ON AUTOMORPHISM GROUPS OF NON-ASSOCIATIVE BOOLEAN RINGS

Sin-Min Lee

Abstract. The present paper is concerned with the study of $\operatorname{Aut}(B(n))$ the automorphism group of a non-associative Boolean rings B(n), where $\langle B(n), + \rangle$ is a free 2-group on n generators $\{x_i\}$ $i=1,\ldots,n$, subject with $X_i\circ X_j=X_i+X_j$ for $i\neq j$. It is shown that for n even, $\operatorname{Aut}(B(n))=S_{n+1}$ and for n odd, $\operatorname{Aut}(B(n))=S_n$. An example of a non-associative Boolean ring R of order 8 is provided which shows that in general $\operatorname{Aut}(R)$ is not a symmetric group.

1. Introduction. All rings considered below will be assumed non-associative. A ring $\langle R; +, 0 \rangle$ is said to be Boolean if $x \circ x = x$ for all x in R. A Boolean ring is always commutative and of characteristic two ([1], [3]).

If $\operatorname{Aut}(R)$ is the group of automorphisms of a Boolean associative ring, it is well known that [2, p. 60] Aut (R) always either infinite, or else it is isomorphic to a symmetric group. However, for non-associative finite Boolean rings, the automorphism groups need not be symmetric.

We exhibit a Boolean ring of order 8 whose automorphism group has 21 elements in section 2.

In general, it is difficult to determine the structure of the automorhism group of a ring. We confine our attention on a special class of Boolean rings B(n) which were introduced in [4]. The additive group of B(n) is a free 2-group generated by $\{x_1, \ldots, x_n\}$ and multiplication subject to the following properties:

$$x_i \circ x_j = x \begin{cases} x_i, & \text{if } i = j \\ x_i + x_j, & \text{otherwise} \end{cases}$$

The Boolean ring B(n) is simple if n is even. For n is odd, B(n) is subdirectly irreducible whose lattice ideals is isomorphic to a 3-element chain [4].

We show that $\operatorname{Aut}(B(n))$ is isomorphic to the symmetric group S_n of n simbols if n is odd and $\operatorname{Aut}(B(n)) = S_{n+1}$, if n is even.

50 Sin-Min Lee

2. A Boolean ring R whose Aut (R) is non-symmetric. Let $R = GF(2^3)$ be the Galois field of order 8. Assume x = 001, y = 010, z = 100, x + z = 101, x + y + z = 111, x + y = 011, y + z = 110. Let y be the primitive element of $GF(2^3)$; then for any $a \in GF(2^3) \setminus \{0\}$ there exist a unique integer t with $0 \le t \le 6$ such that $a = y^t$. We define ind (a) = t. Thus we assume

With the relation ind $(a \circ b) \equiv \operatorname{ind}(a) + \operatorname{ind}(b) \pmod{7}$. We can reconstruct the multiplication table for the Galois field $\langle GF(8); +, 0 \rangle$ [5, pp. 541-546].

Now we define a binary operation *: $GF(8) \times GF(8) \to GF(8)$ as follows: $a*b=a^4\circ b^4.$

We observe that * is distributive with respect to + and $a^{\circ}a = a$ for all a in GF(8). Thus $\langle R; +, * \rangle$ is a non-associative Boolean ring. Its multiplication table is given as follows:

*	0	\boldsymbol{x}	y	z	x + y	x + z	y + z	x + y + z
0	0	0	0	0	0	0	0	0
x		\boldsymbol{x}	x + y + z	y	y + z	x + y	x + z	z
y			y	x + y	x + z	z	x	y + z
z				z	\boldsymbol{x}	y+z	x + y + z	x + z
x + y					x + y	x + y + z	z	y
x + z						x + z	y	\boldsymbol{x}
y + z							y + z	x + y
x + y + z								x + y + z

The automorphism group Aut $(\langle R; +, * \rangle)$ contains the Galois group of GF(8) over GF(2) as a subgroup.

If we represent the elements of R by the following numbers:

then an automorphism φ of R is simply represented by $(\varphi(1)\varphi(2)\varphi(3)\ldots\varphi(7))$ for 0 is always fixed by the automorphism.

The automorphism group Aut $(\langle R; +, * \rangle)$ contains the following elements:

$(2) \ (1375642)$	$(3) \ (1726453)$
(5) (2356714)	$(6) \ (2547163)$
$(8) \ (3571426)$	$(9) \ (3764215)$
$(11) \ (4615273)$	$(12) \ (4367521)$
$(14) \ (5173264)$	$(15) \ (5742631)$
$(17) \ (6514732)$	$(18) \ (6253471)$
$(20) \ (7621534)$	$(21) \ (7463152)$
	(8) (3571426) (11) (4615273) (14) (5173264) (17) (6514732)

3. Automorphism Group of B(n). For n=1, B(1) is essentially the Galois field GF(2), whose automorphism group is trivial. Hence we assume $n \geq 2$, and we have the following

Theorem 1. The automorphism group of B(n) is

- (1) the symmetric group S_{n+1} , if n is even
- (2) the symmetric group S_n , if n is odd.

