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1. Introduction. Nonlinear Fredholm theory began with the works of
Lasota [9] and Lasota-Opial [10] for (multivalued) compact maps and has attracted
the attention of many authors. Since then, extensions of the first Fredholm theorem
and of the Fredholm alternative in a weaker form (i. e. without the dimension
assertion) have been obtained for various classes of nonlinear maps, like compact,
(set) condensing, of types (S) and (S;), monotone and A-proper ones (cf. [3,
4, 5, 6, 18, 19, 23]). In contrast to the works of other authors, in [11-15] we
began developing a Fredholm theory for (pseudo) A-proper type of maps that are
asymptotically close to a suitable map (cf. (2.2)) and, in particular, have a positive
quasinorm (cf. (2.2)).

The purpose of this paper is twofold. First, in Section 2, we prove a rather
general extension of the first Fredholm theorem for equations of the form

(1.1) Tx=f (zeX, fey)

where X and Y are normed, linear spaces and T' : X — Y is either (pseudo) A-
proper or a uniform limit of A-proper maps. When T'= A + N is pseudo A-proper
with A : D(A) C X — Y linear and N nonlinear with quasinorm N > 0, we also
prove a weaker form of the Fredholm alternative for semilinear equations

(1.2) Az+Nz=f (z€D(A), feY).

In case when A+ N is a continuous A-proper map, we prove a complete Fredholm
alternative (Theorem 2.3). Second, in Section 3, using these results, we study the
solvability of Eq. (1.2) with dim ker(A) < oo when there is no resonance at infinity.
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Moreover, the case of nonlinear A is also studied. Due to the generality of the
A-proper like maps, the obtained results are applicable to many different classes
of nonlinear maps mentioned above. We also note that, using a degree theory for
multivalued maps, the results of this paper are also valid for multivalued maps T
and N. Applications of the theory to integral and partial differential equations are
given in Part IT (this issue).

2. Fredholm theory. Let {E,} and {F,} be sequences of finite dimensional
spaces and {V,,} and {W,,} be sequences of continuous linear maps with V;, mapping
E,, into X injectively and W,, mapping Y onto E,,. Suppose that dist (z,V,,E,) — 0
asn — oo for each z € X, dimX,, = dimY,, for each n and § = max||Q,|| <
00. Then I' = {E,, Vy; F,, Wy} is said to be an admissible scheme for (X,Y).
In particular, let {X,} and {Y,} be finite dimensional subspaces of X and Y
respectively, and P, : X — X,, and @, : Y — Y, be linear projections onto X,
and Y, with P,z — z and Q,y —» yforeachz € X andy € Y. If V,, = P,|X,, = I,,,
then I'o = {Xn, Pn; Yn, Qn} is a projectionally complete scheme for (X,Y).

Lete DCX,T:D—>Y and T, =W, 7Y, : D, = anl(D) — F,. Recall
[21].

Definition 2.1. Amap T : D — Y is A-proper (pseudo A-proper) w.r.t. I’
if T,, is continuous for each n and, whenever {V,,, un,,|un, € Dp,} is bounded
and ||Tp,tn, — Wy, fl| = 0 as k = oo for some f € Y, then some subsequence
Vi Uniy — T (there is an z, respectively) with Tz = f.

We say that the equation T'z = f is feebly approximation (f. a.) solvable w.r.t.
I if Tyu, = W,f for some u, € D,, n > 1, and some subsequence V,, u,, — =
with Tz = f. The theory of (pseudo) A-proper maps is well developed and we refer
to, e.g., [14-16, 21-23], where one can find also many examples of such maps.

Our first result is the following generalized first Fredholm theorem.

THEOREM 2.1. Let A, T : X — Y be nonlinear maps such that

(2.1) There are an ng > 1 and a function ¢ : R™ — RT such that ¢(r) = oo as
r — 00 and ||WrAzy,|| > c(||z||) for x € Vo (Er) and n > ng.

(2.2) T is asymptotically close to A, i.e.
Tz — A
|T — A| = limsup [Tz = Az| <1/é.
llzll»oo  c(ll2l])

(2.3) There is an R > 0 such that either A is odd on X\B(0,R) or, for each
r > R, the Brouwer degree deg (T, + pGy, By (0,7),0) # 0 for all large n,
some bounded map G : X — Y and all p € (0, po) with po small. Then
(a) If T is A-proper w.r.t. I' and p =0 in (2.3), Eq. (1.1) is f.a. solvable for
each f €Y.

