RAMIFICATION HYPOTHESIS AGAIN

Duro R. Kurepa

Summary. To the RH (Ramification Hypothesis = Proposition 1 in Kurepa 1935:2,3 p. 130) we join here proposition $P_0'(s,3:2)$, P_{18} , P_{19} , ..., P_{45} , each equivalent to RH; we stress in particular $P_{18} := P_s$: For every branching tree T the width p_sT^2 of the cardinal square of T equals p_sT . (s. 1:0) and is attained (s. N_2 3).

0. Introduction.

- **0:0.** In my doctoral dissertation 1935:2, 3 p. 130 the following ramification hypothesis (RH) was formulated (cf. also 1936:1).
- P_1 For any tree T the number bT is attained in the sense that T contains a degenerate subset of cardinality bT ($bT := \sup pD$, D running trought the system P_DT of all degenerate subsets of T; $pD := \operatorname{power}$ of D; an ordered set S is quoted as degenerate if for every $x \in S$ the corresponding cone S(x) consisting of all elements of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S, is a subchain of S, each comparable to S.
- **0:1.** My dissertation 1935:2, 3 contains following 15 pairwise equivalent propositions:

$$P_0, P_1, P_2, P'_2, P_3, \ldots, P_{12}, P_b,$$

- (s, 1935:2, 3 pp. 130–132 for P_1 , P_2 ,..., P_{12} ; p. 130_{5–1} for P_2' and \mathcal{N} 9:4^{5,6} p. 9:3 for P_0 and \mathcal{N} 11:5 p. 111 for P_b).
- **0:1:0.** P_0 : Every infinite completely ramified sequence S contains an antichain of power $p\gamma S$ where γT denoted the height of T (a tree T was called a sequence if every $x \in T$ is such that $\gamma T(x) = \gamma T$; a T was quoted as completely ramified provided for every $x \in T$ one has $T(\cdot, x) = T(\cdot, y)$ for at least one $y \in T \setminus \{x\}$, where $T(\cdot, x) := \{z : z < x, z \in T\}$.
- **0:1:1.** P_b : For every tree T unless the height γT is inaccessible, the number bT is attained in T (s. \mathcal{M} 5 p. 111 in Kurepa 1935:2, 3).
- **0:2.** We stress as very handlable the following

 P_2 Reduction Principle (RP): Every infinite tree T is equinumerous to a degenerate subtree.

One speaks for short: T is D-reflexive, in the sense of the following.

- **0:3.** Definition. A graph (V, R) is quoted as D-reflexive provided V is equinumerous to a direct sum of a system of complete subgraphs. The word "D-reflexive" replaces the word "normal" used in my Thesis (cf. Thesis, M 11.1, p. 105).
- **0:4.** Afterwards, I formulated other propositions: P_{13} (s. 1977:1 \mathcal{M} 5:1 with references 1950:8, 1952:8, 1953:11, 1953:12), P_{14} (s. 1977:1 \mathcal{M} 7:7), P_{15} (1977:1 \mathcal{M} 7:8), P_{16} (1977:1 \mathcal{M} 3:1), P_{17} (v. 1977:1 \mathcal{M} 3:2), \bar{P}_{17} (dual of P_{17} ; s. 1977:1 \mathcal{M} 3:3) each equivalent to RH.

Consequently, one has 21 pairwise equivalent propositions $P_0, P_1, \ldots, P_{17}, P_1, \ldots, P_{17}, P_2, \bar{P}_{17}, P_b$.

