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SUMS OF PRODUCTS OF CERTAIN ARTHMETICAL FUNCTIONS

Aleksandar Ivié

Abstract. Sharp asymptotic formulae for certain sums of the type >, .. f(n)g(n) are
derived, where f is a suitable multiplicative and g a suitable additive function. The proofs
are based on an analytic method which consists of considering the Dirichlet series generated by
f(n)z9(™) | z complex.

1. Introduction

To estimate sums of the type Y~ . f(n)g(n), where f is a multiplicative and
g an additive function, one may use that following general analytic approach. If
z is a complex number, then h,(n) = f(n)z9™ is a multiplicative function of n.
Thus if a good approximation to

(L1) Fla,2)= 3 f(n)2*™

n<z

may be found by using the methods from the theory of multiplicative functions,
then various arithmetical sums involving f and g may be obtained from (1.1). If
g(n) takes only nonnegative integer values, then F(z, z) is a polynomial in z which
we expect to be well approximated by functions regular for |z| < 1, say. Then
F(z,z) may be integrated, differentiated, etc. as a function of z. In particular,

(1.2 3 fmgtn) = 282

n<lz

z=1

and it remains to evaluate the function on the right-hand side of (1.2). This pro-
cedure may be carried out further to yield, for m > 1 a fixed integer,

(1.3) Z fn)g™(n) = a% <z (z%) >
n<lz _/—/ z=1
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More generally, one can estimate the sum

(1.4) > f)g(n)...grr(n)  (ma>1,...m, > 1 integers),
n<z
where ¢1, ..., g, are suitable nonnegative, integer-valued additive functions. This
follows by considering the sum
(1.5) F(ziz1,...,2) = 3 f(n)zf™) . 2™
n<lz

and applying the technique of (1.3) to each of the complex variables 2y, .. ., 2.
1.4)

If instead of the sum in ( one wishes to evaluate the sum

* f(n) .
(1.6) Z g{nl(nO..n.gl”’“(n) (my,...,m, > 1 integers),

n<lz
where }° denotes summation over those n for which the denorninator in (1.6) is
positive, this may be also achieved via (1.5). First we estimate the portion of the
sum in (1.5) for which ¢;(n) =0,...,g,(n) = 0. Then dividing the remaining part

of the sum in (1.5) by z1,..., 2, and integrating over each variable from e(z) (> 0)
to 1 (where £(z) is suitably chosen and satisfies lim, o4 £(x) = 0), one arrives at
(1.6) with m; = --- = m, = 1. By repeating this procedure one may evaluate also

the general sum (1.6).

It has been already stated that if g(n) is a nonnegative, integer-valued additive
function, then the sum in (1.1) is actually a polynomial in z. Hence equating the
coefficients of 27 of both sides of (1.1) we are able to evaluate asymptotically the
Sum - < o(n)=q f (n) for a given integer ¢ > 0, which may be termed as a “local”
problem. This topic will be pursued in §4, while in §2 and §3 we shall derive sharp
asymptotic formulae for various sums of the type (1.4) and (1.6).

2. Sums with the divisor function

The technique described in §1 as, at least in principle, fairly well known (see
[3], [1] and [7, Ch. 14], for more details and references). The pioneering work
in this field was done by A. Selberg [8], who was the first to estimate sums of
d.(n) (see (2.4)), 2™ and 2", Using these ideas it is possible to obtain general
results concerning the sums described in §1, but both the formulation and proofs
of such theorems would be technically complicated and not very instructive, and
none seem to have appeared in the literature before. Therefore it seems preferable
to derive sharp asymptotic formulae for some common arithmetical functions, and
to indicate how various other formulae may be derived in many other cases. For
g(n) we shall primarily take w(n) or Q(n), the number of distinct prime factors and
the number of all prime factors of n, respectively. It will be clear from the sequel
that the results may be generalized to other nonnegative, integer-valued additive
functions such that g(p) is a constant for all primes p, and g(n) is in some sense
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of moderate growth. In this section we shall specify f(n) = di(n), the number of
ways n may be written as a product of k fixed positive integers (di(n) = 1 for all
n). In general, one defines for an arbitrary complex z the multiplicative function,
d,(n), commonly called the generalized divisor function, by the relation