(b) If T+uG is A-proper w.r.t. I for each p € (0, o) and T satisfies condition
(*) (i-e. whenever Tx,, — f with {x,} bounded, then Tz = f for some
x), then T is surjective, i.e. T(X) =Y.
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(¢) If T is pseudo A-proper w.r.t. I' and p =0 in (2.3), then T(X) =Y.

Proof. We shall first consider the case when A is odd on X\B(0, R) in (2.3).
Then parts (a) and (c) have been proved in [11, 12] and [15], respectively. The
validity of part (b) has been announced in [12, 15] (cf. also [14]) without proof and
we shall prove it now using a finite dimensional antipodes theorem of Borsuk.

Let f € Y be fixed. Then, since the map Bx = Tz — f has the same
properties as T, it suffices to show that Tz = 0 is solvable. Let £ > 0 be such that
|T—A|+2e < 1/§ and r > Rsuch that ¢(r) > 1 and ||Tz—Az|| < (|T-A|+e) c(||z|])
for each ||z|| > r. Since G is bounded, there is 1 € (0, o) such that u:||Gz|| < €
for all ||z|| = r. Then, for each € (0, 1) and ||z|| = r, we have

[Tz + aGx — Az|| < (|T — A| + 2¢)c(r) < ¢(r)/d.
Let p € (0,u1) be fixed. Then, for each n > 1,
(24) T,(u) + pGp(u) # MTh(—u) + puGr(—u)) for we dB,(0,r), A €[0,1].

If not, then there would exist an u,, € 0B,(0,r) and A € [0,1] such that (T, +
pGn)(un) = MTr + pGr)(—u,) for some n. Hence,
1
14+

and therefore

(Ap = T, — uGr)(u,) + Tn + pGrn — An)(—un) = Apun,

A
1+ A

é I\
nUn < n Un < — - n'Wn PEEEN - —Vnln
c(IVaunll) < 1 Anunll < 77T + 4G = A)Vaun|l + =T + pG = A)(=Vaun)|| <
< c(||Vas unl]),

a contradiction. Hence, (2.4) holds and consequently, for each n > 1 there is an
un € 0B,(0,r) such that Thu, + uGru, = 0 by the Borsuk antipodes theorem.
Since T'+ uG is A-proper, a subsequence V,,, u,, — = € B(0,7) with Tz +uGz = 0.
Next, let g € (0, 1), ux — 0 and Tz, + urGay = 0 for some z € B(0,r). Since
G is bounded, Tz — 0 and Tz = 0 for some z € X by condition (*).

Next, let us suppose in (2.3) that for each » > R and u € [0, po], deg (T, +
uGrp, Bn(0,7),0) # 0 for all large n. When p = 0, this happens if, for example, T is
odd on X\B(0, R) or if (Tz, Kz) > 0 for ||z|| > R and some additional conditions
on K : X — Y*and I' (cf, e.g., [14, 21]). Part (a) has been proved in [12] in these
special cases and, using similar arguments, we shall now give a unified proof of the
parts (a)-(c).

Let f € Y be fixed and define Bx = Tz — f, z € X. Then B satisfies (2.2)
and let 8 > 0 be such that |B — A| + 2¢ < (1 — 8)/. Then there is an r > R
such that ¢(r) > max{1,26||f||/B8} and ||Bz — Az|| < (|B — A| + €)c(||z||) for each
||z|| > 7. Let u1 € (0, wo) be such that us||Bz|| < € for all ||z|| = r. Then, for each
u € [0, 1) and ||z|| = r we have

(B 4+ uG — A)z|| < ||Bzx — Az||+ e > (|B — A| + 2¢)c(r) < (1 — B)e(r) /4.
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Let p € [0, 1) be fixed. Then, for ||z|| = r,

IWa(T + pG — A)z — tWo f|| < |[Wa(T + pG — A)x — Wa fl| + [|Wa f]|

2.5

(25) <U(|B — Al + 2e)e(r) +¢(r)B/2 < (1 — B/2)c(r).