- **0:5.** Inaccessible variations. If P denotes any of these 21 propositions, let P(i) denote the corresponding proposition restricted to the case that the corresponding power be inaccesible (= initial limit regular alef). So one gets 21 propositions $P_0(i)$, $P_1(i)$, ..., $\bar{P}_{17}(i)$, $P_b(i)$.
- **0:6.** So e.g. we have
- $P_5(i)$ In every linearly ordered set L of an inaccessible cellularity there is a disjoint family of cardinality sep L:=dL of open non empty intervals of L (cf. 1977:1 \mathcal{N} 2:6 where instead of "inaccessible cardinality" should be read "inaccessible cellularity").
- **0:7.** For a topological space S the density number is $dS := \inf\{pX; X \subset S, X \text{ is everywhere dense in } S\}$. The cellularity of S is $cS := \sup\{pD : D \text{ consists of pairwise disjoint open sets } \subset S\}$.

1. Some consequences of RH.

I had the opportunity to formulate some interesting consequences of the RH like: ReH, P'_{15} , MATH, P^0_5 ; L(i):

- **1:0.** RECTANGLE HYPOTHESIS. (ReH) Every tree T satisfies $pT \leq p_cT \cdot p_sT$ (s. 1964:7; 1977:1 \mathcal{N} 7:2) where p_cT (resp. P_sT) is $\sup pX$, X running through the system of all subchains (subantichains) of T.
- 1:1. PROPOSITION P'_{15} : Every tree is the union of p_sT (s. 1:0) subchains of T (s. 1963:3 Theorem 3:3) i.e. $p_sT=sT$, where $s(E,\leq)$ denotes the star number of (E,\leq) ($s(E,\leq)$ is the minimal number of subchains of (E,\leq) exhausting $E(s. 1963:3 \ M^2 \ 1:1)$;
- **1:2.** MATH (MAXIMUM ANTICHAIN TREE HYPOTHESIS): Every tree contains a maximum antichain i.e. in every T the number p_sT is attained (s. 1977:1 M 8:1, 1987:1 cf. also 1987:1).
- **1:3.** Proposition P_5^0 . Every infinite chain L satisfies cL = dL (s. 1977: M^0 2:3);

- 1:4. Proposition L(i). Every ordered chain of inaccessible separability contains a maximum disjoint system of open sets (v. 1977:1 M 8:6 where instead of $L_1(i)$ should be L(i)).
- 1:5. THEOREM MATH $\Leftrightarrow L(i)$ (s. 1977:1 Theorem 8:5). One has
- **1:6.** Theorem $ReH \Leftrightarrow P'_{15}$ (s. 1977:1 Theorem 3:3)
- 1:7. THEOREM $P_5 \Leftrightarrow P_5^0 \& P_5(i)$ (announced in 1977:1 as Th 2:5).

Proof. The \Rightarrow – part of the statement being obvious, let us prove the \Leftarrow – part. Let L be any infinite ordered chain; if $p_2L := \operatorname{cel} L$ is limit and regular, then, by assumption $P_5(i)$, P_5 holds; if $\operatorname{cel} L$ is regular and isolated, then cL is attained and, by P_5^0 , equals sep L; thus L has a disjoint system of power sep L of intervals. The case when $\operatorname{cel} L$ is singular was considered explicitly in 1987:1 as Theorem 0:11 and is implied by the theorem 3 p. 110 in Kurepa 1935:2,3.

2. Some equivalences

2:0. Theorem $P_0^5 \Leftrightarrow ReH$ (cf. 1:0, 1:3).

Proof. Part \Rightarrow . In opposite case there would exist a tree T such that $pT > p_cT \cdot p_sT$. One could assume without restriction that the rank or height γT is a regular initial ordinal and that T is a sequence (i.e. $\gamma T(x) = \gamma T$ for every $x \in T$; where $T(x) := \{y : y \in T \text{ and } y \text{ is comparable to } x\}$ and that if $x \in R_{\alpha+1}T$ then there are infinitely many members y of T such that $T(\cdot, x) = T(\cdot, y)$. If then one orders totally every node N of T in such a way that if γN (defined by $N \subset R_{\gamma T}T$) is isolated the chain (N, \leq_N) has no first element, then the natural ordering of T which extends (T, \leq) as well as (T, \leq) for every node N yields an ordered chain L (s. 1935 · 2,3 p.127); one verifies that $p_s T = cL$, dL = pT; consequently, one would have $cL = p_s T < pT = dL$ thus cL < dL, contrarily to the assumption P_5^0 .

