LEMMA 2.2. We have n,(t) = Ezzo Dy mktm(t), t > 0, where:
SUPy,,m |Dpym| < 00.

Proof. For a finite sequence xg, 21, .. ,Zs let V(xo,... ,25) be the determi-
nant of the matrix {27,}5, . (Vandermonde’s determinant). It is easily seen that

the desired identity holds with
|Dn,0| = ’\gv(/\n+17 s 7/\n+N)/Vn7 |Dn,N| = )‘g-q-NV(/\n; s ;/\n+N71)/Vn7
and,for 1 <m <N -1,
|DH,M| = /\ﬁ—ka(Ana s a/\n+m+la )‘n+mf17 s 7/\n+N)/Vn7
where V,, =V (An,..., \ntn)- Using the formula
V(@o,-..,25) = [[(om —2;) (0<j<m<s)
j’m
we find
N
|Dn,m|71 = ’\r_z-i]-vm H |/\n+j - ’\n+m|7 0<m<N.
Hr
Since the sequence {\,} is lacunary there exists ¢ > 0 such that
[Anti = Antm| > CAmtm

for all j,m,n >0, j # m. This implies |Dp, |1 > V.
We return to the proof of Theorem 2.1. Since

> (k) =na(lk) and  Enym(|k]) = K, p—1.5(k)
j=0

we have
n

N
ij * f = Z Dn,mK)\n_*_mfl’N * f
m=0

Jj=0
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Using Theorems HL and 2.2 and Lemmas 2.1 and 2.2 we obtain

n

=0

N
< C Z Dn,m”f”Xa
m=0

‘X

where C is independent of f € X and n > 0. This concludes the proof of the
theorem.

3. Quasi-normal functions

For the sake of convenience we suppose that all quasi-normal functions under
discussion are defined, increasing and absolutely continous on (0, co) and

(3.1) p®)(l/t) ~1, t>0.

For non-negative functions F', G we write F'(s) ~ G(s), s € S, if there is C(0 <
C < o0) such that G(s)/C < F(s) < CG(s) for all s € S. If the condition (0.2) is
satisfied then

(3.2) plat) ~ p(t), t>0,
for all @ > 0. Furthermore, there are C, @ > 0 such that

(3.3) p(tu) < Cup(t), u>1, t>0.

The following proposition is an immediate consequence of [10], Theorem
I1.1.1.

PROPOSITION 3.1. If (3.2) holds then there exists a concave function o on
(0, 00) such that ©(t) ~ po(t), t > 0.

An increasing sequence { A, }22, of positive real numbers is said to be normal
if there are positive constants C, ¢ such that

(3.4) C'1+¢c) <Anij/An and A,1/A,<C, n,j>0.

This is equivalent to the requirement that 1 4+ ¢ < A1 /A, < C, n > 0, for some
C, ¢ and some integer m > 0.

PROPOSITION 3.2. Let {4,}5° be a normal sequence and let ¢ be a quasi-
normal function. Then there ezists a lacunary sequence {\,}3° of positive integers
such that o(\,) ~ A,, n > 0.

Proof. Let B, = (1 + ¢)" sup{4;(1 +¢)™7 : 0 < j < n}, n > 0, where
c satisfies (3.4). Then B, ~ A,, n > 0, and B,41/B, > 1+ c¢. Define t, by

J

2
wo(tn) = By* n > 0, where ¢ satisfies the conclusion of Proposition 3.1. We
have

@o(tnt1) = @o(tntity tn) <tniity o(tn)
because g is concave, ¢o(0+) = 0 and t,41/tn, > 1. Hence tp41/tn > (1+¢)* and
consequently there is an integer ng such that, for every n > ng, the set [tn,tnt1)
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contains at least two integers. We define A,,, n > 0, to be the smallest integer in
[tn+n07tn+no+l)' Since tn+n0 S An S 14+ tn+n0 we have An+1/An S tn+n0+1/(1 +
tntno), and this implies that {A,} is lacunary. The relation ¢(\,) ~ 4, is obvious.

From now on we shall assume that A := {\,} is a lacunary sequence of
positive integers such that the sequence {¢(A,)} is normal. (One can show that
the existence of such a sequence is equivalent to the condition (0.2).)

