PERFECT MATCHINGS IN A CLASS OF BIPARTITE GRAPHS

Ivan Gutman

Abstract. Some relations for the number of perfect matchings in a class of graphs are established.

In this paper we consider undirected graphs without loops and multiple edges. Let $I_p = \{i_1, i_2, \ldots, i_{2p}\} \subset \{1, 2, \ldots, n\}$ and $i_j < i_{j+1}, \ j=1, \ldots, 2p-1$. Consider a graph $G(n, I_p)$ having n vertices. These vertices are labeled by $1, 2, \ldots, n$ and the following edges exist in $G(n, I_p)$: $(i, i+1), i=1, 2, \ldots, n-1$; (1, n); $(i_j, i_{2p-j+1}), \ j=1, \ldots, p$. It is further required that $i_{2p}-i_1 < n-1$ and $i_{p+1}-i_p > 1$, otherwise we would have to allow multiple edges in $G(n, I_p)$.

The structure of $G(n,I_p)$ is presented in Fig. 1. From Fig. 1 it is easy to conclude that $G(n,I_p)$ will be bipartite if n is even and $i_{2p-j+1}-i_j\equiv 1\pmod 2$ for $j=1,\ldots,p$.

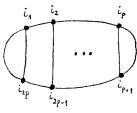


Fig. 1

If G is a graph possessing n vertices and n is even, then a perfect matching M(G) of G is a set of n/2 edges of G, such that if $(u, v) \in M(G)$ and $(w, z) \in M(G)$, then $|\{u, v, w, z\}| \neq 3$.

The number of distinct perfect matchings of the graph G is denoted by k(G).

In this paper we establish several results for $k(G(n, I_p))$ when $G(n, I_p)$ is bipartite. In the discussion which follows is always assumed that $G(n, I_p)$ is bipartite.

12 Gutman

Theorem 1. If p=1, then $k(G(n,I_p))=3$. If p=2, then $k(G(n,I_p))=[9+(-1)^{i_2-i_1}]/2$. If p>2, then $k(G(n,I_p))$ is uniquely determined by the ordered sequence $S=[S_1,S_2,\ldots,S_{p-1}]$ of symbols E (even) and O (odd), defined as

$$S_{j} = \begin{cases} E & if \quad i_{j+1} - i_{j} \equiv 0 \pmod{2} \\ O & if \quad i_{j+1} - i_{j} \equiv 1 \pmod{2}. \end{cases}$$

In order to prove Theorem 1 we need an auxiliary result.

Let G be a graph and v_1, v_2, v_3, v_4 its distinct vertices, such that v_1 and v_{i+1} are adjacent, $i = 1, 2, 3, v_1$ and v_4 are not adjacent, and v_2 and v_3 have degree two. Let the graph H be obtained by deleting from G the vertices v_2 and v_3 and by joining v_1 and v_4 .

Lemma 1.
$$k(H) = k(G)$$
.

Proof. We demonstrate a one-to-one correspondence between the perfect matchings of G and H.

Let M'(G) be a perfect matching of G containing the edge (v_1, v_2) . Then necessarily $(v_2, v_3) \not\in M'(G)$, $(v_3, v_4) \in M'(G)$. The corresponding perfect matching of H is $M'(H) = M'(G) \setminus \{(v_1, v_2), (v_3, v_4)\} \cup \{(v_1, v_4)\}$. Note that (v_1, v_4) belongs to M'(H).

Let M''(G) be a perfect matching of G not containing (v_1, v_2) . Then $(v_2, v_3) \in M''(G)$, $(v_3, v_4) \notin M''(G)$. The corresponding perfect matching of H is $M''(H) = M''(G) \setminus \{(v_2, v_3)\}$. Note that $(v_1, v_4) \notin M''(H)$.

Since any perfect matching of G is either of type M'(G) or M''(G), and any perfect matching of H is either of type M'(H) or M''(H), the correspondence described above is a bijection. \square

Proof of Theorem 1. For p=1 and p=2 the statement of Theorem 1 can be easily verified by direct checking. Therefore we focus our attention on the case p>2.