For B, = V,7Y(B(0,r)) C E, we have that B C V,'(B(0,r)) and 8B, C
V.-1(6B(0,r)). Tt follows from (2.1) and (2.5) that for each u € [0,u1) fixed,
each u € 0B,, n > 1, and t € [0, 1] we have that

(Tn + pGn) = tWa fI| 2 || Anull = [[(Tn + pGrn = An)u = tWo f||
2 c(|[Vaull) = (1 = B/2)e(|[Vaull) = Be(|[Vaull)/2 > 0.

Hence, for each p € [0, p1) fixed, (T}, — pGp)u # tW,, f for u € 9B, t € [0,1] and
n > 1, and therefore the Brouwer degree deg (T}, + uGr, By, W, f) # 0 for each
n>1.

Now, if g = 0, it follows that the equation T,u = W,f is solvable in
B,, for each n and the conclusion of (a) ((c), respectively) follows from the A-
properness (pseudo A-properness, respectively) of T'. In case (b) we have that for
each u € [0, 1) fixed the equation Thu + uGru = W, f is solvable in B,, for each
n, and therefore the equation Tz + uGz = f is solvable in B(0,r). As before, the
boundedness of G and condition (*) imply the solvability of Tz = f. O

The following special cases are useful in applications.

COROLLARY 2.1. Let T=A+ N : X = Y, A satisfy (2.1) and

N
(2.6) |N| = limsup 1Vl
Iz o0 €([]2[])

<1/s.

Then the conclusions of Theorem 2.1 hold.
COROLLARY 2.2. Let T = A+ N : X = Y with Q,Ax = Ax for z € V,E,

and

(2.7 [|[Azp|| = 00 as ||lzpl| > o0 for z, € X;
N

(2.8) V] = timsup V20 <15,

llz||—oo ||AT]]

Then the conclusions of Theorem 2.1 hold.
Proof. It follows from Corollary 2.1 by taking c(||z||) = ||4z|| on X. O
Regarding condition (2.1), the following lemma is useful [cf. 12, 23].

LEMMA 2.1. Let A: X —» Y be A-proper at f =0 w.r.t. I' and a-positively
homogeneous (i.e., A(tx) = t*Ax for x € X, t > 0 and some a > 0). Then, if
Ax =0 implies x = 0, there is a constant ¢ > 0 and ng > 1 such that

(2.9) [|[WnAz|| > c||z||* for =z € Vo(Ey), n>ng
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Remark 2.1. Theorem 2.1 and Corollaries 2.1-2.2 are applicable to many
classes of nonlinear maps and, in particular to (generalized) pseudo monotone ones
from X to X* (cf. [4]). This will be discussed in detail elsewhere.

Next, we shall prove a Fredholm alternative in a weaker form for maps of the
form T'= A+ N, where A is a linear Fredholm map of index zero i.e., the kernel
Xo = N(A) and cokernel of A are of the same finite dimension and the range R(A)
is closed. We have the direct sums X = Xo ® X and Y =Y, @Y, Y = R(A), and
let L : Xo = Yy be a linear isomorphism and P : X — X, be a linear projection
onto Xg. Then C' = LP : X — Y} is completely continuous.

THEOREM 2.2. [17] (Fredholm alternative). Let A: V C X =Y be a linear
Fredholm map of index zero with N(A) # {0} and A-proper w.r.t. I for (V,Y). Let
T :X — Y be nonlinear and such that its range R(T) C R(A) and |T — A| < ¢/§
for ¢ sufficiently small. Suppose that either

(a) T satisfies condition (*) and T + pG is A-proper w.r.t. I' for each p €
(0, o) and some bounded map G : X =Y ; or

(b)T+C:V =Y is pseudo A-proper w.r.t. I
Then the equation Tz = f is solvable if and only if f € R(A) (= N(A*)1).

