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RAMIFICATION HYPOTHESIS AGAIN

Puro R. Kurepa

Summary. To the RH (Ramification Hypothesis = Proposition 1 in Kurepa 1935:2,3 p.
130) we join here proposition P{(s,3 : 2), Pig, Pig,... ,P4s, each equivalent to RH; we stress in
particular Pig := Ps : For every branching tree T the width psT? of the cardinal square of T
equals psT. (s. 1:0) and is attained (s. M2 3).

0. Introduction.

0:0. In my doctoral dissertation 1935:2, 3 p. 130 the following ramification
hypothesis (RH) was formulated (cf. also 1936:1).

P, For any tree T the number b7 is attained in the sense that 7' contains a
degenerate subset of cardinality b7 (bT := sup pD, D running trought the system
PpT of all degenerate subsets of T'; pD := power of D; an ordered set S is quoted as
degenerate if for every z € S the corresponding cone S(z) consisting of all elements
of S, each comparable to z, is a subchain of (5, <)).

0:1. My dissertation 1935:2, 3 contains following 15 pairwise equivalent proposi-
tions:
Py, Pi, P», Py, Ps,..., Pis, Py,

(s, 1935:2, 3 pp. 130-132 for P, P»,..., Pi2; p. 1305_; for Py and M 9:45% p. 9:3
for Py and M 11:5 p. 111 for B;).

0:1:0. PFy: FEvery infinite completely ramified sequence S contains an antichain
of power pyS where ¥T' denoted the height of T (a tree T was called a sequence
if every € T is such that vT'(z) = +T'; a T was quoted as completely ramified

provided for every € T one has T'(-,z) = T(-,y) for at least one y € T \ {z},
where T'(-,z) :={z:2<z, 2z € T}.

0:1:1. P,: For every tree T unless the height vT is inaccessible, the number bT is
attained in T (s. M 5 p. 111 in Kurepa 1935:2, 3).

0:2. We stress as very handlable the following
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P, REDUCTION PRINCIPLE (RP): Every infinite tree T is equinumerous to
a degenerate subtree.

One speaks for short: T is D-reflexive, in the sense of the following.

0:3. Definition. A graph (V, R) is quoted as D-reflexive provided V is equinu-
merous to a direct sum of a system of complete subgraphs. The word ” D-reflexive”
replaces the word "normal” used in my Thesis (cf: Thesis, M 11.1, p. 105).

0:4. Afterwards, I formulated other propositions: Piz (s. 1977:1 M 5:1 with
references 1950:8, 1952:8, 1953:11, 1953:12), Py4 (s. 1977:1 M 7:7), Pis (1977:1 o
7:8), Pig (1977:1 M 3:1), Py; (v. 1977:1 M 3:2), Py; (dual of Py7;s. 1977:1 M3:3)
each equivalent to RH.

Conseql_lently, one has 21 pairwise equivalent propositions Py, Py,... , Pi7, Py,
oy P17, Py, Pi7, Py

0:5. Inaccessible variations. If P denotes any of these 21 propositions, let P(i)
denote the corresponding proposition restricted to the case that the corressponding
power be inaccesible (= initial limit regular alef). So one gets 21 propositions
Py(i), Pi(3),-.., Pir(i), Py(3).

0:6. So e.g. we have

P5 (i) In every linearly ordered set L of an inaccessible cellularity there is
a disjoint family of cardinality sep L := dL of open non empty intervals of L (cf.
1977:1 M 2:6 where instead of ”inaccessible cardinality” should be read ”inaccessible
cellularity”).

0:7. For a topological space S the density number is dS := inf{pX; X C S, X
is everywhere dense in S}. The cellularity of S is ¢S := sup{pD : D consists of
pairwise disjoint open sets C S}.