(2.1) S d(n)n* = C(s), (Res > 1),
n=1
so that d.(p®) = (“*27"), where a branch of (*(s) in (2.1) is given by

oo
¢*(s) = exp(zlog ((s)) = exp < - zZZj_lp_js) (Res > 1).
p j=1
Here and in the sequel ((s) is the Riemann zeta-function, and p denotes prime
numbers. In [2] De Koninck and Mercier investigated certain sums of the form
(1.2) by the method of §bf 1, and they stated a general theorem which implies that

(2.2) Z d(n)w(n) = 2zlogzloglogz + Azlogx + O(x)

n<lz

holds, where d(n) = da(n) is the number of divisors function, and A is an explicit
constant (see also [1, Ch. 9]). An asymptotic formula for the sum in (2.2) may
be also easily obtained by an elementary argument. Writing w(n) = Zp‘ » 1 and
noting that d(p>n) — 2d(pn) = —d(n) for all primes p and n > 1, we obtain

Z d(n)w(n) =2 Z d(n) — z d(n).
n<z pn<z p2n<z

Hence using classical estimates for sums of d(n) and 1/p it follows after some
simplification that

(2.3) Z d(n)w(n) = 2zlogzloglogx + Azxlogz + Bz loglogz + Cz + O(lo:gcaz)
n<x
with explicit A,B # 0 and C. This was pointed out recently in a letter of R.
Sitaramachandrarao to De Konick [9], who kindly informed me of this and indicated
that by an elaboration of the above elementary argument (2.3) could be further
sharpened. Thus (2.2) (and also Th. 8 of [2]) is not correct as it stands, but
should have O(zloglogz) instead of only O(z) as the error term. In what follows
I shall use the analytic approach described in §bf 1 to derive a formula which gives
as a special case a considerable sharpening of (2.3), and point out how the error
committed in [2] in deriving (2.2) may be easily removed. All the theorems which
follow are the sharpest ones hitherto.

For our proofs we shall need the asymptotic formula

(2.4) D,(z) = Z d.(n) = c1(2)zlog” & + - + en(2)zlog” N a2+

n<lz

+0(z(logz)"e*~N71),
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where N > 1 is an arbitrary but fixed integer, for j = 1,..., N we have c;(2) =
B;(2)/T(z — j + 1) and each B;(z) is regular for |2|] < A (A > 0 is arbitrary but
fixed) so that ¢;(0) = 0 for j > 1 and ¢;(1) = 0 for j > 2. This is a result proved
by R.D. Dixon [5], a proof of which may be also found in [1, Ch. 1] or [7, Ch.
14]. Dixon sharpened the result of A. Selberg [8], who proved (2.4) with the error
term O(z(log z)®¢*~2). Now consider, for Res > 1 and |z| < A (4 > 1 fixed, the
Dirichlet series

(2.5) Fi(s,2) =Y dp(n)z*™n~*
=t
=11 (1 +zkp~® + (k ;F 1> — 4 (k ; 2) Bt S ) = (" (5)Gi(s, 2),
»
where
Gr(s,2) = i g(n, 2)n=* = [[(1 = p~*)" (1 +hopt 4 (k‘; 1) 4 > .
n=1 V4

The Dirichlet series for Gg(s,z) converges absolutely and uniformly for Res >
1/2+ € (¢ > 0 fixed) and |z2| < A, where it represents a regular function of z.
This follows e.g. by a lemma of H. Delange [3] (see also [1, Ch. 5] for a proof),
which formulated for our purpose states the following: Suppose that up u,(s, 2)
and v,(s, z) are two sequences of complex functions defined on s € A, z € B, and
suppose that for every prime p there exist constants U, and V}, such that

lup|(s,2) < Up, |up(s,z) —vp(s,2)| < Vp, ZUpz < o0, ZVP < 00.
P P

Then the infinite product [],(1 + u,(s,2)) exp(—vp(s,2)) is uniformly convergent
and bounded for s € A, z € B.