Proof. Since A; = A+C is injective and A-proper w.r.t. I', there is a constant
¢ > 0 such that (2.9) holds. Then Ty = T + C is such that [T} — A;| < ¢/d. If (a)
holds, then T + uG is A-proper w.r.t. I" for each pu € (0, ug) by the compactness of
C. In either case, the equation Ty x = f is solvable for each f € Y by Theorem 2.1.
Moreover, if f € R(A) and Thz = f, then Cx = f — Tz € R(A) and consequently
Cx = 0 and Tz = f. Conversely, if Tx = f is solvable, then f € R(A) since
R(T)C R(A). O

Finally, we shall establish a complete extension of the classical Fredholm
alternative for A-proper maps of the form 7' = A + N. Recall that the covering
dimension of a normal topological space is equal to n, provided n is the smallest
integer with the property that whenever U is an open covering of X, there exist a
refinement U’ of U, which also covers X, and no more than n + 1 members of U’
have nonempty intersection.

THEOREM 2.3. [17] (Fredholm alternative). Let A : X — Y be a continuous
linear Fredholm map of index zero and codimR(A) = m > 0 and N : X - Y
be continuous and such that |[N| < ¢/§, R(N) C R(A) and T = A+ N is A-
proper w.r.t. Iy = {Xp, Pr; Yy, Qn} with Xo C X, and Yy C Y,. Then, for each
f € R(A)(= N(A*)1), and only such ones, there is a connected closed subset K of
T—Y(f) whose dimension at each point is at least m and the projection P maps K
onto Yy.

Proof. Let V,, = Y, NY, X,, = Xo & U, with dim U, = dim V,, and Q,, =
Qn|l7| Then T = A+ N : X — Y is A-proper w.r.t. I, = {Xn,Pn;Vn,Qn} with
dim X,, — dimV,, = m, n > 1. For a given f € R(A), let Bt = Nz — f. Let £ > 0
be such that |N|+¢€ < ¢/d and R = R(E) > 0 such that

INX]| < (IN|+¢)l[z]| forall [lz]| = R.
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We need to show that A+ B : Xo® X — Y is complemented by P. To that end it
suffices to show (see [2]) that deg (Qn(A + B)|v,,Un,0) # 0 for all large n. Define
the homotopy H,, : [0,1] x U,, = V,, by H,(t,z1) = QnAz; + Q,B(x1) We claim
that there are ng > 1 and r > R such that if, H,(¢,z1) = 0 for some z; € U, with
n > ng and ¢ € [0, 1] then ||z1|| < r. If not, then there would exist z1,, € U,, with
[|Z1n, || = oo and t € [0,1] such that H,, (tx,z1n,) = 0 for each k. Hence,

cllzim, || < [|Qn, Az1n, || < O(IN| + €)l|z1n, || + 81| £

and, dividing by z1,, and passing to the limit, we arrive at a contradiction to
IN|+¢e < ¢/6. Thus, the claim is valid and for each n > no, and deg (Qn(A +
B)|Un ’ Un: 0) = deg (QnA|Un ’ Un7 0) 7é 0.

Next, we need to show that P : Xy ® X — X, is proper on (A + B)~'(0). To
see this, it suffices to show that if {z,} C X is such that Az, + Bz, — 0and {Pxz,}
is bounded, then {z,} is bounded since the A-proper map A+ B is proper restricted
to bounded sets ([21]). We have that =, = zo, + z1, With 2, € Xo and z1,, € X,
and c||z1n|| < ||Az1n|l < (IN|] + &)||z1n]| + || f]| for some € > 0 with |[N|+ ¢ < ¢
if ||z1,]| > R. This implies that {z1,} is bounded as before. Since {zo,} = {Pz,}
is bounded, it follows that {z,} is also bounded. Hence, the conclusions of the
theorem follow from Theorem 1.2 in Fitzpatrick-Massabé-Pejsachowicz [2]. O

Analogously, a dimension assertion on the solution set of the corresponding
”adjoint” equation treated in Theorem 2.3 in [23] can be proven when the involved
maps are A-proper.

Remark 2.2. Theorem 2.2 extends a result of Petryshyn [23] dealing with weak-
ly A-proper maps. Moreover, Theorem 2.3 includes the weaker form of the Fredholm
alternative (not dealing with the dimension of the solution set) of Kachurovsky [5,
6] for compact maps and of Necas [18, 19] and Hess [3] for maps of type (5), (S4)
and monotone ones, respectively.

Remark 2.3. Using similar arguments, it can be shown that Theorem 2.3
holds for nonlinearities N of superlinear growth, i.e. if N = N; + N with Ny,
A-proper, odd, a-homogeneous for some a > 1 and Nyz = 0 implies £ = 0, and
|| Noz|| < a + b||z||* for some a,b,k < a and all z € X.