Part \Leftarrow . In the opposite case, there would exist an infinite chain (L, \leq) such that cel L < dL. Let D be a complete dyadic atomization i.e. a complete bipartition of (L, \leq) (s. 1935:2,3 p. 114); then the system F of members of D wich are segments of (L, \leq) of power > 1 is such that pF = dL; the height γF of (F, \supset) should be the initial ordinal $\beta := \omega_{(dL)}$. Now, γF is not attained (in the opposite case, there would exist a β -sequence of strictly increasing intervals $I_n \in F(n < \beta)$; there is no restriction to suppose that L has no gap and therefore inf I_n , sup $I_n \in L$; consequently one of the sequences inf $I_n(n < \beta)$, sup $I_n(n < \beta)$, should be of power dL. Therefore at least one of the systems

$$(\inf I_n, \inf I_{n+1}) \cap L, (\sup I_n, \sup I_{n+1}) \cap L \quad (n < \beta)$$

would yield a disjoint system of cardinality dL of non void intervals of L, contrarily to the assumption cL < dL.

2:1. THEOREM. The propositions P_5^0 , P_{15}' , ReH are pairwise equivalent (cf. 1:3, 1:1, 1:0).

 $^{^1 \}mbox{For a cardinal } n$ one denotes by $\omega_{(n)}$ the first ordinal of power n

This is implied by 1:6, 2:0.

2:2. Lemma. $P_5(i) \Rightarrow L(i)$.

Proof. Let L be an ordered chain such that sL be inaccessible; if we succeed to get a disjoint system D of intervals of L such that pD = dL, then obviously D would be a requested system of maximal power because $cL \leq sL$. Now, for every chain L one has $cL \leq sL \leq c(L)^+$ (Theor. 2 p. 121 in 1935:2,3); therefore, since by hypothesis sL is inaccessible, we infer that necessarily cL = sL, thus cL is inaccessible; therefore, by L(i), L contains a disjoint system D of intervals such that pD = cL thus pD = sL what we wanted to show.

2:3. Lemma. $ReH \Rightarrow (L(i) \Rightarrow P_5(i))$.

Proof. Let L be a chain such that cL is inaccessible; we want to get, assuming L(i) and ReH, a disjoint system D of intervals of L such that pD = dL. First case: cL = dL; then dL is inaccessible and the application of L(i) yields a disjoint system D of power dL = cL and thus $P_5(i)$ is holding.

Second case: cL < dL i.e. $dL = c(L)^+$, dL is accessible and we are not allowed to apply L(i). Now, a dyadic atomization of L would yield a tree (T, \supset) of intervals of rank $\omega_{(dL)}$ which is not attained (because of cL < dL); thus $p_c T \le cL$; therefore, ReH would imply $pT \le p_s T \cdot p_c T \le cL \cdot cL = cT$, contrarily that $pT = \aleph_{(dL)} > cL$.

3. Propositions
$$P'_0$$
, P_s (:= P_{18}), P'_s , P''_s

3:0. Definition. A tree (pseudotree) T is said to be branching (almost branching) if for every $x \in T$ one has $pR_0T(x,.) > 1$ ($p_sT(x,.) > 1$), where

$$T(x,.) := \{ y : y \in T \& x < y \}; \ R_0 A := \{ a : a \in A : \ A(.,a) = \nu \}.$$

3:1. LEMMA. If a tree T is branching, then to every chain L of T corresponds an equinumerous antichain A(L) of T; $p_cT \leq p_sT$; T is ν (vacuous) or infinite. If $T \neq \nu$, then the numbers pT, p_cT , p_sT are infinite.