From (2.5) it follows that d,(n)z*(™ is the convolution of d (n) and g (n, 2).
Hence using (2.4) we obtain

Z dk(n)zw(n) — Z gk (n, 2)dg,(m) = Z g (n, 2) Dy, (%)
n<lz mn<z n<lz

= 3 g, 2)De (§)+0( > lok(n,2))

n<z/2 z/2<n<z

N W
x Z gr(n, z)nt ch(kz) (log%)kz ’

n<z/2

+O Z |gk(n,z)|n—1 (log%)Rekz—N_l

n<wz/2

+ O(z'/?*e).
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But for each j and M > 1 arbitrary, but fixed, we have

kz—j foi logn Rekz—N—j .
Z gr(n, z)n~ (log ) =log™* 7z Z (1 - @> gr(n,z)n~

n<z/2 n<z/2
kz—j logn\" ,
=1 kz—j -1 Rekz—M—j—1
ot Z P(77) S (L) o+ 0((og ) )
n<lz/2
M
Z loga: kz —j— T+0((10g$)Rekz M—I— 1)

r=0

where each d, ;(z) is a regular function for |z| < A. Here we used the fact that, for
C a constant, we have by partial summation

o
Z gr(n)n~"log” n = Z gr(n, 2)n"'log® n+ O(z=1/?+e),

n<z/2 n=1

since Gy (s, #) is absolutely convergent for Res > 1/2 + ¢ and |2| < A. Thus from
the preceding discussion we obtain

(2.6) 3" di(n) w<")—x2ek, )logh* =iz + Ry, N (z, 2),

ngz
where each ey j(z) and Ry n(z,z) are regular functions of z for |z| < A, and
Ri,n(z,2) < z(log g)Reke—N-1,

Moreover, we have e ;(0) = 0 for all j > 1 and e (1) = 0 for j > k + 1, since
¢j(kz) = Bj(kz)/T(kz — j + 1) (the ¢;’s are defined by (2.4)), the gamma-function
has poles at nonpositive integers, and each ey, ;(z) is seen to be a linear combination
of the ¢j(kz)’s. The formula (2.6) is a generalization of the formula obtained for
k = 1 by Delange [3], who obtained his result by complex integration. The same
could have been done for (2.6) to, but it seemed simpler to use convolution and the
sharp existing formula (2.4) for D,(z). The idea of our approach is to link directly
this topic to the theory of the Riemann zeta-function.
Now we choose A = 3/2, r = 1/loglogx and set s = z + re?, 0 < 0 < 27.

By Cauchy’s formula for derivatives of analytic functions we have, for m > 1,

Om Ry N(x,2 m! e

% =om /Is o Ry n(x,8)(s — 2) lds

27
< z(logz)Rekz-N-1p—m df < z(log x)Re*="N-1(loglog z)™
0

Hence for |z| < 1 it follows that uniformly

(2.7) O™ Ry n(x,2)/02™ < z(logz)" N (loglogz)™ (m=1,2,...),
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and this bound cannot be improved. It is this step in the proof of (2.2) which was
carried out incorrectly in [2], where for £ = 2, m = N = 1 the loglog z-factor
in (2.7) was missing. Now we differentiate (2.6) with respect to z. This gives, for
2l < 1,

IVE

(2.8) Z dr(n)w(n)z*™=t = g

n<lz J

(er,;(2) + key, () loglog x) logh* =7 o+
1
aR]%N(IL', z)
0z '
Replacing N by N + 1, using (2.7) with m = 1 and recalling that e ;(1) = 0 for
j >k + 1, we obtain upon setting z = 1 in (2.8) the following

+

THEOREM 1. Let k > 2 be fized and N be an arbitrary, but fized integer for
which N > k. Then there exist computable constants a,j, by, ;,ck,; (ak,j # 0) such
that

N
(2.9) Z dr(n)w(n) == Z(akﬂ' loglog z + by ;) logh™7 =
n<lz j=1
N .
+z Z e jlog" 7z + O(zlogh—N1z).
j=k+1

In the special case k = 2 this asymptotic expansion yields a considerable sharpening
of (2.3). Proceeding from (2.6) as in (1.3), and using (2.7) with an arbitrary m, we
obtain also

THEOREM 2. Let m,N > 1 and k > 2 be fized integers. Then there exist
polynomials Py m i(t) (7 =1,...,N) of degree m in t with computable coefficients
such that

N

(2.10) Z di(n)w™(n) =z z Py j(loglogz)log" 7 «
n<lz j=1

+ O(z(log 2)* N1 (loglog z)™).