THEOREM 3.1. Let {t,}5°} be an increasing sequence of positive numbers
such

(3.5) P(tnri)/o(tn) > C 1+ ), n,j>0.
Let F(r) = p(1=r)sup,>q anr' or p(1—7)320°  anrt>, 0 <r < 1, where a, >0
for all n. Then

(3-6) CHHe(/tn)an} e < IFllpaemer < Cllo(1/tn)an} s,
where C is independent of {a,}.

The case when ¢ is normal, ¢, = 2™ and dm (r) = dr /(1 —r) is discussed in
[13]. Here we proceed in a similar way. Note that

dmy(r) = ¢'(1—r)dr [o(1 = ).

LEMMA 3.1. Let {t,} be as in Theorem 3.1. and 0 < s, f < 0. Then

o0
Z o(tn)Pretn < Cp(1—r)7", 0<r<l1.

Proof. Since ¢° and {st,} have the same properties as ¢ and {t,} the lemma
reduces to the case 8 = s = 1. First we prove that

(3.7 Z ep)r-t <Cc(1 —r)7t, 0<r<l,

where A_; = 0. We may suppose r =1 — 1/, for some m. Then

2o pQn)rtr < Z‘p()‘n) + D pAn)e rnmt/ A
n=0 n= n=m+1

Since {¢(An)} is normal we have cp( n) S CL+e)" ™p(Am), 0 < n < m, and
therefore

Zcp ) < Cop(Am) = Cop(1/(1—1)) < Cp(1 —1)7",

Similarly, using the inequalities ©(A)/@(Am) < C™"™™ and A\p—1 > (1 + ¢)"~™71
Am, N > m + 1, we obtain

oo o0

S pn)e A < o(Ay) ST nTmen (T

n=m++1 n=m+1

=Cp(Am) Y Cme U+ < Cp(1 —r) !
n=0
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This completes the proof of (3.7).

Suppose now that {t,} satisfies (3.5). Since p(Ag+1)/p (M) < C, k > 0, there
exists j > 0 such that

P(tn+i)[o(tn) > o(Akt1)/o(Ak), n, k> 0.

This implies that there is J > 0 such that, for every k > 0, the set Ej := {n >
0: A1 < tp < A} contains at most J elements. (In fact, J = max{j, card Ep}.)
Hence

Z(tn)rt" = Z Z (ty)rt» < JZ@(/\k)r’\’“—l <Co(l —7r)7"'.
n=0 k=0 n€E} k=1

(If E, = 0 we put >p = 0). This concludes the proof of Lemma 3.1.

LEMMA 3.2. If is a quasi-normal function then
/01 ' (1 =r)r®dr ~ (1/x), Tz > 1.
Proof. Tt is proved in [13] that if ¢ is normal then
[ =0 =)~ /), w21
The function g (t) := t1(¢) is normal and therefore
/01 P'(1—r)yr*dr = x/ol Y1 —r)r®Ldr ~ 29o(1/2) = ¢(1/x).

Proof of Theorem 3.1. Consider first the case ¢ < co. Let s, = t,,/2. Then,
by means of Lemma, 3.1,

e
F(r)/e(1=r) <> olts)/?r®
n=1
o
< sup an‘p(tn)_lﬂrsn Z So(tn)l/er"
n20 n=0

< Csupanp(tn)~ 21 —r)™12, 0<r<1.
n>0

Hence

oo
F(r)? < Co(1 = 1) supabp(tn) “r? < Cp(1 =r)/2 Y alp(tn) "/ *re.

n=0 n=1

Integration yields

1 oo 1
/ F(r)idmy(r) < C Z al (t,)"9/? / ' (1 —r)ri®dr.
0 = 0
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where 9 (t) = (t)?/2. Using Lemma 3.2, (3.2) and (3.1) we obtain the right hand
side inequality in (3.6).