Proof of 3:1. It is sufficient to associate with every $x \in L$ a point $x' \in RT_0(x,.)$ and to denote by A(L) the set of all such point $x'(x \in L)$. Therefore $p_cT := \sup_L pL = \sup_L pA(L) \le \sup_L pA(L) \le \sup_L pA(L) \le \sup_L pA(L) = 0$. If $T \ne \nu$, then every $x \in T$ has some immediate successor fx; the set $L := \{x, fx, f^2x, \ldots\}$ is an infinite chain in T.

In connection with P_0 (s. \mathcal{N} . 0:1:0) let us formulate the following intriguing statement P_0' .

- **3:2.** Proposition P'_0 . Every branching tree is equinumerous to a free subset (any antichain is called also a free set).
- **3:3.** Theorem. $P'_0 \Leftrightarrow RP :\equiv P_2$ (s. \mathcal{N}_0 0:2).

Proof. The implication $P'_0 \Rightarrow RP$ is obvious, because every free subset is a special case of a degenerate set; therefore, let us prove the converse $RP \Rightarrow P'_0$. Now, let

T be any infinite branching tree; if $T=\nu$, all is obvious; if $T\neq\nu$, then T is infinite (s. L. 3:1): in virtue of RP, T contains a degenerate subset D of power pT. The first row R_0D of D is free. If incidentally, the antichain R_0D is of power pD(=pT), all is done. If $pR_0D < pD$, then the set $E:=D\setminus R_0D$ as well as the set $F:=\cup T(.,x]\setminus \cup T(.,y]$ ($x\in E,\ y\in R_0D$) are degenerate and of a power < pD. Since T is branching, every $f\in F$ has in T at least 2 immediate successors. Let sf be an immediate successor of f such that (i) $sf\not\in F$; sf exists because F is degenerate. Let $sF:=\{sF:\ f\in F\}$. Then sF is a requested free subset of T of power pT. As a matter of fact, first, psF=pF, because the mapping s|F is one-to-one: if $f,g\in F$ and sf=sg, then $(sf)^-=(sg)^-$, i.e. f=g. Secondly, sF is free in T; in the opposite case, there would be 2 distinct points f,g in F such that the distinct points sf, sg would be comparable: either (ii) sf < sg or (iii) sf > sg. But neither (ii) nor (iii) is holding. Assume (ii); then g as the immediate predecessor of sg would satisfy $sf \leq g \in F$, and consequently $sf \in F$, contrarily to (i). Analogously, one proves that (iii) is not possible. Q.E.D.

- **3:4.** Proposition P'_s . If a tree T is branching, then the width p_sT is such that $p_sT = p_sT^2$.
- **3:5.** Proposition P''_s . If a tree T is branching, then the free power p_sT is attained.
- **3:6.** Proposition $P_s := P_{18}$. The width of every branching tree is attained and equals the width of the tree: $P_s := P'_s \& P''_s$.
- **3:7.** Theorem. $RH \Leftrightarrow P'_s$.

Proof.

3:7:1. LEMMA. $P_s \Rightarrow RH$.

In the opposite case, there would be a non reflexive infinite tree T; there is no restriction to assume that pT be regular; then (s. 1935:2,3 p. 109, M. 11.3 Theor. 2) T would contain a distinguished subtree A = A(T) (\equiv Aronszajn subtree) of power pT. Let us consider $X := \bigcup R_0 A(y, \cdot) \times R_0 A(y, \cdot)$, $(y \in A(T))$; then X is an antichain in T^2 . Therefore, (i) $p_s A^2 = pA = pT$. Since A is branching, P_s'' implies that $p_s A$ is attained; by (i) this means that A is equinumerous to a proper subantichain; therefore also T is equinumerous to the same antichain: T would be D-reflexive, contrarily to the hypothesis.

3:7:2. Lemma. $RH \Rightarrow P_s''$.

Since $RH \Rightarrow ReH$ the Lemma 3:7:2 is implied by the following.

3:7:3. Lemma. ReH implies that every branching tree T satisfies (i) $p_cT \leq p_sT$, $pT = p_sT$, $p_sT = p_sT^2$; p_sT is attained.