Denote by q = q(S) the number of times the symbol E occurs in the sequence S.

As an immediate consequence of Lemma 1, whenever for some $j=1,\ldots,p-1,\ p+1,\ldots 2p-1$ we have $i_{j+1}-i_j\geq 3$, we can perform a "contraction" of $G(n,I_p)$ by reducing by two the number of vertices laying between i_j and i_{j+1} ; this transformation does not affect the value of k. Similar contractions can be performed between i_p and i_{p+1} provided $i_{p+1}-i_p>3$, and between i_1 and i_n provided $i_1+n-i_n>3$.

Applying the contraction as many times as possible, we finally arrive at the

graph
$$G(n^*,I_p^*)$$
 for which $n^*=4p-2q+2,\ I_p^*=\{i_1^*,i_2^*,\ldots,i_{2p}^*\}$ and
$$i_1^*=2$$

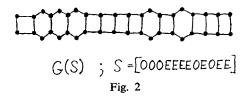
$$i_{j+1}^*-i_j^*=i_{2p-j+1}^*-i_{2p-j}^*=\left\{\begin{array}{ll} 1 & \text{if } S_j=E\\ 2, & \text{if } S_j=O \end{array}\right.$$
 $j=1,2,\ldots,p-1$
$$i_{p+1}^*-i_p^*=3$$

$$i_{2p}^*=n^*-1.$$

The contracted graph $G(n^*, I_p^*)$ has the same number of perfect matchings as $G(n, I_p)$. On the other hand, it is clear that the structure of the graph $G(n^*, I_p^*)$ is fully determined by the sequence S. \square

Bearing in mind Theorem 1, we shall denote the number of perfect matchings of $G(n, I_p)$ by $k(\mathbf{S})$. The contracted graph corresponding to \mathbf{S} will be denoted by $G(\mathbf{S})$.

A typical graph of the type $G(\mathbf{S})$ is depicted in Fig. 2. Such graphs consist of a linear array of squares and hexagons. The number of squares and hexagons is q+2 and p-q-1, respectively.



Theorem 2. For i = 1, ..., p-1 define the matrices X_i as

$$\mathbf{X}_i = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 if $S_i = E$; $\mathbf{X}_i = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ if $S_i = 0$.

Then
$$k(\mathbf{S}) = 3(\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_{p-1})_{11} + 2(\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_{p-1})_{12}$$
.

Theorem 2 is equivalent to a result proved in [1]. We mention it for completeness, and because of its formal similarity with Theorem 3.

For p > 2 the sequence S can be presented as

$$\mathbf{S} = [O^{t_0} E O^{t_1} E O^{t_2} \dots E O^{t_p}] \tag{1}$$

where $t_i \geq 0$, and where use the convention $OO = O^2$, $OOO = O^3$, $OOOO = O^4$,..., and also $EO^0E = EE$.

Theorem 3. Let the sequence S be of the form (1). For $i=0,1,\ldots,q$ define the matrices \mathbf{Y}_i as

$$\mathbf{Y}_i = \begin{pmatrix} t_i + 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then $k(S) = (Y_0 Y_1, \dots Y_q)_{11} + (Y_0 Y_1 \dots Y_q)_{12} + (Y_0 Y_1 \dots Y_q)_{21} + (Y_0 Y_1 \dots Y_q)_{22}$.

14 Gutman

Denote the edges $(1, n^*)$ and $(i_p^* + 1, i_p^* + 2)$ of the graph $G(\mathbf{S})$ by $e_1 = e_1(\mathbf{S})$ and $e_2 = e_2(\mathbf{S})$, respectively. Let further $k_{11}(\mathbf{S})$, $k_{12}(\mathbf{S})$, $k_{21}(\mathbf{S})$ and $k_{22}(\mathbf{S})$ denote the number of perfect matchings of G(S), which contain respectively e_1 and e_2 , only e_1 , only e_2 , and neither e_1 nor e_2 . Then

$$k(\mathbf{S}) = k_{11}(\mathbf{S}) + k_{12}(\mathbf{S}) + k_{21}(\mathbf{S}) + k_{22}(\mathbf{S}).$$
 (2)

In order to deduce Theorem 3 we prove a somewhat stronger result. Denote the matrix product $\mathbf{Y}_0 \mathbf{Y}_1 \dots \mathbf{Y}_q$ by $\mathbf{Y}(\mathbf{S})$.