On the other hand, by Lemma 3.1,
1 00 1
/ F(r)tdmy(r) > C' glt,) / F(r)1/ (1 — ryrtdr.
0 —t 0
Hence, by the inequality F(r) > (1 — r)a,rt",
1 o0 1
| Feyam) 2 €3 gtat [ wpa- e,
0 —o 0

where 1o (t) = ¢(t)97!. The proof is finished using Lemma 3.2.
If ¢ = oo let A = sup,>¢ anyp(1/tn) < co. Then
F(r)<Cp(1l-71) Z o(t,)Art» < CA,
n=1
where Lemma 3.1 has been used.

THe rest follows from the inequality
F(1—1/t,) > o(1/tn)an(1 = 1/t,)"  (t, > 1).

As a consequence of Theorem 3.1 we have the following integrability theorem
for power series with positive coefficients.

THEOREM 3.2. Let Jy = [0, ) and J, = [Ant1,An), n > 1. The function
F(r)=¢(1—=7r)>" anr™, 0 <71 <1, where a, > 0, belongs to the space L1(m,,)
if and only if

{e(1/20) Zak}; € 1.

n

The case when ¢(t) = t* and A, = 2" is known [12].

4. Decomposition of X (g, )

The following theorem and Theorem 2.1 provide a sort of finite dimensional
decomposition of X (g, ).

THEOREM 4.1. Let X be a Banach A-space or X = HP, p > 0, let be X a
quasi-normal function, and let {w,}3° satisfy (0.4), (0.5) and (0.6), where N > 0
and the sequence {\,}3° is chosen so that {@(A,)}§° is normal. Then (0.7) holds.

We shall deduce Theorem 4.1 from Theorem 3.1. For g € h(U) let g’ be
defined by ¢g°(z) = g(O) and if j > 1

gi(2) = §(j)# + g(=j)7.
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Observe that g(2) = Yo" ¢/(2), z€U.

LEMMA 4.1. Letg=3 ¢ € X (0 <m <n), where X is as in Theorem
4.1. Then
37 |gllx < llgellx < 2r™llgllx, O<r <L

Proof. For the case X = HP? see [13]. Let X be a Banach space. After two
summations by parts we find

oo

gr=Y rg =(1-r)Y 1(j+1)ojg.
0

0

Taking into account that ojg = 0 for j < m and using the inequality [lojgl| < [|g]|
(Theorem 2.2) we get

oo

lgell < (L =) Y PG + Dllgll = r™ (1 +m(L + 7).

m

Using the elementary inequality m(1—r)41 < 2r~™/2 we prove half of the lemma.

To prove the rest let R = 1/r > 1 and f = g,. Then two summations by
parts give

n n—1
g= ZRJ‘fj = Z(Rj + RIY? 2RI (j + 1)o} f + (R" — R Y)noy,_, f + R"f.
0 0

Hence, by Theorem 2.2,

n—1

lgll < (R=1)*Y_ RIG + DIfIl + (R = DR ™| f|| + R*[| f]-
0
Finally, we use the inequalities n(R — 1) < R® — 1 < R™ and
n—1 n—1
Y RI(j+1)<nd R =nR"-1)(R-1)"'nR <nR*(R—1)"".
0 0

We obtain ||g|| < 3R?"||f||, and this concludes the proof.

Remmark. If X is a Banach space of analytic functions then

gl < llgell < r™lgll-

This follows from the special case X = H® [13] by using Proposition 1.4.

LEMMA 4.2. Let X and {wy} be as in Theorem 4.1. Let 3 =p if X = HP,
p<1, and B8 =1 if X is a Banach space. Then there exists a constant ¢ > 0 such
that

] l/ﬁ
esup [Jwn * Fllxr®==~ < frllx < 2 {Z [[wn fllirm"‘lm}
nz

n=0
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for all f € s(X) (= hg(U) for some E) and 0 <r < 1.
Here we put A\p,—1 = 0.