3. Applications. We begin by looking at some applications of the abstract
results in Section 2 to semilinear equations of the form (1.2) with dimker A < oo
when there is no resonance at infinity. By this we mean that there is some linear
map C : V C X — Y such that 0 ¢ 6(A — C), the spectrum of A — C, and N — C
stays away from o(A — C) at infinity (e.g., (3.1) holds).

Let H denote a real Hilbert space and X and Y be Banach spaces. In the
self-adjoint case we have

THEOREM 3.1. Let A: D(A) C H — H be self-adjoint, V = (D(A),|| - ||o) be
a Banach space densily and continuously embedded in H, C : D(C) C H — H be
bounded and symmetric withV C D(C) and0 ¢ o(A—C). Suppose that N : V — H
s nonlinear and such that
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(3.1) There are positive constants a, b, ¢, r and k € (0,1) such that
INz — Ca|| < al|z]| +bl[z[|g + ¢ forl|z[lo >r

(3.2) 0 <a<min{|]A|A€c(4-0C)}.
Then, if A— N : V — H is pseudo A-proper w.r.t. Iy = {X,, Pn; Y, Qn} for
(V,H) with Qn(A—C)x = (A—C)zx, x € X, n > 1, it is surjective.

Proof. Note first that B = (A — C)~! : H — V is continuous. Indeed, by the
closed graph theorem, it suffices to show that it is closed. Let x, — = in H and
Bz, — vin V. Then Bz, — v in H and Bz = v by the closedness of B in H.

Hence, for each z € V

I(4 = C)z|| > [|B]|||zlo-
Next, since C' is bounded and symmetric, A—C is self-adjoint (see Kato [7, Thm. V.
4.3.]) and therefore min{||A||A € 6(A—C)} = ||(A—C)7 || and a||(A-C)7}|| < 1
by (3.2). Moreover, for each ||zo|| > 7, we have z = (4 — C)~'y for some y € H
and

INz = Cz|| < al|(A = C)" 'yl +bl|(A = C)"Hyll§ +c
< all(4 =) Iyl + BlIBIF[lyl1* + e,
or

[|[Nz — Cz|| -1 k k—1 -1
- <Zda||(A-C + b||B A—-QC)x +c|l|[(A—-C)z .
A=) I1( )+l BI" [( )z|| II( )|

Hence,

e —cal .
N—C|= limsup vt T < gll(A—0) Y < 1
| | [|zo||o—o0 ||(A_C)'T|| || ||

and the conclusion follows from Corollary 2.2. O

Remark 3.1. If there are real numbers a < 3 such that a o(A)N(a, B) consists
of at most finitely many eigenvalues, then we can take C' = AI, A = (A + Ag41)/2,
in Theorem 3.1 for some consecutive eigenvalues A\ < Ag+1 in (o, 8). Then (3.2)
holds if a < v = (Ag+1 — Ak)/2. Indeed, the spectral gap for A — AI induced by the
gap (g, Ak+1) is (=7, ) and therefore (A—AI)~! : H — H is a bounded self adjoint
map whose spectrum lies in (—1/7v,1/v). Hence, ||(A — A\I)~1|| = 1/v. Moreover,
the scheme Iy = {(A— X)L (Y,), Pn; Yn, Qn} for (V, H) has the required property
in Theorem 3.1.

Analyzing the proof of Theorem 3.1, we see that the following more general
result holds when A is not selfadjoint.

THEOREM 3.2. Let (V,|| - ||o) be densily and continuously embedded in X,
A:V 5Y and C : X =Y be closed linear maps with A —C : V = Y bijective.
Suppose that N : V — Y is nonlinear and

(3.3) There are positive constants a, b and r, with a sufficiently small such that

I[Nz — Czl| < allzllo +b for ||| >
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Then, if A—N :V =Y is pseudo A-proper w.r.t. I' for (V,Y) with Q,(A—C)z =
(A-Q)z, z € Xp,, n > 1, it is surjective.
Next, we shall look at Eq. (1.2) with nonlinearities of the form Nz = B(z)z —

Mz, where B(z) : X — X is a continuous linear map for each € V such that for
some A € 0(A), Ax = A— Al and By(z) = B(z) — Al satisfy

