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DIFFERENT KINDS OF THE COVARIANT DIFFERENTATIONS
IN RECURRENT FINSLER SPACES

Irena Comié

Abstract. A Finsler spaceis defined to be recurrent if the metric tensor is recurrent. In
such a space two ortogonal families of vector fields are defined. Using a family of connection
coefficients depending on a parameter, we examine conditions which should be satisfied so that
the projections of the metric tensor in the direction of mentioned vector fields are recurrent.

1. Introduction. In this paper the Finsler spaces in which the metric tensor
is recurrent i.e. satisfies (2.14)—(2.17) will be examined. In this space m vectorfields
B¢ (z, ) and n—m vectorfields N2 (x, &) which are linearly indipendent and satisfy
(2.1) are given. The vector dz® and &® are decomposed in the direction of these
vectors as it is given by (2.6) and (2.7). We shall suppose that

Fo(zt, ... 2™ &t .. 2™t ™ o™ et L™ o™ L e™) = 0,
a=1,2,...,n

any of the solutions of systhem of differential equations (2.6), together with (2.7)

define x and % as the functions of u, @, v, ¥ in the form

a _ Lo, 1 m ,m+1 n o1 -m m+t1 -1
=z, ,u™ v oA, a0
sa o, 1 m ,m+1 n o1 -m sm+1l -1
¢ =2%u .., u™ v e, e T o)

a=1,2,...,n

In this paper we shall not obtain the above equations but the partial deriva-
tives of tensors with respect to u, v, @, v will be substituted by derivatives with
respect to z and & (see (4.8)). We shall suppose that the tensor and vector fields
in F, are homogeneous of degree zero in z. For a vector field £%(z, %) we have

(L.1) £%(x,8) = By (2, )€ (z, &) + N (2, £)€" (, &)
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where £ = B2¢?, &8 = Nk¢@ are also homogeneous functions of degree zero in .
As
fw(mai'):gw(uavaaab) (x:a or .Z':k,‘)
and
\i® = B (z, &) Mi® + N (z, %) \o*
it follows that
gz (u’ U’ Ad? A(l}) = gz (uJ v) 1‘.’” 1.))
and
(1.2) 8aE%0% + 8,50 = 0
where ) )
6o = 8/60%, O = 6/80F.
Formulae (1.2) are valid always when instead of £* there are coordinates of any
tensor field homogeneous of degree zero in .

We shall define different kinds of connection coefficients and covariant dif-
ferentiations which are generalisations of the induced differential on a subspace of
FE,.

For some special cases of (2.6) its solution is a family of subspaces of Fj,.
Some of these are mentioned here.

If we fix the vector # in the equation dz® = B%(=,#)du® + N2 (z,i)dv* we
obtain

dx® = BY(z,30)du® + N (z,%0)dv*, a=1,2,...,n
For dvF = 0 these equations reduce to dz®B%(z)du®. These are the differetial
equations of the family of subspaces
@ = foul,...,u™, Cmtty- .. ,Ch) a=1,2,...,n
Sz, 2?,...  z")
5(“’1;' .- 5um7cm+1;' . ;Cn)
and Cpyq1,...,C, are arbitrary constants. From detI # 0 it follows that (1.3)

may be written in the form

u® = u®(zt, 2?,... ,2"), a=1,2,...,m
Cr = Cr(at,2?,... ,2"), k=m+1,...,m

Using these equations we obtain from (1.1)

det I = det

50® = 60 f* (Wl o U™, Conptse v v s Cr) = BE(UY o 0™, Congry - 5 Cin)
= B2u!(z*,... ,2"),...,Cph(a? ,zM)] = ( yeoe ™)
(0o = 0/6u”).
For all m dimensional subspaces z® = f®(u!,... ,u™,Cpt1,---,Cp) B are the

tangent vectors and N are the normal vectors, according to (2.1). For the same
fixed & (& = @) putting du® = 0 we obtain another family of subspaces

1
¢ :g"(C’l,... ,Cm’l}m+ yoos ,U”)
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for which N are the tangent vectors and B¢ are the normal vectors. For every
fixed & we obtain a similar ortogonal family of subspaces but the induced metric
on each subspace is Riemannian. We have

gab(uav) = gaﬂ(maio)Bg(xaio)B[g(ma'i-O)
If we put v* = Cy, k=m +1,... ,n we obtain