3. Further applications of the method

Theorems 1 and 2 remain valid if w(n) is replaced by Q(n), as hinted in §2,
and it seems difficult to obtain formulas such as (2.10) by elementary methods.
Some caution, however, must be displayed in dealing with Q(n), since this is a
“larger” function than w(n) and the analogue of (2.6) is valid only for |z| < 2 —e¢,
which follows if one considers the analogue of (2.5) for Q(n). The ideas connected
with (1.3) and (1.6) may be combined to deduce from the asymptotic expansion
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of 3 . di(n)z*™MwH™ by successive differentiation and integration (the latter
is explained in full detail in [1, Chs. 2 and 5]), an asymptotic formula for the
summatory function of di(n)w™(n)Q2"(n), when m and r are fixed integers (not
necessarily positive!). The details of the analysis are omitted and the result, which
is a generalization of both Theorem 1 and Theorem 2, is the following

THOREM 3. Let k > 2, m, r be fixed integers (not necessarily positive), and
let N > 1 be an arbitrary, fixed integer. Then

N
(3.1) Z d(n)w™(n)Q"(n) =z Z ¢;Lj(z)logh I &

2<n<lz
+ O(z(log )N~ (loglog z)™ T,

where for any fized integer M > 1 there ewist computable constants by j,...,bar,;
such that for j=1,...,N
b1, bar ; 1
L' — 1 1 m+r 1 sJ 3] 0( )
i(@) = (loglog z) { + loglogx + (loglog )M + (loglog z)M+1

if either m < —1 or r < —1, otherwise L;j(x) is a polynomial in loglogx of degree
m+r.

One may obtain the analogues of Theorems 1 — 3 if dj(n) in replaced by some
other common multiplicative functions such as

n=a2+b?
a(n) (the number of nonisomorphic abelian groups with n elements) which corre-
sponds to k = 1 on the right-hand side of (3.1), f(n) = d(n?)(k = 3), f(n) =
d*(n) (k = 4) etc. The analysis is again very similar to the previous case and
therefore the details are omitted.

Another possibility is to take for f(n) a multiplicative function for which f(p)
is not exactly a constant, but f(p) = C+0(1) as p — oo for some C' > 0. Examples

such as ) ) ) .
a(n w(n
= — = —_ == — = ]_ _——
O S O e I ((E
din pln

and their unitary analogues o*(n)/n, ¢*(n)/n immediately come to mind (recall
that o*(p®) = p® + 1 and ¢*(p®*) = p® + 1). For simplicity we shall consider now
f(n) = ¢(n)/n, but obviously the argument is fairly general. For Res > 1 and
|z| < A (A > 1 fixed) we have the Dirichlet series representation

7; f(n)z*Mp=s = 1;[ <1 + (1 — %)zp_s + (1 - %)zp_% +.. )

—¢(s) [[ - ) (1 ¥ %) = ()Y gl 2~ = C(5)G(5,2),
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say. Following the discussion that leads to (2.6), it is seen that the Dirichlet series
for G(s, z) is absolutely convergent for Res > 1/2+ € and |z| < A. Hence by the
method of §2 we obtain (this corresponds to Theorem 1 with k£ = 1)

N
(3.2) Z f(n)w(n) = z(Aloglogz + B) +x ch log 9 & + O(zlog V1 z)

n<lz j=1

with some computable constants A # 0, B, ¢1,..., ¢y, and N < 1 arbitrary, but
fixed. By partial summation we have

x

> wlmetn) =2 3 fnon) = [ (X foem)

n<z n<z n<t

hence using (3.2) and simplifying we deduce

THEOREM 4. If N > 1 is an arbitrary, but fized integer, then there exist
computable constants C > O,D,dy,...,dnN such that

N
(3.3) Z o(n)w(n) = Cz?loglogx + Dx? + z* Z djlog™ 4+ O(z?log™V ' z).
n<lzx j=1

Obviously (3.3) remains valid (with perhaps different constants) if w(n) is re-
placed by Q(n), and if ¢ is replaced by o,p*,0*, or more generally, by a suit-
able “polynomial-like” multiplicative function, i.e. by a function for which f(p®)
is a monic polynomial of degree a in p. Multiplicative functions f which are
“larger” than ¢ or ¢ may be also considered, but they should be first appropri-
ately normalized. Consider, for example, the function ¢?(n)o(n). Then setting
f(n) = ¢*(n)a(n)n=2 we have f(p) =1+ O(1/p), and a suitable analogue of (3.2)
holds. Partial summation yields then the analogue of (3.3) for ¢?(n)o(n) with z2
replaced by 2* on the right-hand side of (3.3). Also by the foregoing methods more
general sums than (3.3), such as

Z e(n)w™(n)Q"(n), (m,r fixed integers)

2<n<lz

may be estimated, analogously as in Theorem 3.