. 1
(3.4) m = limsup ||Ba(z)|| < ———.
2lo—+00 1457

THEOREM 3.3. Let A: D(A) C X — X be a closed linear map, V = (D(A),
[|-|lo) be a Banach space densily continuously embedded in X and (3.4) hold. Sup-
pose that M : V — X is nonlinear and T : V — X, Tx = A(x) — B(x)x — Mz, is
pseudo A-proper w.r.t. I' = {X,,, Pp; Yy, Qn}. Then

(a) If QnAxz = Axz, € X, n > 1, and there are positive constants a, b, c,
r and k € (0,1) such that 5(a +m) - ||A}'|| < 1 and

|Ma|| < allz]| +bllzll5 + ¢ for [lallo >,

then T 1is surjective
(b) If T'x = Ax — B(x)x is A-proper w.r.t. Iy and

M
|M| = lim sup [[M]]
l|z|Jo— 00 I]]o

< 00

is sufficiently small, then T is surjective.

Proof. (a) As in Theorem 3.1, we obtain that
1Axzl] > |4 xSy ll2llo, @€ X.

Moreover, for ¢ > 0 small with (m +a + €)||A}"|| < 1 there is an R > 0 such that
for ||z|lo > R

[ Ba(@)z + Ma|| < (m +a+ e)llal] + blwo]|* +c.

Then, setting Nx = B(z)z+ Mz and C = A, the conclusion follows from Corollary
2.2 as in Theorem 3.1.

(b) By (3.4), there is an R > 0 such that ||By(z)|| < 1/||A}"|| for all ||z||o >
R. Hence, for such z’s, the map By (z)A" : X — X satisfies

[ Bx(@)AX | < [1Ba(@)I[ 1|47 I < 8 < 1

for some 6 independent of z. Consenquently, I — B,\(:I:)AK1 : X — X is invertible
and
I = Ba(2)A3") 'l <1/(1 - 6) for |lz[jo > R.

As before, A,' : X — V is continuous and therefore c||z||y < ||Axz|| for z € V
and some ¢ > 0. Moreover, for ||z|lo > R

allzllo < [|[I = Ba() A3 7' [I = Ba(2) A5 '|Axa|| < [|Ax(2) = Bax)[|/(1 - 6).



Fredholm theory and semilinear equations without resonance 79

or
(3.5) cillzllo < ||Axx — Ba(z)z|| for |lz|lo > R,c1 = (1 —6)c.

Since Tyz = Ayx — By(z)x = Az — B(z)x is A-proper, arguing by contradiction
and using (3.5), we obtain an ng > 1 and ¢g > 0 such that

(3.6) col|zllo < |Qn(A — B(x))z|| for all z € X,\B(0,R), n > no.

Since | M| is sufficiently small, the conslusion follows from Corollary 2.1, where one
needs only to assume (2.1) on X,\B(0, R). O

To give some conditions for the A-properness of T} and T', we recall that a
ball-measure of noncompactness of a set D C X is defined by x(D) = inf{r >
0|D =Ul,B(x;,r),2; € X and somen}. Amap T : D — Y is k-ball-contractive
if x(T(Q)) < kx(Q) for each @ C D. We have

ProOPOSITION 3.1. Let U(z,y) = B(z)y for (z,y) €V xV and
(3.7 For eachx € V, U(x,-) : V — X is ki -ball-contractive;
(3.8) For eachy € V, U(,y) : V = X is completely continuous.

Suppose that A : V — X is Fredholm of index zero and M : V — X is ko-ball-
contractive with k = ki + ko sufficiently small. Then Ty,T : V — X are A-proper
w.r.t. Iy for (V,X) with Q,Az = Az on X,,.

Proof. 1t is known that the map B : V — X, By(z) = U(z,z) is k;-ball-
contractive by (3.7)-(3.8). Since By + M : V — X is k-ball-contractive, T1 and T
are A-proper w.r.t. Iy (cf. [15]). O

Remark 3.2. Condition (3.7) is implied by the compactness of the embedding
of V into X or by |[B(z)||(v—x) < k1 for all z € V. In applications various natural
conditions imply (3.7)-(3.8).