Gab = gab(ua C_'m+17 <. 7Cn)7

a Riemannian metric on the subspace z® = z*(u,... ,u™, Cpy1,...,Cr). The

more interesting case is when B2 = B%(z) on the whole F,, (rank[B%] = m).
The equations dz® = B2(z)du® (dv* = 0) define a family of subspaces F,,
% = z%@ul,... ,u™,Cpy1,-..,Cp) for which B%(z) are the tangent vectors and
N2 (x,%) are the normal vectors because gog(z,2)Bg(2)Nf(z,&) = 0. The in-
duced metric is defined as usual by gq5(u, %, v,0) = gap(x, &) BY (x)Bbﬁ () and it is
a Finsler metric when ¢ = 0 (i.e. #* = B(z)u?) and v* =Cy, k=m+1,...,n
on the subspace

@ = 2%l ... ,u™, Crit,-..,Ch).
The situation is similar when N = N2(z), k=m +1,... ,n and By = B¢(z, 1),
only then N are the components of tangent vectors of the subspaces and By are
the normal vectors.

The induced differentials D&?, DE* are defined by

D¢ = B2D¢®, D¢k = NEDege.
For the special case when ¢¥ = 0 and £°%(u, v, @, 0) = £%(u,u), where all v* are fixed
and 0¥ = 0 for k =m +1,... ,n we have the classical case where £ = B2 and
£ = Bgee.

In 4 are given conditions when the tensors g,; and g, will be recurrent with
respect to different kinds of covariant differentiation.

2. The induced connection coefficients in a recurrent Finsler space.
In the Finsler space F,, the metric function is F'(x, &). Let us define m vector fields
Bg(x,%) and n-m vector fields N (z, &)

o, B,7,0,6,x%,-.-=1,2,...,n
a,be,dye, f,...=1,2,... ,m
k,l,m,n,p,q,...=m+1,...,n

in such a way that these vector fields be linearly independent at each (z,%) and
satisfy the relations

(2.1) 9ap(x,®)Bg (x, 2)Ni'(z, %) = 0
foreacha=1,2,... ,m, k=m+1,... ,n. Let us define
(2.2) a) gab = gaﬁBffo b) gu = ga,@N;?N,ﬁ

(2.3) a) Bg = g”bgang‘ b) N(f = gkmgagNﬁL
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where g3, B and N,f are zero degree of homogenity in &, (¢°®) and (g*™) are
inverse metrices of (gq) and (grm) respectively. From (2.2) and (2.3) we have

a) NC’iNI‘,I = gklgagNlﬂN;f = gklglp = 65

(2.4)

b) BB =g*gasBlBf = g*ges = & -
As usual
(2:5) 3% = BB + NNk

If £*(z, 2) is a vectorfield in F,, homogeneous of degree zero in &, then
£ = Bye® + Ngh

We may write

(2.6) dz® = B%du® + N{dv*

(2.7) % = B24® + Npok.

Let us define the absolute differential which corresponds to the motion from (z, i)
to (¢ + dz, £ + dz) by D.
The induced differentials are defined by

(2.8) a) D¢* = B2DE™  b) D¢k = NFD¢e

and

(2.9) D¢* = BEDE® + N2 DeF.

We shall use the notation

(2.10) 1 = F'4* = F-Y(B24® + N2o%) = B21* + N2
where

(2.11) 1*=F"1qe,  IF=F"1pk

From (2.9) we have

(2.12) DI* = B®DI* + N2 DIk

where

DI* =dI* + Fagdaﬂ + Aoz DI7.
We shall suppose that the metric tensor is determined by
(2.13) Gop(2, %) = 2710,05F2 (x, %)
and that the space F, is recurrent, i.e.

(214) Japly = /\’Y(mai")gaﬁ-
(2.15) gaﬁ|fy = ,uv(m, fif)gaﬁ-
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As
(2.16) Dgog = aplydz” + gas|, DU
from (2.14) and (2.15) we obtain

(2.17) Dgop = K(z,&,dz, Dl)gqgs-
where
(2.18) K(z,&,dz,Dl) = \y(z,Z)dz” + p(z,2)DI".

The absolute differential of g,z is

(2.19) Dga,g = dgaﬁ - (F;‘,syg(slg + F;‘,syga(g)dw’y - (Aaé,ygag + Aﬁé,yga(;)Dl’y.