Let $X = \{X_1, X_2, \dots, X_n\}$ be the set of generators of B(n). For $A \subseteq X$ with at least two elements we denote by A^+ the element $\sum_{x_i \in A} x_i$ in the free 2-group $F_2(X)$ generated by X.

If $0 \neq u \in F_2(X)$, then we let S(u) be the set of all elements of X which are summands in u.

We denote by ||u|| the cardinal number of S(u).

For a ring R, we denote its set of non zero-divisors by T(R).

Lemma 1. For every $x \in X$ and $u \in B(n)$, we have

- (1) $x \circ u = u$ if $x \in S(u)$ and ||u|| is odd or $x \notin S(u)$ and ||u|| is even
- (2) $x \circ u = x + u$ if $x \in S(u)$ and ||u|| is even or $x \notin S(u)$ and ||u|| is odd.

From Lemma 1, we conclude that $X \subseteq T(B(n))$.

LEMMA 2. If n is even then X^+ is not a zero-divisor in B(n).

Proof. Let $u \in B(n)$ such that 1 < ||u|| < n. By Lemma 1, if ||u|| is even then $u \circ X^+ = u$. If ||u|| is odd then $D = X\S(u)$ is non-empty and $u \circ X^+ = C^+$. Therefore $X^+ \in T(B(n))$.

Remark. If n is odd then $X^+ \in T(B)$). In fact, $X^+ \circ u = 0$ for any u such that $\|u\|$ is even.

Lemma 3 . If $u \in B(n)$ and 1 < ||u|| < n then u is a zero-divisor.

Proof. If ||u|| is odd then $||u|| \geq 3$. Pick X_i, X_j in S(u). We see that $(X_i + X_j) \circ u = 0$.

If ||u|| is even then pick $X_k \in X\S(u)$; we see that $u \circ (u+X_k) = u+u \circ X_k = u+u \circ X_k = u+u = 0$. Thus $u \notin T(B(n))$.

By virtue of Lemma 1, 2 and 3 we have

Theorem 2. The set of non-zero-divisors of B(n) is

$$T(B(n)) = \begin{cases} X \cup \{X^+\} & \text{if } n \text{ is even} \\ X, & \text{if } n \text{ is odd.} \end{cases}$$

52 Sin-Min Lee

Let R be a ring and f be an automorphism of R. If $\{X_1, \ldots, X_n\}$ is a generating set for R then f is completely determined by the values of $f(X_i)$, $1 \le i \le n$.

For any automorphism f of R and $u \in T(R)$ we have $f(u) \in T(R)$ since a one-to-one mapping of a finite set into itself is onto. Therefore we have f(T(R)) = T(R).

Hence if n is odd, by Theorem 2, we have for each f in Aut (B(n)), f(X) = f(T(B(n))) = T(B(n)) = X. Thus Aut $B(n) \cong S_n$.

If n is even then with the aid of Lemma 1 we see that every 1-1 mapping from T(B(n)) onto T(B(n)) induces an automorphism of B(n). Conversely, every automorphism of B(n) is an extension of some permutation of T(B(n)). Therefore Aut $(B(n)) \cong S_{n+1}$.

Acknowledgment. The author warmly thanks Professor Robert Gilman for pointing out a substantial simplification of the original argument and the referee for his helpful suggestions.

REFERENCES

- [1] G. Birkoff and G.D. Birkhoff, Distributive postulates for systems like Boolean algebras, Trans. Amer. Math. Soc. **60**(1946), 3-11. g
- [2] B. Jonson, Topics in Universal Algebra, Lecture Notes in Maths. No. 250, Springer-Verlag, New York, 1972.
- [3] Sin-Min Lee, A construction of simple non-associative Boolean rings, Bull. Malaysian Math. Soc. 7(1984), 35-37.
- [4] Sin-Min Lee, A construction of a class of simple nonassociative Boolean rings, Abstracts Amer. Math. Soc., Vol. 4, No. 6, Oct. 1983, 83T-17-394.
- [5] R. Lidl and H. Neidereiter, Finite fields, in Encyclopedia of Maths. and its Applications, Vol. 20, Addison-Wesley, Reading, Massachusets, 1983.

Dept. of Maths. and Computer Science San Jose State University San Jose, California 95192 U. S. A. (Received 07 05 1986) (Revised 24 12 1986)