1. Some consequences of RH.

I had the opportunity to formulate some interesting consequences of the RH
like: ReH, Ply, MATH, P?; L(i):

1:0. RECTANGLE HYPOTHESIS. (ReH) Every tree T satisfies pT < p.T - psT (s.
1964:7; 1977:1 M 7:2) where p.T (resp. P,T) is suppX, X running through the
system of all subchains (subantichains) of T.

1:1. PROPOSITION P[.: Fuvery tree is the union of p,T (s. 1:0) subchains of T
(s. 1963:3 Theorem 3:3) i.e. psT = sT, where s(E,<) denotes the star number
of (E,<) (s(E,<) is the minimal number of subchains of (E,<) exhausting E(s.
1963:3 M 1:1);

1:2. MATH (MAXIMUM ANTICHAIN TREE HYPOTHESIS): FEuvery tree contains a

mazimum antichain i.e. in every T the number p,Tis attained (s. 1977:1 M 8:1,
1987:1 cf. also 1987:1).

1:3. ProPOSITION P?. Ewvery infinite chain L satisfies cL = dL (s. 1977: M 2:3);
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1:4. PROPOSITION L(i). Every ordered chain of inaccessible separability contains
a mazimum disjoint system of open sets (v. 1977:1 M 8:6 where instead of L; (i)
should be L(7)).

1:5. THEOREM MATH & L(i) (s. 1977:1 Theorem 8:5). One has
1:6. THEOREM ReH < P[; (s. 1977:1 Theorem 3:3)
1:7. THEOREM Ps & P?& P5(i) (announced in 1977:1 as Th 2:5).

Proof. The = — part of the statement being obvious, let us prove the < — part.
Let L be any infinite ordered chain; if po L := cel L is limit and regular, then, by
assumption Pj(7), Ps holds; if cel L is regular and isolated, then cL is attained and,
by P?, equals sep L; thus L has a disjoint system of power sep L of intervals. The
case when cel L is singular was considered explicitly in 1987:1 as Theorem 0:11 and
is implied by the theorem 3 p. 110 in Kurepa 1935:2,3.

2. Some equivalences
2:0. THEOREM Py < ReH (cf. 1:0, 1:3).

Proof. Part =. In opposite case there would exist a tree T such that pT >
pcI - psT. One could assume without restriction that the rank or height v7" is a
regular initial ordinal and that T' is a sequence (i.e. yT'(z) = ~T for every z € T
where T'(z) := {y : y € T and y is comparable to z} and that if z € Ry 1T then
there are infinitely many members y of T such that T'(-,z) = T'(-,y). If then one
orders totally every node N of T in such a way that if YN (defined by N C R,¢T)
is isolated the chain (N, <y) has no first element, then the natural ordering of T'
which extends (7', <) as well as (T, <y) for every node N yields an ordered chain
L (s. 1935 - 2,3 p.127); one verifies that psT = cL, dL = pT; consequently, one
would have c¢L = p,T < pT = dL thus cL < dL, contrarily to the assumption P2.

Part <. In the opposite case, there would exist an infinite chain (L, <)
such that cel L < dL. Let D be a complete dyadic atomization i.e. a complete
bipartition of (L, <) (s. 1935:2,3 p. 114); then the system F of members of D
wich are segments of (L, <) of power > 1 is such that pF' = dL; the height vF'
of (F,D) should be the initial ordinal 8 := w(qr)." Now, vF is not attained (in
the opposite case, there would exist a §—sequence of strictly increasing intervals
I, € F(n < 8); there is no restriction to suppose that L has no gap and therefore
inf I,, sup I, € L; consequently one of the sequences inf I,,(n < 3), sup I (n < 8),
should be of power dL. Therefore at least one of the systems

(infI,,, inf L, 1) N L, (suply, suplpp1) NL (n<f)

would yield a disjoint system of cardinality dL of non void intervals of L, contrarily
to the assumption ¢L < dL.

2:1. THEOREM. The propositions P?, P|y, ReH are pairwise equivalent (cf. 1:3,
1:1, 1:0).