The connection coefficients are determined in [2] under* conditions I'l 5. = T 5,

and Aspy = Agay, but in [3] under conditions I}, =175, Aagy = Ayga-

In this paper we shall use two last conditions.

The vector dz7 and DI” (y = 1,2,...,n) are not linearly indipendent. As
is known that in the non-recurrent Finsler space from g,5l%1° = 1 it follows that

oD% = 0. In a recurrent Finsler space from g,5l®l” = 1 we obtain using (2.14)—
(2.16)

(2.20) Agdz® + (pg + 215)DIP = 0.

In [3] the induced connection coefficients are determined, but (2.20) was not
taken into account. Here this will be done and we obtain a family of connection
coefficients depending on some parametres. As in [3] we shall write

(2.21) DBY = wl(d)BS + @™ (d)N2

(2.22) DN = w}(d)BS + wi' (d)N2

where

(2.23) @?(d) =T gdu’ + T jdv* + A% DI + A% Di¥
z=d or x =m, y=a or y==k.

From (2.1) and (2.17) we have

D(9apBENY) = gap(DBZ)N; + gap B DN} = 0.
Substituting (2.21) and (2.22) into the above equation and using (2.2) we obtain
(2.24) Wak = —Wha & Jkm®)) = —GabW},

the same equation as in a non-recurrent Finsler space. If we express DBS by the
connection coefficients of the space F,, and use (2.6) and (2.12) we get

(2.25) DBg = (BSzdu® + BS|3DI*) B + (BS zdv* + Bg|zDIF)NY,
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where

a6 " Bie=00BI-8BIT +T3EY (T =T i)
b) B2z = FosB2(85 — Al’s) + AsBBL (Aol = A1)

If we substitute (2.6) and (2.12) into (2.20) using the notations

(2.27) )‘b:BbIB)‘ﬁ: /\k:Nllf/\ﬁa Nc:Bl?Mﬁa Nk:leNBJ
we obtain
(2.28) 0 = 0%(x,3)[Nodu® + Apdv® + (up + 213) DI® + (uy, + 21;) DIF]

where 65 is any parameter homogeneous of degree zero in . If we equate the right
hand side of (2.21) with the sum of the right-hand sides of (2.25) and (2.28) we get
an equation where on the both sides terms with factors du®, dv¥, DI® and DI* are
present. Equating the corresponding coefficients we obtain

du’ :  T,3B3 +T, 7N = BgyBy) + 05\
dvf : T,4B§+T,RN2 = B2 N, + 62\
DI*:  AABS+AJNZ = B 3B + 62 (us + 21y)
DI* ASBG + AN = Be|sNy + 05 (ke + 21k)

Multiplying the above equations first by g.,B7 then by g.,N; and using the
notation 8,c = 05 gayBY, Oan = 05 gayN,] we obtain

(@) They = 90y BIBY B + fachs

(b)  Tiok = 9oy BINYBS 5 + bachi

(©)  Aach = gay BI B} B2|s + bac (s + 21s)
(2.29) (d) f_lack = ga'szNkﬂB,ﬂg + Onc(pr, + 211,)

(e) anb = gangBEng + 0ane

() Thuk = 9ar NINY Bs + Oan e

®)  Aanb = gar N By BE| 5 + Oan (1 + 21)

(h)  Agnk = gar NINY B 5 + Oan (1r + 211).

In a similar manner using the expression for DN and the notations

a _ L«
Ve = Vg, ga'yBg; Vgn = Vg, ganga



Different kinds of the covariant differentations in recurrent Finsler spaces

where vy (2, &) is any parameter homogeneous of degree zero in & we obtain

(a)

(b)

()

(d)

(2.30) @
(f)
(
(

8)
h)

Thes = 9oy BIBY N + Ve Xy

Tiet = 9oy BIN] Nilg + vieh

Apes = gay BYBY NE| 5 + vie (up + 213)
Ape = ganleﬂNﬁg + ve(p + 21;)
Thnp = 9ar N BY Nt + Vkn o

it = 9 NN N 5 + vien

Ak = gay NI B NE| 5 + Vin (s + 213)
Api = ga’yNngNﬁg + Vin (u + 20)

167

The connection coefficients obtained in [3] are the special case of those ob-
tained here, when we take 85 = 0 and vif = 0.