So far we have studied Eq. (1.2) with nonlinearities N asymptotically close
to linear maps (i.e. when condition of type (3.1) holds). It turns out that when
A = I, we can allow more general nonlinearities studied first by Perov [20] and
Krasnoselskii-Zabreiko [8]. To introduce this class, we consider a pair of self adjoint
maps B1,By : H — H such that By < Bs, ie. (Biz,z) < (Bszx,z) for z € H,
and 1 is not in their spectrum o(By) U o(Bz). Let o(B1) N (1,00) = {A1,..., Ak}
and o(B2) N (1,00) = {p1,...,4m}, where the A\;’s and p;’s are eigenvalues of
By and Bs, respectively, of finite multiplicities and assume that the sum of the
multiplicities of the A;’s is equal to the sum of the u;’s. Then we say that B; and
B, form a regular pair.

Recall that ([8]) a (nonlinear) map K : H — H is said to be {By,Ba}-
quasilinear on a set S C H if for each x € S there exists a linear selfadjoint map
B : H— H such that By < B < By and Bx = Kz. A map N : H — H is said
to be asymptotically {B;, By }-quasilinear if there is a {Bj, Bs }-quasilinear outside
some ball map K such that

Nz - K
(3.9) N - K| = limsup 1Y = K2l

[|z||—o0 (|||
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It has been shown in [8] that if B; and B, form a regular pair, then there is a
constant ¢ > 0 such that for each self-adjoint map B with B; < B < By we have
that

(3.10) ||z — Bz|| > c||z|| for each xz € H.

For example, if N : H — H is such that N'(z) is self-adjoint for each z in H and
satisfies

(3.11) B, < N'(z) < By for z€H,

then N is asymptotically { B, Bz }-quasilinear since we can represent Nz = B(x)z+
N(0), where B(z) = fol N'(tz)dt. Moreover, if Nz = B(z)x + Mz for some
nonlinear M with |M| < oo and B(X) : H — H is self-adjoint and B; < B(z) < Bs
for each z in H, then N is asymptotically {Bj;, B> }-quasilinear (cf. [20] for some
other criteria). For equations with such nonlinearities we have

THEOREM 3.4. [17]. Let {By, B>} form regular pair, M,N : H — H be
bounded and N be asymptotically { By, B2}-quasilinear with |M + N — K| < c¢. Let
By : H — H be self-adjoint with By < By < By and Hy = I —t(M + N) - (1—¢)Bo,
0<t<1. Then

(a) If Hy, is A-proper w.r.t. Iy = {H,, P,} for each t € [0,1], then the equation

z— Mx— Nz = f is f.a. solvable for each f € H.

(b) If Hy, is A-proper w.r.t. Iy for each t <1 and Hy is either pseudo A-proper
w.r.t. I'y or satisfies condition (*), then (I — M — N)(H) = H.

(¢) Let G : H — H be such that ||Gz|| < al|z|| on H for some a, and for each
large r, deg(P,Bo + uP,G,B(0,r) N X,,,0) # 0 for each large n and p > 0
small. Suppose that Hy + uG is A-proper w.r.t. Iy for each t € [0,1] and
u >0 small and Hy satisfies condition (*). Then (I — M — N)(H) = H.

Proof. Since Nyx = Nz — f has the same properties as N for any ¢ in H, it
suffices to study the equation x — Ma— Nx = 0. Let po > 0 and £ > 0 be such that
|M + N — K| +¢+ auo < c.Then there is an 7 > 0 such that ||Mz + Nz — Kz|| <
(|JM+ N — K|+¢)||z|| for each ||z|| > r. Moreover, H(t,z) + uGz # 0 for ||z|| = r,
t € [0,1] and p € [0, o). If not, then there are t € [0,1], ||z|]| = r and p € [0, o)
such that H(t,z) + pGz = 0. Hence,

||z —tKz — (1 — t)Boz|| < t||Mz + Nz — Kz|| + pl||Gz|| < c.