1For a cardinal n one denotes by W(n) the first ordinal of power n.
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This is implied by 1:6, 2:0.
2:2. LEMMA. P5(i) = L(i).

Proof. Let L be an ordered chain such that sL be inaccessible; if we succeed to
get a disjoint system D of intervals of L such that pD = dL, then obviously D
would be a requested system of maximal power because cL < sL. Now, for every
chain L one has ¢L < sL < ¢(L)* (Theor. 2 p. 121 in 1935:2,3); therefore, since
by hypothesis sL is inaccessible, we infer that necessarily ¢L = sL, thus cL is
inaccessible; therefore, by L(i), L contains a disjoint system D of intervals such
that pD = cL thus pD = sL what we wanted to show.

2:3. LEMMA. ReH = (L(i) = P5(i)).

Proof. Let L be a chain such that c¢L is inaccessible; we want to get, assuming
L(i) and ReH, a disjoint system D of intervals of L such that pD = dL. First
case: ¢L = dL; then dL is inaccessible and the application of L(%) yields a disjoint
system D of power dL = cL and thus Ps(¢) is holding.

Second case: c¢L < dLi.e. dL. = ¢(L)T, dL is accessible and we are not allowed
to apply L(%). Now, a dyadic atomization of L would yield a tree (T, D) of intervals
of rank w4y which is not attained (because of cL < dL); thus p.T' < cL; therefore,
ReH would imply pT' < p;T -p.T < cL-cL = cT', contrarily that pT" = Y41y > cL.

3. Propositions P}, P;(:= Pig), P., P!

3:0. Definition. A tree (pseudotree) T is said to be branching (almost branching)
if for every x € T one has pRoT (z,.) > 1 (psT(z,.) > 1), where

T(z,.):={y:yeT&z<y}; RoA:={a:a€A: A(,a)=v}.

3:1. LEMMA. If a tree T is branching, then to every chain L of T corresponds
an equinumerous antichain A(L) of T; p.T < psT; T is v (vacuous) or infinite. If
T # v, then the numbers pT, p. T, psT are infinite.

Proof of 3:1. It is sufficient to associate with every x € L a point ' € RTp(x,.) and
to denote by A(L) the set of all such point z/(z € L). Therefore p.T := sup, pL =
supy, pA(L) < suppA (A running trough the system all antichains of T') := p,T.
Of course, p.v = psv = pv = 0. If T # v, then every x € T has some immediate
successor fx; the set L := {z, fz, fz,...} is an infinite chain in 7T

In connection with Py (s. M. 0:1:0) let us formulate the following intriguing
statement Pj.

3:2. PROPOSITION Pj. FEvery branching tree is equinumerous to a free subset
(any antichain is called also a free set).

3:3. THEOREM. Pj < RP:=P, (s. ;0:2).

Proof. The implication P§ = RP is obvious, because every free subset is a special
case of a degenerate set; therefore, let us prove the converse RP = P}. Now, let
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T be any infinite branching tree; if 7' = v, all is obvious; if T # v, then T is
infinite (s. L. 3:1): in virtue of RP, T contains a degenerate subset D of power
pT. The first row RoD of D is free. If incidentally, the antichain RoD is of power
pD(= pT), all is done. If pRyD < pD, then the set E := D\ RoD as well as the set
F :=UT(,z]\UT(.,y] (x € E, y € RyD) are degenerate and of a power < pD.
Since T is branching, every f € F has in T at least 2 immediate successors. Let
sf be an immediate successor of f such that (i) sf ¢ F; sf exists because F is
degenerate. Let sF' := {sF : f € F}. Then sF is a requested free subset of T
of power pT. As a matter of fact, first, psF' = pF', because the mapping s|F' is
one-to-one: if f,g € F and sf = sg, then (sf)™ = (sg)~, i.e. f = g. Secondly, sF
is free in T'; in the opposite case, there would be 2 distinct points f, g in F' such
that the distinct points sf, sg would be comparable: either (ii) sf < sg or (iii)
sf > sg. But neither (ii) nor (iii) is holding. Assume (ii); then g as the immediate
predecessor of sg would satisfy sf < g € F, and consequently sf € F, contrarily
to (i). Analogously, one proves that (iii) is not possible. Q.E.D.