The parametres 69 and vg cannot be chosen arbitrarily because of (2.24),

from which we obtain

gk (T,2du® + Tytdot + A3 DIP + A DI
= —gaa(Tiddub + Ty ddv' + 4,4 DI° + A,4D1Y).

From the above relation it follows

T * —_ T * Tk — Tk
(2 31) akb — _Fkab akl — — * kal
Aaks = —Agab Aakt = —Agal-

Substituting the connection coefficients from (2.29) and (2.30) into (2.31) and

using the relation

90y B g Ny + gan BENT 5 =0

and the similar one with 5 we obtain

(2.32)

oak = —Vka-

3. Different kinds of covariant differentiation. From (2.7) and (2.12)

we have

(3.1)  DI* = B®DI® + NeDI* = (DB®)i® + (DN2)I™ + BdI® + N&dl*.

In we substitute from (2.21) and (2.22) the expression for DB and DN2 using

the notations of [4]

(3.2) I_“Szy = f‘;myla + f‘;fylm x=dorx=m

Afyy = A1+ AT 1™ y=bor y=k
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we obtain
(3.4) D¢ = di* + Ty3du® + 3, %dv* + A4 DI* + A% DI*
(3.5) DI™ = dI™ 4 Ty du® + 5,7 dv* + A7 DI® + A7 DIk

From (2.11) we have

di* = F~'dit + w%dF~',  di™ = F~'do™ + o™dF~!.
If we substitute the above equations into (3.4) and (3.5) we get
(3.6) du® = —FT %du® — FT 4dv* + F(6¢ — AS)DI® — FASR DI* + 4 F~1dF
(3.7) di™ = —FT Pdub — FT Tdv* — FAJPDI® + F (67 — A7) DIk + o™ F~dF.
For any vectorfield £%(z, ) in F,, we have from (2.9)
(3.8)  DE* = BEDE® + NEDeb = (DB)E® + (DNR)EF + BXde® + NYder.
Substituting du? and do™ from (3.6) and (3.7) into
(3.9) de® = §46%du + 8468 du? + 6, 0dv™ + Gy £0dD™
(3.10) deF = 6468 du? 4 5467 di? + 6, 8 dv™ + 6, R d0™

and so obtained dé® and d¢F into (3.8) we obtain

DE* =Bg (3 du® + €%, dv™ + €|, DI° + €%, DI™)
(3.11) + NS du® + €2, dv™ + €7, DI + €7, DI™)
+ BAF 7 dF(646%0% 4 8, %0™) + NEF Y dF (6460 + 6™ 0™)

where
(@) &F. =067 — Foat"Tod — Foe"Tof + T,7€" + Tye"
312 (b) EFm = dmt” — Fsdsffé;:z - ﬁjskfw_fafz +_sz;§” +_fim§k
(c) €. =Foag™(62 — Agt) — Foe™ A + A,56" + A7

(d) 5% = —F0a€" At + Fore™ (0%, — Ak ) + A%, 80 + A, &*
r=aorzx=n.
Using the homogenity conditions for £2 and ¥ we have (see (1.2))
646208 +6,,650™ =0 (z=a or z =k),

so the last two terms in (3.11) are equal to zero and we obtain

(3.13) D¢™ = B®DE® + N2 De™,
where
(3.14) DE® = €2 duf + €%, dv™ + £°, DI° + €%, DI™

(3.15) DE™ = €7 du + £, dv™ + €7, DI° + ¢, DI™.
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For the metric tensor g.g the above formulae have the form:

Dgop =B5(gabcdu’ + gaprdv® + gabI DI° + gam DI*
(316) + Dgtﬂg(gnt'l'cduc + gntde'Uk + gnt|c ch + gnt|k le)
+ fap(Nedu® + Agdv* + (pe + 21e) DI° + (py, + 1) DIY),

where éag = éag(a:, %) is a tensor homogenesous of degree zero in £ and
9gabTe = 029ab — FdagarTol — FomgarTol — garToy ¢ — gral'd
(x=cor z=k),
GniTe = Sagnt = FoagniTof — FomgniToy = gmilrs™ = gum Do
(x=cor z=k),
galm =F Sdgab(fsf - Agc) - F (.smgabfigi - gdbAgc - gadlegc:
gat|k = —Fbagar Al + Fomgas (57 — AT) — gar Ay — gaaAlh,
9n$ = F(.Sdgnt((sg - Agc) - FSmgntASZ — 9me AR, — gum ALl
gnms = —Fougni Ay + Fomgni (67" — AG}) — gmt Ay — Gnm ATL-

(3.17)

The above relations are valid only on condition that
(3.18) 8eGapit® + Opgapt® = 0

which is satisfied because gqp(u,v,,0), gne(u,v,u,0) are homogeneous of degree
zero in 4 and o.