Proof. The first inequality followsfrom (0.6) and Lemma 4.1, because g :=

wy * f is of the form
AntN

9= ¢

An—1

on the other hand, it follows from (0.4) and the triangle inequality for || - ||§( that

o0
Fell% <D llwn = foll%-

n=0
Applying Lemma 4.1 we conclude the proof.
Proof of Theorem 4.1. The part ”||f|| > ...” of (0.7) follows immediate-
ly from Lemma 4.2, Theorem 3.1 (t, = 2A,4+n) and the relation (2/Ap4n) ~

©(1/An), » > 0. To prove the rest we put s = ¢/ (where § is as in Lemma 4.2),
an = [wn * fllx, ¥(t)° = p(t) and

o
F(r)=¢(1—r)> aprP=1/2 0<r<1.

n=0

By Lemma 4.3

2N 1% g < I

Le(mg) = B PN F (| (myy -

Now we desired result is easily deduced from Theorem 3.1 (with 1), s instead of ¢,
Q-

As an application of Theorem 4.1 we have a generalization of Theorem A. Let
{5.}§° be the unique sequence {wy,}§° satisfying (0.4) and (0.5) with N = 0. We

have L <lil <A
A . ) n—1 S |7 < An
Sn(j) = { :
0, otherwise.

THEOREM 4.2. If1 < p < oo and the sequence {o(An)}&° is normal then
1 lap.ae ~ {1/ AR)|Sn * fllp}lie,  f € R(U).

Proof. This follows from Theorem 4.1 and the well known Riesz theorem: If
1 < p < oo then there is C' < oo such that || Y-g ¢7||, < C||g||, for all g € h?, n > 0.

The following propostion shows that Theorem 4.2 is actually a generalization
of Theorem A.

PROPOSITION 4.1. Let X be an A-space and let ¢ be a normal function.
Then

1 1/q
||f||X<q,¢>~{ / [w(l—r)llfrllx]"dr/(l—r)} . fes(x).
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Proof. Only the case ¢ < oo requires a proof. Let f € s(X) and &(r) = || fr]|%,
0 < r < 1. Integration by parts shows that

1
g = | 0= r)7de(r).

Since ¢ is non-decreasing we see that if ¢(t) ~ o(t) then || f[| x (q,4) ~ | fllx(4,0)- BY
Proposition 3.1 we may take ¥ (t) = ¥o(t)®, where 1) is a concave function. Then
the function g (t)/t, t > 0, is non-increasing and consequently t1§(t) < 1o(t) for
almost all ¢ > 0. On the other hand, from the concavity of ¢ it follows that

Po(t)(ut —t) > ¢po(ut) — psio(t), u>1.
Using (0.3) we find b so that 1)o(bt) > 21)4(t). Then 9{(t)t(b— 1) > 1o(t), whence
c/A=r)<P'A-r)/v(1-r)<a/(l-7), 0<r<l,

where ¢ = a/(b—1). This concludes the proof.

5. Duality theorems

Shields and Williams [18] found the predual of h(oco, 00, ¢) for a quasi-normal
function ¢ satisfying the following condition.

(SW) There exist a positive finite Borel measure p on [0, 1) and a constant C' < oo
such that

1
o+ 1)1 = [ rdur
and
(n+1)p(n) +¢(n +2) = 2p(n + 1)| < C(p(n +1) — ¢(n))
for all integers n > 0.

Our duality theorem does not depend on (SW).

It follows from the proof of Proposition 4.1 that if ¢ ~ ¢ then X(q,¢) =
X (g, ). Thus we may suppose @'/ is concave for some integer a > 0 (Proposition
3.1).

A consequence is that ¢~/ is convex, while this implies that
(5.1) (1/¢)? is convex on (1,00).

In fact, if ¢ is defined on (0, 1] we may extend it by

1
b/o(t) = / rto'(1=r)dr, t>1,
0

where b is chosen so that ¢(1) = ¢(1+). Then ¢ is increasing and absolutely
continuous on (0, 00) and satisfies (5.1) and (3.1) (by Lemma 3.2).

For a quasinormal function v define D¥ : h(U) — h(U) by
(DYf)"(n) = ¢(In| + 1) f(n), —o0 <n < oo.
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Note that DY is an isomorphism of h(U) onto itself. For g € (0, 0] let

00 if g<1,
¢ =4 q/(g—1) if 1<g<oo,
1 if ¢ = oo.

THEOREM 5.1. Let X be a Banach A-space or X = HP, p > 0, and let
2
@ be a quasi-normal function satisfying (5.1). Then the operation D¥" acts as an
isomorphism from X (q,p)* onto X*(¢', ).