3:4. PROPOSITION P.. If a tree T is branching, then the width psT'is such that
psT = pst-

3:5. PROPOSITION P!. If o tree T is branching, then the free power p,T is
attained.

3:6. PROPOSITION Py := Pig. The width of every branching tree is attained and
equals the width of the tree: P; := P, & Py'.

3:7. THEOREM. RH < P).

Proof.
3:7:1. LEmMMA. P; = RH.

In the opposite case, there would be a non reflexive infinite tree T'; there is no
restriction to assume that pT' be regular; then (s. 1935:2,3 p. 109, M. 11.3 Theor.
2) T would contain a distinguished subtree A = A(T) (= Aronszajn subtree) of
power pT. Let us consider X := URgA(y, ) X RoA(y,-), (y € A(T)); then X is
an antichain in 72. Therefore, (i) ps4%> = pA = pT. Since A is branching, P
implies that psA is attained; by (i) this means that A is equinumerous to a proper
subantichain; therefore also T is equinumerous to the same antichain: 7" would be
D-reflexive, contrarily to the hypothesis.

3:7:2. LEMMA. RH = P!
Since RH = ReH the Lemma 3:7:2 is implied by the following.

3:7:3. LEMMA. ReH implies that every branching tree T satisfies (i) p.T < psT,
pT =p,T, psT = pst; psT is attained.

Proof. Since T is branching, the first relation in (i) is holding (v. Lemma
3:1). On the other hand by ReH we have (ii) p.T, psT < pT < p.T - psT. Since
p.I < psT and for T' # v the numbers p. T, p;T are infinite, one has p. T -p;T = p,T
and (ii) yields (iii) pT' = p,T thus, psT is determined.
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What about the attainability of p,7'7 If p,T := n is accessible, then this
number n is attained (v. 1987:1 Theor. 2:4 with corresponding comments). Re-
mains the case that n, thus by (iil) pT too, is inaccessible. Now, by RH, T contains
a D-subset D of power pT; if for some = € D the chain L := D[z,.) is of power
pT, then A(L) is an antichain of power pT', thus n is attained. If for every z € D
the chain D[z,.) is of a power < pT, then the disjoint partition D[z,.)(z € D)
of D implies pRyD = pT, because, by hypothesis, pT is regular; since RgD is an
antichain, the attainability of n is established. Q.E.D.

3:7:4. LEMMA. ReH = P).

Proof. In the opposite case, there would be a branching tree T' such that
(i) psT < psT?. But, by Lemma 3:7:3, p;7 = pT and n is attained; this means
that T contains an antichain X of power pT' and (i) would yield pT' < psT?; this
inequality contradicts the relations psT < (pT?) = pT.

3:7:5. LEMMA. RH = P..

This follows from RH = ReH and ReH = P! (s. Lemma 3:7:4). Finnaly,
3:7:2, 3:7:5 imply RH = P; and this joint to 3:7:1 imply the theorem 3:7.

3:8. THEOREM. ReH & P).

3:8:1. Proof of =. ReH implies that every branching tree T satisfies pT = psT >
No. Now, psT < psT? < (pT)? = (because pT is infinite) = pT = p,T, thus
psT = pst-

3:8:2. Proof of P, = ReH. If this implication were false, there would exist
an infinite tree T such that (i) pT > p,T - p.T; pT would be necessarily of the
form N,4 9 (cf. 1935:2,3 p. 105, Theor. 1); T would contain an equinumerous
distiguished subtree A (v. 1935:2,3 p. 105, Theor. 2); A is branching; therefore,
by P!, psA = psA?. Now, psA% = pA because URy(z,.) x Ro(z,.) (z € A) is an
antichain in A2 of power pA = pT. Hence p;A = pA and therefore p,T = pT and
(since pT < psT) p.T - psT = psT = pT, contradicting (i).