In [3] DI® and DI* are defined by
(3.19) a) DI® =dI® + Ty2du’ + Toidv®, b) DI* = di* + T kdu + TyFdv'.

These formulae are different from (3.4) and (3.5) of present paper, but they
may be obtained as a special case of (3.4) and (3.5) if we put

62 =0, vg=0, AL DI®+ AL Di¥=0, ATDI*+ AT DI* =0.

a

Only under these conditions (3.19) and (2.12) are consistent. The conditions
Ag,DI® + A%, DI* = 0 z = d, or £ = m are equivalent (according to (3.12) and
(3.16) of [3]) to BEDI?(B2| 41 + N¢|5l*) = 0 and N DIP(B2|4l° + N2| 5i") = 0.

Both conditions are satiafied when
(3.20) DIP(Bg|l* + Ngjgl*) = 0.

If we define DI* and DI™ as we have done here by (3.4) and (3.5) then we do not

have the restricted condition (3.20). gam , gab| k> gnt|c , gnt| r given by (3.17) have
more terms containing Af, then the corresponding formulae (4.15) of [3].
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If F,, satisfies ga,g|,y = 0i.e. p, = 0 then AG; = 0 and the condition (3.20)
reduces to DIP[(§3B2)I® + 65 N&)I¥] = 0. Using (2.6) and (2.7) we obtain

(3.21) Dgop = Blgapisdu® + N{gapisdv® + B gas s DI + Nfgas s DIF.
Comparing (3.21) with (3.16) we get

(3.22) Blgasis = Bg%gach + NZ2hgnete + fape

(3.23) N{gapis = B2hgavth + N2bgnie + N

(3.24) Blgasls = B%gab]e + Nibgntle + 0ap(pe +21.)
(3.25) Nigagls = B gas|k + N74guilk + Oap (s + 20k).

Multiplying (3.22) by B¢ and (3.23) by N¥ and adding these relations we get

(3.26) gaply = Bay,gave + BSsNEgasth + N25BSgnite + NG gnite + A NOwS
By the same process from (3.24) and (3.25) we obtain

Jop|y = Baﬁrygab| + Baﬁngab|k + N, ﬁB'ygnt|

(3.27)
+ N2 mgnnk + 9049(/17 +21,).

THEOREM 3.1. The necessary and sufficient conditions for gog, = Aygap
are

(3.28) (a) Gablc = Ac(gab — éab) (c) Intlc = Ac(Gnt — ént)
(b) gasjk = Mr(gab — Oap) (d) gntjk = A(gne — One)
where

(3:29) Ay =BA+NFN,  bap =04B2% + 0, N8, baiphasBENY = 0.

Proof. Substituting (3.28) and (3.29) into (3.26) we get

Gaply =B (B + NEA) (gab — ban)
+ NZE(BEAe + NEA) (gne = One) + Ayfap = Mygap.
On the other hand if g, g, = Ay gag then from N¥B2 =0, B¢BE = §5, NO N = 67
and (3.26) we obtain
9aplyBIE] = 636059ase + Aabe = greta = Aa(gse — O1c)

9apBEBINY = 636%58 gastic + Anfre = gretn = Anlgse — Oye)

gaﬁllegNzﬂBg = 676105gnTe + Aabri = grita = Aa(grt — 9kl)

gaﬁlngNlﬂNgm = 53515k IneTh + A epl = gpiTm = Am(gpt — épl)-



Different kinds of the covariant differentations in recurrent Finsler spaces 171

THEOREM 3.2. The necessary and sufficient conditions for gag|7 = U~rGaB

are

(3.30) (a) gaiﬁ = pegab — (ke + 2lc)‘?ab; gnt} = fregnt — (pe + 216)%
(b) gav|k = ftkgas — (ke + 206)0as, Gtk = 1kt — (ke + 20k)0ns

where

(3.31) fty = BEpe + N¥py

The proof follows from (3.27) using the similar method as in the previous
Theorem.