Note that if ¢ < co then X (q, ¢)* = (X(g,9) — h(U)) and the dual of X(q, )
is naturally identified with X (g, ¢)*. (See Propositions 1.1 (d) and 1.3).

Since (h)* = h?', 1 < p < 00, we have a solution to the duality problem for

h(p,q, ).

THEOREM 5.2. Let 1 < p < oo and let ¢ be as in Theorem 5.1. Then the
2
space h(p,q,p)* is isomorphic to h(p',q', ), via the operator D?".

The analogous result for H(p,q,¢) holds if 1 < p < co. If p = 1 we use
Fefferman’s result that (H!)* = BMOA, the space of analytic functions of bounded
mean oscilation [8]. If 0 < p < 1 then (HP?)* is equal (up to an equivalent renorming)
to the space MP of those f € H(U) for which

62 s = 1D floeoty = Sup (1= 1)Moc(r, D7) < o0

This is a result of Duren, Romberg and Shields [6, 7]. The operator D® : h(U) —
h(U), —00 < 8 < 00, is defined by

(D f) (k) = (k| + 1)° f (k).
Thus we have the following.

THEOREM 5.3. If ¢ is as in Theorem 5.1 then the operator DY’ is an
isomorphism of H(p,q,¢)* onto Y(¢',¢), where: 1. Y = H? if1 <p < oo, 2
Y =BMOA ifp=1, 3. Y =MP ifp<1.

For the proof of Theorem 5.1 we define the space [9(X), —oo < s < o0, to be
the class of all sequences F' = {f,}§° such that f, € X, n >0, and

0 1/q
||F”lsq(X) = {Z[Q_Tw”fn”X]q} < 0.

n=0

Let w = {w,}§ be a sequence satisfying (0.4) and (0.5) for some lacunary
{A\} and N > 0. For an A-space X we denote by W2(X) the class of those
f € s(X) (= hg(U) for some E) for which

1 llwsax) == [{wn * f}Hlisax) < 00.

If the condition (0.6) is satisfied then W2 (X) is an A-space. Moreover, Proposition
1.1 remains true if we replace X (g, ) by W2(X). We omit the proof.
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The following lemma will be used instead of the Hahn-Banach theorem. (The
Hahn-Banach theorem does not hold for quasi-normed spaces.)

LEMMA 5.1. Let [2(X) denote the subspace of 12(X) consisting of all {fn}
such that f, = 0 for sufficiently large n. If (0.6) holds then the operator V defined
by

VF =) wnxfa, F={fa}eli(X),
n=1

is a bounded linear operator from 14(X) to W1(X).

Proof. It follows from (0.5) that

(5.3) wpxw; =0 for |j—n|>N+1.
Applying now (0.4) we get
n+N
waxVE = 3 wnwj*f;, n20,
j=n—N

where w; = f; =0 for j < 0. Hence

n+N
llwn * VF|lx < K*N )" lwn xw; x filx,
j=n—N
where K satisfies ||f + g||lx < K||f||x + K||g]|x- Using (0.6) we get
n+N
lwn x VE<C Y |Ifillx, n>0.
j=n—N

Now the desired result is obtained by the use of the following lemma.

LEMMA 5.2. Let m be a non-negative integer. Then the operator S defined
on real sequences by

n+m oo
Sw={ > 5;‘} ;o z={§}e (& =0 for j<0)

j=n—m n=0

acts as a bounded operator from 19(R) to itself, where R is the real line.

Proof. 1t is easily seen that the operators S;, 0 < j < 2m, defined by
Sjz = {&j4n-—m 5o map continuously {4(R) into [2(R). The operator S the has

2m

same property because S =) " S;.

THEOREM 5.4. If (0.6) holds then W1(X)* = WEIS(X*) (with equivalent
norms).