3:9. Problem. Does ReH (or RH) imply that psT is attained in every almost
branching tree? (cf. 3:0, 3:7:3).
4. Main theorem.
The following 9 statements are pairwise equivalent:

4:0. Tree Alternative (T'A): If T is any infinite tree, then pT = p.T or pT = p;T
(ct. 1969: 7, M 8:5).

4:1. Tree b = p Statement. If T is any infinite tree, then bT = pT (cf. 1935:2,3 p.
112, 6 and 1969:8, Theor. 8:8).

4:2. Tree proposition b’ = p: Every infinite tree T satisfies b'T = pT (s. 1935:2,3
p. 112, M 6)

where V'T := suppF, F running through all non radial systems of directions in
(T,<). A direction in (T, <) is defined as every (a,b) € T? such that either a =
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b& T(a,.) = v(:= vacuous or b is an immediate successor of a in (T, <). Direction
(a,b) is said to be non radial with direction (a',b’) if and only if (a,b) # (a',b')
and either al|a’ or a non ||a' &b non ||b’. A non radial system of directions is any
system of directions which are pairwise non radial.

4:3. Tree Rectangle Hypothesis (ReH) (v. M 1:0).

4:4. Tree square b-Statement (T'Sb) bT? = bT for every infinite tree,

4:5. Linear order Square Cellularity Density Statement (Led) or P (v. 1:3; cf.
1935:2,3 p. 121. Theor. 2).

4:6. LSc (Linear Order Square cellularity) Ewvery linearly ordered dense set L
satisfies cL? = cL (cf. 1950: 8, 1952: 8, 1953: 12, 1953: 12).

4:7. Pl(ct. M. 3:0, 3:4).

4:8. Tree Star Width Statement (TSW) sT = p,T for every tree T (v. M. 1:1).

4:9. Proof. A proof of Theorem 4 is given in such way that following lemmas
4:10 — 4:24 are proved or quoted.

4:10. LEMMA. 4:0 & 4:1. Proof is obvious.
4:11. LeEMMA. 4:1 = 4:2. (Implied by bT < b'T < pT; s. 1935:2,3 p. 110, L. 3).
4:12. LEMMA. 4:2 = 4:1. (s. 1935:2,3 p. 112, M. 6).

4:13. LEMMA. 4:0 = 4:3.

The implication is obvious if T is finite. If T is finite, then T'A implies that at least
one of the numbers p. T, psT equals pT’; therefore, their product is pT .

4:14. LEMMA. 4:3 = 4:0.

This is obvious, because if one of positive cardinals a, b, ¢ is infinite and a < b <
¢ < ab, then b = c.

4:16. LEMMA. 4:0 = 4:4.

Since T is infinite, pT' = (pT)?; T A implies pT = sup{p.T,psT} < bT < bT? <
(pT)? = pT, thus bT = bT>.

4:17. LEMMA. 4:4 = 4:0.

In the opposite case there would be infinite tree T such that (i) p.T, psT < pT;
then (cf. 1935:2,3 p. 109, Th. 2) T would be equinumerous to a distinguished
subtree A = A(T). For every x € A the set fx x fz (fz := Ro(x-,) denotes the
set of all immediate followers of = in A) is an infinite antichain in T%; so is also
the union U := U(fz)%(z € A). Since pU = pA = pA = pT, the square T? would
contain the antichain U of power pT, thus bT? = pT, contrarily to R:4 and the
assumption (i).

4:18. LEMMA. 4:0 = 4:5.