Since K is {B;, By }-quasilinear, there is a self-adjoint map B, : H — H such that
Kz = B,z and therefore

(3.12) ||z —tBxz — (1 — t)Boz|| < cl|z||

But B; < B < B, for B = tB. + (1 — t)By and consequently (3.10) holds. This
contradicts (3.12) and our claim is valid. Hence, the conclusions of (a), (b) and (c)
follow from Theorems .1 and 3.1 [16], respectively. O
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Remark 3.3. Theorem 3.4 is applicable if By is compact and M + N is the
sum of a k-ball-contraction and a monotone map, ¥ < 1, or N is compact and
(Mx — My,z —y) > —||z — y||?, etc. When By and N are compact, M = 0
and [N — K| = 0, the solvability of x — Nz = f in part (a) has been proven by
Krasnoselskii-Zabreiko [8] and in a less general form by Perov [20], using completely
different arguments.

Finally, we shall consider Eq. (1.2) when D(A) is not a linear subset of X
and A: D(A) C X =Y is such that
(3.13)

(A+C) 'Y = D(A) C X s surjective and ||(A+C) 'y|| < K(|jy|| +1)

for some bounded map C : X — Y, each y € Y and some constant K > 0.
Condition (3.13) is satisfied if, e.g., Y = X and C = M, A > 0, and A is m-
accretive (cf. [1]). In applications considered in part II (3.13) holds with ¥ # X.

THEOREM 3.5. [17]. Let (3.13) hold and N : D(A) C X — Y be such that
for some constants a > 0, b > 0 with 6Ka < 1, § = max || P,||,

(3.14) [|[Nz — Cz|| < allz]|| +b for x € D(A).

Suppose that T =1+ (N — C)(A+ C)~ ' + uC(A + C)~* is A-proper w.r.t. Iy =
{Xn, Pp} forY and s € [0,1) and T satisfies condition (*). Then (A+N)(D(A)) =
Y.

Proof. Tt is easy to see that Eq. (1.2) is solvable if and only if so is the equation
Toy = f in Y. In view of Corollary 2.1, with A = I and G = —C(A + C)71, it
suffices to show that |[(N — C)(4 + C)~!| < 1/6. But, this follows easily from
(3.13)—(3.14) since

_ —1 —1
e IV = ATl b4 all(4+C) gl
llyl|—o0 [yl llyl|—o0 Iyl

<aK <1/6. O

Next, we shall give an extension of Theorem 3.5 when (3.13) does not hold.
We need

Definition 3.1. A homotopy H : [0,1]x D - Y, D C X, is said to satisfy
condition (+) if {z,} is bounded in X whenever H(t,,z,) = f, t, € [0,1].

THEOREM 3.6. [17]. Let AN : D(A) C X > Y and C : X = Y be
nonlinear maps, C and N be bounded and (A + C)~' : Y — D(A) be bounded and
surjective. Suppose that H(t,z) = Az + tNz + (1 — t)Cx satisfies condition (+),
F,=T+t(N-C)(A+ C)~! is A-proper w.r.t. Iy = {Y,, P,} for each t € [0,1)
and Fy satisfies condition (*). Then (A+ N)(D(A)) =Y.

Proof. Let f € Y be fixed. Condition (4) implies that the set U = {z €
D(A)|H(t,z) = tf for some ¢t € [0,1]} C B(0,R;) for some Ry > 0. Then
z = (A+C) 1y € U whenever F(t,y) = tf and, since C' and N are bounded, there
is an R > 0 such that

Iyl < |[(N +C)(A+C) 'y|| <R.
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Hence, F(t,y) # tf for (t,y) € [0,1] x dB(0, R). Next, let g, € (0,1) and g, — 1.
By the A-properness of F; for ¢ € [0,¢;], there is an ng = n(eg) > 1 such that

P,F(t,y) #tP,f for te0,e;], y € Y,NOB(0,R),n > ny
and ny, > ng, if k1 > k2. Hence, for each k fixed and each n > ny
deg (P,H(er-), B(0, R) N Yy, P, f) = deg (I, B(0, R) NY,,0) #0

and therefore P, F(eg,yn) = e P, f for some y, € B(0,R) NY,, and each n > ny.
Since F., is A-proper, there is an y;, € B(0, R) such that F(eg,yr) = e f. Then
Yo + (N = C)A+C) T yp = erf+ (1 —ep) (N =C)(A+O) 'y — fas k — oo
Thus by condition (*) for Fj, there is an y € Y such that F(1,y) = f and so
r = (A+ C)~ly is a solution of Az + Nz = f. O
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