A special arithmetic sum was investigated by the author in [6], where it was
shown that

(3.4) Z (M) = Azloglogz + O(x)

1<n<z an

holds for some constant A > 0 (a(n) is the number of nonisomorphic abelian groups
with n elements). The motivation for this result is the classical formula of P. Turdn
[7, Ch. 14) that (3.4) holds without a(n), in which case a sharp asymptotic formula
may be obtained by the method of Delange [3, p. 136]. One obtains (3.4) in [6]
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by squaring w(n) — loglogn and estimating each ensuing sum separately (since
loglogn — loglog = + O(1) for z'/2 < n < x, one may replace loglogn by loglog z
in (3.4)). Using the technique of Theorem 1 one may considerably sharpen (3.4)
and show that

(3.5)

2 N
_logl 4
) (M) = Azloglogz + Bz +z Y _ P;(loglogz)log™ »

2<n<z a(n)
o z(loglog z)?
(log z) N+t
for some computable constants A # 0, B, and quadratic functions P;(j = 1,...,N).
Similar results hold if a(n) is replaced by a multiplicative function f(n) such that
f(p) =1+ 0(p™) for some n > 0 as p — oo and f(n) is in a suitable sense

of moderate growth. An appropriate analogue of (3.5) may be derived if a(n) is
replaced by di(n),w(n) by Q(n) etc.

Jj=1

4. Local problems

As stated in §1, by a local problem we shall mean estimations of the sums
over n < z for which g(n) — g. The method of 2 allows us to estimate sums of the

form z f(n) when f(n) = di(n) (or any of the other multiplicative functions
n<z,9(n)=q
mentioned in §3, such as p?(n), a(n), etc.), and g(n) is a suitable nonnegative,
integer-valued additive function. In particular, one may derive sharp asymptotic
formulae for the above sum when g(n) = w(n), Q(n) or Q(n) —w(n). In the sequel
we shall suppose that ¢ > 0 is a fixed integer, since the case when ¢ = ¢(z) is a
function of z is much more difficult.
We start from (2.6), noting that the left-hand side is a polynomial in z whose
coefficient of 27 is exactly Z di(n). Further we shall use the series expansion
n<z,w(n)=q
nCx. w (n)=9

; - (loglogz)™
log* 7z =log 7 Z o 2808 L)

r=0
and we recall that ey ;(0) = 0 for j > 1. Thus finding the coefficient of 27 on the
right-hand side of (2.6) we obtain

r! ’

THEOREM 5. Let k, g > 1 be fized integers, and N > 1 be an arbitrary but
fized integer. Then there exist polynomials Pi(t),...,Pn(t) of degree ¢ — 1 in t
whose coefficients are computable constants depending on k and g such that

N
(4.1) Z dp(n) == Z P;(loglogz)log™

n<z,w(n)=q j=1

+ O(z(log ) N~ (loglog )?7).
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When k£ = 1 (i.e., di(n) = 1 for all n) this is a classical result, proved first by
Delange [3] (see also [1, Ch. Sj), in this degree of sharpness. It is possible to obtain
similar formulae if di(n) is replaced by other multiplicative functions f(n). We
formulate only one example:

N
(4.2) Z o(n) = z? Z P;(loglogz)log 7 = + O(z*(log ) ™ ~*(loglog )7 1),

n<zw(n)=q i=1

where ¢, N and P; have a similar meaning as in (4.1). Both (4.1) and (4.2) holds
if w(n) is replaced by Q(n).