Proof. In the opposite case, there would exist an infinite linearly ordered set
L such that (i) ¢L < dL. Let D be any dyadic atomization of L; then pD = dL,
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psD = c¢L. In virtue of (i) one has (ii) p;D < pD and therefore, by 4:0, (iii)
pD =p.D. Now, if pD is of form N,, 11, D would contain a chain of power pD > psL,
if pD is a limit cardinal, then for every cardinal n < pD, and in particular for
n := (psD)* = (cL)*, there would be a subchain C in (D, D) such that pC = n;
but this is not possible, because the sets int (X \ XT)(X € C, X7 is the immediate
successor of X in C') would form a system of power n of non empty open sets in
L—-absurdity.

4:19. LEMMA. 4:5 = 4:0.

Proof. In the opposite case, there would exist an infinite tree T such that
neither pT' = p.T nor pT = p,T'; then T would contain a distinguished equinumer-
ous subtree A (s. 1935:2,3 p. 109, Th. 2). Let N be any node of A and (N, <n)
any total order of N having no first element; then the "natural ordering (4, <;)
is a total order in A which is an extension of <4 and of <, for every node N of
(A, <4). But in this chain L one has ¢L = psA, dL = pA, thus ¢L < dL, contrarily
to the assumption 4:5.

4:20. LEMMA. 4:0 = 4:6.

Proof. For every infinite chain L we have (i) dL. = cL :=n or (ii) dL = n™
(s. 1935:2,3 p. 121, Th. 2). Since TA = Lcd (v. L. 4:18) the case (ii) is excluded;
thus (i) is holding. Now, cL? < dL? = (dL)? = dL =(by (i)) = cL, thus ¢L? < cL
and finally cL? = cL.

4:21. LEMMA. LSc = TA,ie. 4:6 = 4:0.

A proof runs like the one in Lemma 4:19; the preceding chain (4, <,) := L would be
such that ¢L = psA < pL and therefore (i) ¢L < pL. Now, any dyadic atomization
of L produces a tree (D, D) of segments of L of power > 1 each and such that
pD = pL. If for X € D one denotes by Xy, X7 the two successors of X in (D, D),
then the non empty interiors of Xg x X; (X € D) would be pairwise disjoint open
sets in L thus cL? = pL and by (i) one would have cL? > cL, in contradiction with
the assumption 4:6.

4:22. LEMMA. 4:0 = 4:7ie. TA= P].
This follows from T'A = ReH (s. L. 4:13) and ReH = P! (s. L. 3:7).

4:23. LEMMA. P} =TA, ie 47 = 4:0.

A proof is contained in the proof of Lemma 3:5:1.

4:24. LEMMA. TA = TSW, ie. 4:0 = 4:8.

The holding of this statement is implied by TA = ReH (s. L. 4:13) and by ReH =
TSW (s. M. 1:6).

4:25. Remark. In this section we were not worried about the question if car-
dinal numbers we considered were attained when each of them was defined as a
supermum.
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5. Propositions Pig, P, ..., Pss

5:0. THEOREM. If X € {4:0,4:1, ..., R:8} = {TA, b =p, b' = p, ReH, bTS,
Led, LSc, P!, TSW} and y € {L(1), MATH, Ps(i)}, then X & Y < RH.

In other words, if 5:1 (Pig, Py, ..., Pi5) is the lexicographical ordering of the
conjuctions of terms of the Cartesian product

5:2. {4:0,4:1, ..., 4:8} x {L (i), MATH, P, (i)},

then every term of 5:1 is equivalent to RH ; in particular, the term P} & P5(i) := Psg
is equivalent to RH.

Proof. Since Ps, P|5, ReH are pairwise equivalent (s. Theorem 2:1) and since
ReH = (L (i) = Ps(i)) (s. Lemma 2:3) and MATH & L (i) (s. 1:5) each of the
propositions in 5:1 is equivalent to P3g. By Theorem 1:7 we have P; & Pisg; since
P; is equivalent to RH the theorem 5:0 is completly proved. Putting together the
previous results we have the following.

5:3. THEOREM. The 50 propositions Py, P, ..., Pss, ]50, 152, P,, Py; are pairwise
equivalent.
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