Proof. Define the sequence {P,}§° by

n+N
P, = Z w; (w; =0 for j <0).
j=n—N
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It follows from (0.4) and (5.3) that P, * w, = w, for n > 0. Hence
oo o0
f*gzzwn*f*gzzpn*f*wn*g
n=0 n=0

and consequently

o0
1 * glloo < D P * fllxllwn * fllx-,

n=0

where f € W2(X), g € WEIS (X*). Using Holder’s inequality we get
1£ * ll < 1P * oo lgllyr

Since
n+N

1Pox fllx <C D lwy* fllx

j=n—N
we have, by Lemma 5.2 (§; = ||w; * f||x),

[{Pn * fHlisax) < Cllfllwsacxrs

and this concludes the proof of the inclusion WEIS (X*) cWI(X)".
To prove the converse let g € WZ(X)* and define the operator 7 on [4(X) by

TF =(VF)xg=>_ fn*gn,

n=1

where g, = wy, * g. It follows from Lemma 5.1 that 7' is a bounded operator from
19(X) to h>™ with
IT]l < Cllgllw e~

where C' is independent of g. Now it suffices to prove that
TN = [{gn}le (-
Let 0 < e < 1 and, for every n > 0, choose f, € X so that [|fa|[x = 1 and
fr* gn(1) = [[fn % gnlloc > €llgnllx-- I {an} € l{(R) then {anfn} € I1(X),
{anfn}lisexr = [{an}Hlsam

and

o0
1T {anftloo > € 3 llgallan.
0

This implies
11> ell{llgnll}le gy = €ll{ndlt (xo)

This concludes the proof.
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Proof of THeorem 5.1. Choose {A,} so that ¢(A,) ~ 27, n > 0. Applying

first Theorems 2.1 and 4.1 and then Theorem 5.4 we obtain X (g, ¢)* = Wﬁll (X™).
On the other hand, X* is a Banach A-space so that

2 2 *
||D<p f”X*(q’,go) ~ ||D‘P f”qu'(X*)a f € S(X) = S(X )7
by Theorem 4.1. Thus it remains to prove the following.

LEMMA 5.3. LetY be a Banach A-space, let 1/ be convex on (1,00), and
let Y(An) ~ Y(Ant1), n > 0. Then

[lwn * DY flly ~ n)llwn * flly, n2>0, f€s(Y).

Proof. For fixed fandn >1let g=w, * f, k= Ap—1, m = Apyn. Then
m .
w, x DV f = ZAng,
j=k
where A; = 9(j + 1), and the functions g’ are defined as in Section 4. We have

m—1

DAY =) (A + Aje —24541)( + 1)0jg + (Am — Ami1)moy,_19 + Amg.
k k

Hence, by Theorem 2.2,

m—1 ]
‘ > Ajg
k

where || - || = | - ||y. Letting a; = 1/A; we have

m—1

<D 1A+ Ajre = 24541( + Dllgll(Amtr = Am)mllgll + Anllgll,
k

Aj+Aj =240 = —AjAj0(a;+ (502 — 2a41) +24;(Aj42 — Ajya)(aj — ajp).

Since 1/ is convex the function Fy(t) := (1/¢(t) — 1/¢¥(u))/(u—1), 1 <t < u, is
non-increasing. Therefore

aj —aj1 = Fjpa(j +1) < Fjya(1+5/2) <2/(5 +2)(1 +5/2) < Cay/(j + 1).

On the other hand, we have a; + a;12 —2a;41 > 0 because 1¢ is convex. It follows
that
m—1 m—1
Z |45 + Ajr2 —24;11|( + 1) € Am—1Am 4 Z(aj +aj+2 — 2a;41)(j +1)
k k

m—1

+C E Aj(Ajr2 — Ajr)a; = Am—1Am((ar — ar41)k — (@Gm — Gma1)M + ar — am)
&
+C(Amt1 — Agt1) < Am—14n(Car +ar) + CAmi1 < CYp(An).

In the last step we used the estimates Apt1 = Y(Apgn +1) < CY(Ay), ar =
(A1)~ < C¥(A,)~L. In the same way we get

m(Am+1 - Am) = AmAm—i-l(am - am—}-l)m < CAm—}-lAmam = CAm+1 < C'éb()\n)
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Thus || 323" 4;9° || < C¥(An)llgl-
In the other direction, let h = Y;" A;¢7. Then g =" a;h’.
Now we have
lgll <D (a5 + aji2 = 2a541)( + DIAI + (@m = ami1)mlBl] + aml|4l]
= ((ar — ar+1)k — (@m — @my1)m + ag — am)||B]| + (@m — amt1)m||A|

+am||h]| < Clar + am)||hl] < Cp(A,) (1A
This completes the proof of Theorem 5.1.