Proof. Since T is branching, the first relation in (i) is holding (v. Lemma 3:1). On the other hand by ReH we have (ii) p_cT , $p_sT \leq pT \leq p_cT \cdot p_sT$. Since $p_cT \leq p_sT$ and for $T \neq \nu$ the numbers p_cT , p_sT are infinite, one has $p_cT \cdot p_sT = p_sT$ and (ii) yields (iii) $pT = p_sT$ thus, p_sT is determined.

What about the attainability of p_sT ? If $p_sT:=n$ is accessible, then this number n is attained (v. 1987:1 Theor. 2:4 with corresponding comments). Remains the case that n, thus by (iii) pT too, is inaccessible. Now, by RH, T contains a D-subset D of power pT; if for some $x \in D$ the chain L := D[x,.) is of power pT, then A(L) is an antichain of power pT, thus n is attained. If for every $x \in D$ the chain D[x,.) is of a power pT, then the disjoint partition pT is regular; since pT of pT is an antichain, the attainability of pT is established. Q.E.D.

3:7:4. Lemma. $ReH \Rightarrow P'_s$.

Proof. In the opposite case, there would be a branching tree T such that (i) $p_sT < p_sT^2$. But, by Lemma 3:7:3, $p_sT = pT$ and n is attained; this means that T contains an antichain X of power pT and (i) would yield $pT < p_sT^2$; this inequality contradicts the relations $p_sT \leq (pT^2) = pT$.

3:7:5. Lemma. $RH \Rightarrow P'_s$.

This follows from $RH \Rightarrow ReH$ and $ReH \Rightarrow P'_s$ (s. Lemma 3:7:4). Finnaly, 3:7:2, 3:7:5 imply $RH \Rightarrow P_s$; and this joint to 3:7:1 imply the theorem 3:7.

- **3:8.** Theorem. $ReH \Leftrightarrow P'_s$.
- **3:8:1.** Proof of \Rightarrow . ReH implies that every branching tree T satisfies $pT = p_sT \ge \aleph_0$. Now, $p_sT \le p_sT^2 \le (pT)^2 = (\text{because } pT \text{ is infinite}) = pT = p_sT$, thus $p_sT = p_sT^2$.
- **3:8:2.** Proof of $P'_s \Rightarrow ReH$. If this implication were false, there would exist an infinite tree T such that (i) $pT > p_sT \cdot p_cT$; pT would be necessarily of the form $\aleph_{\alpha+1}$ (cf. 1935:2,3 p. 105, Theor. 1); T would contain an equinumerous distinguished subtree A (v. 1935:2,3 p. 105, Theor. 2); A is branching; therefore, by P'_s , $p_sA = p_sA^2$. Now, $p_sA^2 = pA$ because $\bigcup R_0(x,.) \times R_0(x,.)$ ($x \in A$) is an antichain in A^2 of power pA = pT. Hence $p_sA = pA$ and therefore $p_sT = pT$ and (since $p_cT \leq p_sT$) $p_cT \cdot p_sT = p_sT = pT$, contradicting (i).
- **3:9.** Problem. Does ReH (or RH) imply that p_sT is attained in every almost branching tree? (cf. 3:0, 3:7:3).

4. Main theorem.

The following 9 statements are pairwise equivalent:

- **4:0.** Tree Alternative (TA): If T is any infinite tree, then $pT = p_cT$ or $pT = p_sT$ (cf. 1969: 7, N 8:5).
- **4:1.** Tree b=p Statement. If T is any infinite tree, then bT=pT (cf. 1935:2,3 p. 112, \mathcal{N} 6 and 1969:8, Theor. 8:8).
- **4:2.** Tree proposition b' = p: Every infinite tree T satisfies b'T = pT (s. 1935:2,3 p. 112, \mathcal{N} 6)

where $b'T := \sup pF$, F running through all non radial systems of directions in (T, \leq) . A direction in (T, \leq) is defined as every $(a, b) \in T^2$ such that either a =

 $b \& T(a,.) = \nu$ (:= vacuous or b is an immediate successor of a in (T, \leq) . Direction (a,b) is said to be non radial with direction (a',b') if and only if $(a,b) \neq (a',b')$ and either $a \| a'$ or a non $\| a' \& b$ non $\| b'$. A non radial system of directions is any system of directions which are pairwise non radial.