4. Connection between the partial differentiation with respect to
different variables. In formulae (3.12) we can not calculate 6.6, 6,,E%, 84€°,
5k§z because we do not have the explicit expression z¢ = x*(u,v,%,0) and £* =
£*(u,v,4,0). This difficulty may be overcome in such a way that the mentioned
expressions are substituted by anothers in which the partial derivatives with respect
to z and & are present. Starting from (2.8) and (2.28) we may write

(4.1) D¢* = BLDE™ + (076" + v €™ BLD
(4.2) D¢ = NpDE™ + (058" + v ¢™)NLD
where

D = Aedu® + Apdv® + (pe + 21.)DI° + (uy + 20x)DI* = 0.
On the other hand
(4.3) DE™ = §5€%da’® + €%dit + T5¢Pda® + AF56° DI°.

Substituting
di' = F(85 — Ay DI’ — Ty'da’® + F*dF3'

in (4.3) and using the notations

(4.4) €5 = 05" — §€°T !
(4.5) &5 = Foie™ (55 — Ads)
(z = b or x =m) we obtain

D™ =(&"Biis + €™ Ny 5 + Bpéls + N3 ) (Bodu® + Npdv")
+ (&Bjls + €M NG| + Byels + N3 (BSDIC + N DI¥).

Substituting (4.6) into (4.1) and (4.2), using the notations of (2.29) and (2.3)
after a comparation with (3.14) and (3.15) we get

(4.6)

(@) &5, =BXG+T,7¢ +T,0¢6m
wn (b)  &fy = N5+ f}fs” - f}n’”ksm

(©) &, =Blh+ AL+ A7, €m

(d) & =NEG + Az + Az em
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(x=a or z=m).

Comparling (3.12) with (4.7) we get

~—

(a) 0.8 — Foat"T ¢ — Fope°T ok = B¢,
48) (b)  Om&” — Fba€°T ol — ForE°Tok, = N2 &%
' (c)  Fbu€™ (52 — AL,) — Fore” Ak, = Bo¢S
(d) = Foa" AL, + For&=(ok, — Ak )= N3

(x=a or z=m).

The same formulae hold when in (4.8) &% is substituted by gap or gns. For gap
(4.8a) takes the form
5cgab - Fédgabf;g - F(;mgabfagn = B(csgab,é

(4.9) ) *
= Bg[éé(gaﬁB:Bf) - 6L(gaﬂB:Bf)Féb]

where we have used (4.4) in which £” is substituted by ggp-
If we substitute (4.9), T, and T, defined by (2.29a) into

*

bac
9avTe = 6cgab — FdagasTo? — FomgasTol
— 9L o — gaaTyd
we get

(410) GabTe = Bc’YBngﬁga,Bh - Ac(eab + eba) = )\c(gab - éab)

where we put O, = 0y +0pa. It is evident that (4.10) and (3.28a) are the same for-
mulae, but fgom (4.10) follows that gapTe = Aegep When we choose such a connection
coefficients F;bc in which 6., = 0.

Similarly, using (3.12c), (4.5) and (2.29c) we obtain

gavle = Fagan(08 — AL,) — Fémgar AT
- gdbfiffc - gadfi;,"c
= BYF4,(9ap BBy ) (05 — Als) — 9apBy BB5
- gﬁch?B(csBﬂé — (pe + 21.)(0ap + Opa)
= gavle = BLE (gapls — (pe + 20e) Bap + 05a)

~

= HcGab — (Nc + 2lc)0ab

(4.11)

(4.11) is the same as (3.30a). frorrl (4.11) follows that gabI = legep When we
choose such connection coefficients Agpe in which 6,5 = 0.

We have



Different kinds of the covariant differentations in recurrent Finsler spaces 173

- THEOREM 4.1. If in the recurrent Finsler space the connection coefficients
T and A defined by (2.29) and (2.30) in which 8, = 0 and v, = 0 are used

(Vnk + Vkn = Oni) then
gabTe = AcGab,
GntTe = Acdnt;
gam = HcGab,
gnt_|c = HKcdnt,

GabTk = AkGab,
IntTk = Aknts

Gab|k = [k Gab;
gnt|k = KkInt-

The part of proof are (4.10) and (4.11). The other formulae can be obtained

in the similar way.
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