6. More on the dual of X(g, ¢)

For a function ¢ (not necessarilly quasi-normal) define the measure M = M,
on [0, 1) by
dMy(r) = p(1 = 1)2dmy(r) = ¢(1 = 1)¢' (1 - r)dr.
For f, g € h(U) let

(6.1) (f.9) = / fr % g (VM (r),

provided that the integral exists. For example, an application of Hélder’s inequality
shows that if f € X (¢,) =Y, ¢>1,and g € X*(¢', ) =: Z, then the function
r — fr * g-(1) belongs to L*(M,) and

(£ < I fllxligllz-

The analogous fact for ¢ < 1 holds as well, but with |(f, g)| < C||f|lllgl|- This shows
that if g € X* (¢', ) then (-, g) is a bounded linear functional on X(q, ). In some
cases the converse holds too.

Proof. We have only to prove that if L € X (g, )’ then there is g € X*(¢', ¢)
such that L(f) = (f, g) for all f € X(q,p). We extend ¢ to (0,00) by

1
o) = c/ r2(t_1)dM(r), t>1,
0

where ¢ is chosen so that p(1+) = ¢(1). Applying Lemma 3.2 with ¢ = ¢? we
see that (3.1.) holds. The condition (5.1) is obviously satisfied. It follows that if
L € X(q,¢)', ¢ < oo, then there exists a unique h such that D¥h € X*(q', p)
and L(f) = f xh(1). (See Theorem 5.1 and Proposition 1.1 (d) and 1.3.) Letting
g= D¥’h we have

1
L) = fxh()= Y fogtm) [ r*dnrr)
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for all harmonic polynomials f € X (g,¢). Since such polynomilas are dense in
X(q,p), we have L(f) = (f,g) for all f € X(q,¢). This completes the proof.

Let 7 be a positive finite Borel measure on [0, 1], and let h'(n) be the subspace
of L'(dn(r)df/2r) consisting of harmonic functions. In [18] Shields and Williams
proved that if a quasi-normal function ¢ satisfies the condition (SW) (mentioned
at the beginning of Section 5) then there exists a measure 7 such that h(oo, 00, ¢)
is isomorphic to the dual of h!(n) in the pairing (6.1) with dM (r) = @(1 —r)dn(r).
However, the measure d is not given in an explicit form. Theorem 6.1 shows that
one can take dn(r) = ¢'(1 — r)dr without additional restrictions on ¢. Moreover,
our proofs show that any of the measures dn(r) = (1 — r)8~1p' (1 — r)dr with
B > 0 can be used.

It should be remarked that if f € h(p,q,¢), p, ¢ > 1, and g € h(p', ¢, ¥)
then the function f(z)g(2), z € U, belongs to L!(u), where the measure p on U is
defined by

du(re?) = dM(r)do /2.

The bilinear form (6.1) can be written as
(1o = [ [ r@e@ane)

As further application of Theorem 5.1 we prove a result concerning the space

X(0,) :={f € X(00,) : lim (1=, llx =0}.

THEOREM 6.2. Let X be a Banach A-space and let ¢ be a quasi-normal
function. Then the second dual of X (0, ) is isometrically isomorphic to X (0o, ).

In the case X = H a slightly more general result is proved by Rubel and
Shields [15].

Proof. Tt is easily seen that Y := X(0,¢) is the closure of the harmonic
polynomials in Z := X (00, ¢), and that Y* = Z*. By Proposition 1.3 the dual of
Y is canonically isometric to Y*. Since Z* is isomorphic to X*(1,¢) we see that
the harmonic polynomials are dense in Y* as well. This implies that the second
dual of Y is isometric to the space (Y*)*. Thus it remains to prove that (Y*)* = Z
with equality of the norms. To see this let

S(f) = sup{|| felly : €] <1}

for f € hg(U) = s(Y) = s(X). It is clear that Z = {f € hg(U) : S(f) < oo} and
[|fllz=S(f). On the other hand, if f € hg(U) and || < 1 we have

I fellcy+ys = sup{[lfe * glloo = llglly~ < 1} = [ felly,

where Proposition 1.4 (with Y instead of X) has been used. This implies

S(f) ==sup{llfe * glloo = llglly~ <1, [§] <1} = sup{[|f * glloo = llglly- <1},
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and this concludes the proof.