We continue our discussion by considering the local problem connected with
Q(n) —w(n). For Res > 1 and |z| < A (A > 1 fixed) we have

(4.3) Z dy(n) 2wy =
n=1

1 . 2
= (1+kps+ (k;_ >zpzs+(k; >z2p33+...> =

= (*(s)G (s, 2),

where
G(s,2) =) g(n,z)n~* =
n=1
k+1 k+2
= H(l —-p °)F (1 +kp ®+ ( ; )zpzs + ( ; )z2p33 + )
p

is a Dirichlet series which converges absolutely and uniformly for Res > 1/2 + ¢,
|z| < A, where it represents a regular function of z. Hence by (4.3) we have

S di ()24 = 37 g(n,2)di(m) = 3 g(n, 2)Di(a/n).

n<lx mn<z n<lx
The estimation of Dy, is known in the literature (see [7, Ch. 13], for a detailed

discussion) as general Diriclet divisor problem, and one has

(4.5) Di(z) = Z di(n) = ﬁégck(s)wss_l +0(x** = 2P, (logx) + O (x> +°)

n<lz

for a suitable polynomial Py_(t) of degree k — 1 in ¢ and a constant ay which
satisfies (k —1)/2k < oy, < (k—1)/(k+1) for all k¥ > 2. Inserting (4.5) in (4.4) we
obtain, after some simplification

k—1
(4.6) Z dp(n) 2= () = ¢ Z hj(2)log’ = + R(z, 2),

n<lx j=0
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where, for |z| < A, R(z,z) and each h;(z) are regular functions of z and uniformly
(4.7) R(z,z) <« x'/?+e 4 gonte,

This formula serves as the analytic basis for the derivation of results involving dy(n)
and Q(n) —w(n). We have

THEOREM 6. Let m,q > 0 and k > 1 be fized integers. Then there exist

computable constants Ay m,...,Ap—1,m and Bi1g,...,Br_1,4, such that
k—1

(4.8) > dr(n)(Qn) —wn)™ =z Ajmlog’ z+ Oz /2 4 z21e)

n<lz j=0
and

k-1 ‘
(4.9) > di(n) =z Bjlog' x4+ O(a!/* +2+),
n<z,Q(n)—w(n)=q j=0

where ay, is defined by (4.5).

One obtains (4.8) by differentiating (4.6) in the manner of (1 .3), while (4.9)
follows by equating the coefficients of z? on both sides of (4.6). On may replace
dr(n) in Theorem 6 by various other multiplicative functions on the same lines as
in Theorem 5. Both (4.8) and (4.9) for k = 1 are well-known in the literature. In
fact, the estimation of the sum in (4.9) when k£ = 1 is known as “Rényi’s problem”.
The sharpest known formula for this sum is due to Delange [4] (see also [1, Ch. 5],
for a proof). In this case Delang ’es formula is sharper than (4.9) with k£ = 1. Since
as < 35/108 and a3 < 43/96 is known to hold in (4.5) (all the other known bounds
for ay, are not smaller than 1/2; see [7, ch. 13]), one can presumably replace the
error term in (4.9) for K = 2 and ¥ = 3 by a more precise expression, and if the
Lindelof hypothesis that ¢(1/2 + it) < [¢|° is true, then for all k¥ > 2. This would
follow by suitably adapting the elaborate method of Delange [4] used for k = 1.
We shall not go into this matter here.

In concluding, let it be mentioned that the foregoing methods may be used
to investigate “double’ and “multiple” local problems. As an example, we state the
asymptotic expansion

N
(4.10) Z dip(n) == Z P;(loglogz)log™
n<z,Q(n)-w(n)=q j=1
+O(z(log z) "~ (loglog #)7~),

where ¢,k > 1, r > 0 are fixed integers, N > 1 is an arbitrary but fixed integer,
and each P;(t) is a polynomial in ¢ of degree ¢ — 1 whose coefficients depend on
k,q,r. The formula (4.10) follows on comparing the coefficients of z%w" on both
sides of the relation

N
Z dy,(n) 2 MM =eM) = 4 Z fi(z,w)log"* ™ & 4+ O(x(log z)Re =N -1y,
n<lz j=1
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valid for some f;(z,w) (f;(0,w) =0, j=1,...,N) which are regular functions of
both z and w for |z| < 3/2, |w| < 3/2 and N > 1 is arbitrary, but fixed.

(1]
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