- **4:3.** Tree Rectangle Hypothesis (ReH) (v. \mathcal{N}_{2} 1:0).
- **4:4.** Tree square b-Statement (TSb) $bT^2 = bT$ for every infinite tree,
- **4:5.** Linear order Square Cellularity Density Statement (Lcd) or P_5^0 (v. 1:3; cf. 1935:2,3 p. 121. Theor. 2).
- **4:6.** LSc (Linear Order Square cellularity) Every linearly ordered dense set L satisfies $cL^2 = cL$ (cf. 1950: 8, 1952: 8, 1953: 12, 1953: 12).
- **4:7.** P'_{s} (cf. \mathcal{N}_{2} . 3:0, 3:4).
- **4:8.** Tree Star Width Statement (TSW) $sT = p_sT$ for every tree T (v. \mathcal{M} . 1:1).
- **4:9.** *Proof.* A proof of Theorem 4 is given in such way that following lemmas 4:10-4:24 are proved or quoted.
- **4:10.** Lemma. $4:0 \Leftrightarrow 4:1$. Proof is obvious.
- **4:11.** LEMMA. 4:1 \Rightarrow 4:2. (Implied by bT < b'T < pT; s. 1935:2,3 p. 110, L. 3).
- **4:12.** Lemma. $4:2 \Rightarrow 4:1$. (s. 1935:2,3 p. 112, \mathcal{M} . 6).
- **4:13.** LEMMA. $4:0 \Rightarrow 4:3$.

The implication is obvious if T is finite. If T is finite, then TA implies that at least one of the numbers p_cT , p_sT equals pT; therefore, their product is pT.

4:14. LEMMA. $4:3 \Rightarrow 4:0$.

This is obvious, because if one of positive cardinals a, b, c is infinite and $a \le b \le c \le ab$, then b = c.

4:16. LEMMA. $4:0 \Rightarrow 4:4$.

Since T is infinite, $pT = (pT)^2$; TA implies $pT = \sup\{p_cT, p_sT\} \le bT \le bT^2 \le (pT)^2 = pT$, thus $bT = bT^2$.

4:17. LEMMA. $4:4 \Rightarrow 4:0$.

In the opposite case there would be infinite tree T such that (i) p_cT , $p_sT < pT$; then (cf. 1935:2,3 p. 109, Th. 2) T would be equinumerous to a distinguished subtree A = A(T). For every $x \in A$ the set $fx \times fx$ ($fx := R_0(x \cdot,)$ denotes the set of all immediate followers of x in A) is an infinite antichain in T^2 ; so is also the union $U := \bigcup (fx)^2 (x \in A)$. Since pU = pA = pA = pT, the square T^2 would contain the antichain U of power pT, thus $bT^2 = pT$, contrarily to R:4 and the assumption (i).

4:18. LEMMA. $4:0 \Rightarrow 4:5$.

Proof. In the opposite case, there would exist an infinite linearly ordered set L such that (i) cL < dL. Let D be any dyadic atomization of L; then pD = dL,

 $p_sD=cL$. In virtue of (i) one has (ii) $p_sD< pD$ and therefore, by 4:0, (iii) $pD=p_cD$. Now, if pD is of form \aleph_{n+1} , D would contain a chain of power $pD>p_sL$, if pD is a limit cardinal, then for every cardinal n< pD, and in particular for $n:=(p_sD)^+=(cL)^+$, there would be a subchain C in (D,\supset) such that pC=n; but this is not possible, because the sets int $(X\setminus X^+)(X\in C,X^+)$ is the immediate successor of X in C) would form a system of power n of non empty open sets in L-absurdity.