7. On the dual of H(p,q,¢) when ¢ is normal

Theorem 5.3 may be simplified if ¢ is supposed to be normal. We may assume
that for some o > 0 the function ¢(t)/t%, t > 0, is non-increasing (Proposition 3.1).
Then the function ¢, v > o, defined by

(7.1) pt)p, ) =17, t>0,
is normal.

THEOREM 7.1. If p < 1 and (7.1) holds, where ¢ and ¢, are normal
functions, then the operator DYtY/P=1 gcts as an isomorphism of H(p,q,p)* onto
H(00,q', 7).

Some special cases of this theorem have been discussed by Shields and
Williams [17] (p = ¢ = 1) and Mateljevi¢ and Pavlovié¢ [14] (p = 1, ¢ > 1). The
case p < 1, ¢ > 1, is new even if p(t) = t*. For further information see [1, 7].

Proof. Consider first the case p < 1. Let {w,} be a sequence described by
Theorem 2.1 with N > 1/p—1 and A, = 2". An obvious modification of Theorem
5.4 shows that the norm in H(p,q, ¢)* is equivalent to

o] 1/0'
{Z[w(f")_lllwn * £l } ,

0

where || - ||5 stands for the norm in (H?)*. (This also follows from Theorems 5.1
and 4.1 and Lemma 5.3). By the Duren-Romberg-Shields theorem we have

lwa * fll; ~ sup (1=r)Moo(r,wn« D7), f € H{U), n20;
see (5.2). Using Lemma 4.1 we find
l[wn * fll5 ~ 27"[wn * D7 foo.
Now Lemma 5.3 gives
lwn * D* flloo ~ 2™ [Jwn * f]|;,
where s =+ + 1/p — 1. Hence

0y (27" |[wn * D* flloo ~ @(27") " lwn * I}

This implies that the norm in H(p,q,¢)* is equivalent to

o0 1/11’
{sz")nwn « Do) } '
0
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Now the desired result follows fromTheorem 4.1.

If p =1 we proceed in a similar way as in the case p < 1. We have only to
prove that
llwn * flIf ~ llwn * fllo, f€HU), n2>0.

It is clear that ||wy, * ||} < ||lw, * flleo- Let g(2) = (1 — 2)~2. By the definition of
[| - ||T we have

llwn * f * grlloo < llwn * fIllgrlle = llwn * fII* % (1 = r%)7"

Taking r = 1 — 27" and using Lemma, 4.1 we get

[[wn % D flloo = llwn * f * gllee < C2"[lwn * fII1.

Hence, by Lemma 5.3, ||wy, * f|looc < C||lwy * f||f. This completes the proof of the
theorem.

It should be noted that if p < 1, ¢ < 1 then the requirement that ¢ is normal
is not necessary for the validity of Theorem 7.1. Namely, for any quasi-normal
function ¢ such that ¢(t)/t* is non-increasing the function ¢, (t) :=¢7/p(t) (v >
a) is normal, and we have the following.

THEOREM 7.2. If ¢ is a quasi-normal function then the space H(p,q,p)*,
where p < 1 and g < 1, is isomorphic to H(oo,00,¢,) via the operator Dv+1/p=1,

Proof. Let Z = H(p,q,¢)*, p < 1, ¢ < 1 and ¢ (t) = ¢(t)t*/?. Tt follows
from Theorem 5. that

Ifllz ~ sup{e(l — r)(1 — §)Muo(rs, DVf): 0<r, s <1}.
This easily gives
1£lz ~ sup{p(1 = r)(1 =)Mo (r, DVf) : 0 <1 < 1}.
Since the function tp(t), t > 0, is normal we have, by Theorem 4.1,
11|z ~ sup2™"p(27") fwn * DY flles,
where {w,} is as in the proof of Theorem 7.1. Using now Lemma 5.3 we see that

1711z ~ sup g, (2™ llwn * DY TP |
n

Theorem 4.1 concludes the proof.
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