4:19. Lemma. $4:5 \Rightarrow 4:0$.

Proof. In the opposite case, there would exist an infinite tree T such that neither $pT = p_cT$ nor $pT = p_sT$; then T would contain a distinguished equinumerous subtree A (s. 1935:2,3 p. 109, Th. 2). Let N be any node of A and $(N, <_N)$ any total order of N having no first element; then the "natural ordering $(A, <_n)$ is a total order in A which is an extension of $<_A$ and of $<_N$ for every node N of $(A, <_A)$. But in this chain L one has $cL = p_sA$, dL = pA, thus cL < dL, contrarily to the assumption 4:5.

4:20. LEMMA. $4:0 \Rightarrow 4:6$.

Proof. For every infinite chain L we have (i) dL = cL := n or (ii) $dL = n^+$ (s. 1935:2,3 p. 121, Th. 2). Since TA \Rightarrow Lcd (v. L. 4:18) the case (ii) is excluded; thus (i) is holding. Now, $cL^2 \leq dL^2 = (dL)^2 = dL = (\text{by (i)}) = cL$, thus $cL^2 \leq cL$ and finally $cL^2 = cL$.

4:21. Lemma. LSc \Rightarrow TA, i.e. $4:6 \Rightarrow 4:0$.

A proof runs like the one in Lemma 4:19; the preceding chain $(A, <_n) := L$ would be such that $cL = p_s A < pL$ and therefore (i) cL < pL. Now, any dyadic atomization of L produces a tree (D, \supset) of segments of L of power > 1 each and such that pD = pL. If for $X \in D$ one denotes by X_0, X_1 the two successors of X in (D, \supset) , then the non empty interiors of $X_0 \times X_1$ ($X \in D$) would be pairwise disjoint open sets in L thus $cL^2 = pL$ and by (i) one would have $cL^2 > cL$, in contradiction with the assumption 4:6.

4:22. Lemma. $4:0 \Rightarrow 4:7$ i.e. $TA \Rightarrow P'_s$.

This follows from $TA \Rightarrow ReH$ (s. L. 4:13) and $ReH \Rightarrow P'_s$ (s. L. 3:7).

4:23. LEMMA. $P'_s \Rightarrow TA$, i.e. $4:7 \Rightarrow 4:0$.

A proof is contained in the proof of Lemma 3:5:1.

4:24. Lemma. $TA \Rightarrow TSW$, i.e. $4:0 \Rightarrow 4:8$.

The holding of this statement is implied by $TA \Rightarrow ReH$ (s. L. 4:13) and by $ReH \Rightarrow$ TSW (s. \mathcal{N} . 1:6).

4:25. Remark. In this section we were not worried about the question if cardinal numbers we considered were attained when each of them was defined as a supermum.

5. Propositions $P_{19}, P_{20}, \ldots, P_{45}$

5:0. THEOREM. If $X \in \{4:0, 4:1, ..., R:8\} = \{TA, b = p, b' = p, ReH, bTS, Lcd, LSc, <math>P'_s$, TSW $\}$ and $y \in \{L(1), MATH, P_5(i)\}$, then $X \& Y \Leftrightarrow RH$.

In other words, if 5:1 $(P_{19}, P_{20}, \ldots, P_{45})$ is the lexicographical ordering of the conjuctions of terms of the Cartesian product

5:2. $\{4:0, 4:1, \ldots, 4:8\} \times \{L(i), MATH, P_s(i)\},$

then every term of 5:1 is equivalent to RH; in particular, the term $P_5' \& P_5(i) := P_{36}$ is equivalent to RH.

Proof. Since P_5 , P'_{15} , ReH are pairwise equivalent (s. Theorem 2:1) and since ReH \Rightarrow (L (i) \Rightarrow P_5 (i)) (s. Lemma 2:3) and MATH \Leftrightarrow L (i) (s. 1:5) each of the propositions in 5:1 is equivalent to P_{36} . By Theorem 1:7 we have $P_5 \Leftrightarrow P_{36}$; since P_5 is equivalent to RH the theorem 5:0 is completly proved. Putting together the previous results we have the following.

5:3. THEOREM. The 50 propositions $P_0, P_1, \ldots, P_{45}, P_0, P_2, P_b, P_{17}$ are pairwise equivalent.

REFERENCES

- [1980] Kunen K. Set Theory. An Introduction to Independence Proofs, North Holland, 16+313. Kurepa Duro:
- 1935:2 Ensembles ordonnés et ramifiés, PMU 4 (Beograd 1935). 1-138; [1935:3].
- 1935:3* Ensembles ordonnés et ramifiés; Beograd 1935, pp. VI +138+ II. Thèse de doctorat soutenue le 1935:12:19 à la Faculté des Sciences à Paris JFM 61:2 (1935) 980 (Aumann); ZBI 14 (1936) 394 (Knaster B.).
- 1936:1 L'hypothèse de ramification, CR 202 Paris (1936), 185–187; JFM 62 I (1936) 688 (G. Aumann). Zbl. 14 (1936) 394 (B. Knaster).
- 1950:8 La condition de Suslin et une propriété caractéristique des nombres réels, C.R. 231 (Paris 1950) 1113–1114. M.R. 12 (1951) 397 (J. Todd) Zb1. 40 (1951) 166 (Landolino Giuliano).
- 1952:8 Sur une propriété caractéristique du continu linéaire et le problème de Suslin. PIM Acad. Sci. Serbe, 4 Beograd (1952) 97-108. M.R. **14** (1953) 255 (Sherman, S.). Zbl **47** (1953) 287-288 (Neumer W.).
- 1953:11 Sur une hypothèse de la théorie des ensembles, CR 256 (Paris 1953:02:09) 564-565 MR **15** (1954) 409 (Viola, T.). RŽM. (1953) 141. Zb1. **51** (1954) 52 (Neumer, W.).
- 1953:12 Sur un principe de la théorie des espaces abstraits, CR. 256 (Paris 1953:02:16) 655-657. MR 15 (1954) 409 (Viola, T.). RŽM. (1953) 141. Zb1. 51 (1954) 290 (Neumer, W.).
- 1959:7 Sur une proposition de la théorie des ensembles, C.R. Acad. Sci. 249 (1959) 2698–2699, MR 22 (1961) #16 (S. Ginsburg) RŽM, 1961:4B25 (A.S. Esein-Vol'pin), Zb1. (1962) 95:39 (E. Specker).
- 1964:7 On the rectangle tree hypothesis, p. $\bf 14$: International congress for Logic, methodology and philosophy of science. (Jerusalem 1964:08:26–09:2) pp. 7+127.
- 1977:1 On some hypotheses concerning trees, Publ. Inst. Math. 21 (Beograd 1977), 99–108. MR. 57:2 (1979) 2919 (Devlin, K.) RŽM. 1978, 1B520 (K. Zareckij) 80 Zb1. 365 (1978) 05023 Autorreferat).
- 1985:1 A tree axiom. Publ. Inst. Math. **38**(**52**) (Beograd 1985) 7-11. M.R. 87e:03110 (Baumgartner, J.) RŽM 1985:7A49; Zb1. **613**(1987) 04005 Komjath P.).

1987:1 Free power or width of some kinds of mathematical structures, Publ. Inst. Math. ${\bf 42}\,({\bf 56})$ (Beograd) (1957) 3–12.

[1984] Todorčević S., Trees and linearly ordered sets, 235-292, in K. Kunen and J.F. Vaughan (Ed.), Handbook of Set-Theoretical Topology, North Holland. Amstredam, pp. 8 + 1273.

Laze Simića 9 11000 Beograd Jugoslavia

(Received 10 04 1988)