Lemma 2.

$$\mathbf{Y}(\mathbf{S})_{ij} = k_{ij}(\mathbf{S}), \qquad i, j \in \{1, 2\}$$
(3)

It is evident that Theorem 3 is an immediate corollary of Lemma 2 and eq. (2).

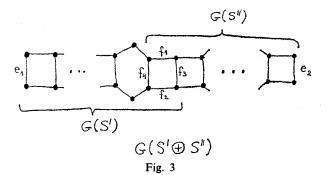
Proof of Lemma 2. We make an iduction on q, the number of symbols E in ${\bf S}.$

First, if q = 0, then eq. (3) is easily verified.

Consider now two sequences S' and S'' of symbols E and O. Denote by $S' \oplus S''$ the sequence in which the elements of S' are followed by a symbol E and then by the elements of S''. Suppose that eq. (3) holds for $\max\{q(S'), q(S'')\}$. Then

$$\mathbf{Y}(\mathbf{S}' \oplus \mathbf{S}'') = \mathbf{Y}(\mathbf{S}')\mathbf{Y}(\mathbf{S}''). \tag{4}$$

In order to obtain the identity (4) we analyse the perfect matchings of $G(S' \oplus S'')$. The newly added symbol E in $S' \oplus S''$ corresponds to a square in the graph $G(S' \oplus S'')$. Two of the four edges of this square lie on the boundary of $G(S' \oplus S'')$; they are denoted by f_1 and f_2 . The two additional edges, which do not belong to the boundary, are denoted by f_3 and f_4 ; see Fig. 3.



Since we have resticed our consideration to bipartite graphs, it is not difficult to see that a perfect matching of $G(\mathbf{S}' \oplus \mathbf{S}'')$ either contains both f_1 and f_2 or none of them.

We first examine those perfect matchings of $G(\mathbf{S}' \oplus \mathbf{S}'')$ which contain both of the edges e_1 and e_2 (see Fig. 3). Their number is $k_{11}(\mathbf{S}' \oplus \mathbf{S}'')$. Among these perfect matchings some contain f_1 and f_2 , and some not.

Perfect matchings which contain f_1 and f_2 cannot contain f_3 and f_4 . Observing that $f_3 = e_2(\mathbf{S}')$ and $f_4 = e_1(\mathbf{S}'')$, we conclude that the number of such perfect matchings is $k_{11}(\mathbf{S}')k_{11}(\mathbf{S}'')$.

For the same reason the number of perfect matchings which contain e_1 and e_2 , but not f_1 and f_2 , is equal to $k_{12}(\mathbf{S}')k_{21}(\mathbf{S}'')$.

This gives

$$k_{11}(\mathbf{S}' \oplus \mathbf{S}'') = k_{11}(\mathbf{S}')k_{11}(\mathbf{S}'') + k_{12}(\mathbf{S}')k_{21}(\mathbf{S}'')$$

or, by taking into account the induction hypothesis,

$$k_{11}(\mathbf{S}' \oplus \mathbf{S}'') = \mathbf{Y}(\mathbf{S}')_{11}\mathbf{Y}(\mathbf{S}'')_{11} + \mathbf{Y}(\mathbf{S}')_{12}\mathbf{Y}(\mathbf{S}'')_{21}.$$

This means that the relation

$$k_{ij}(\mathbf{S}' \oplus \mathbf{S}'') = [\mathbf{Y}(\mathbf{S}')\mathbf{Y}(\mathbf{S}'')]_{ij} \tag{5}$$

is valid for i = j = 1.

The remaining three relations of type (5) are deduced by using a completely analogous reasoning. Hence (5) holds for $i, j \in \{1, 2\}$.

If we choose the sequence S'' so that q(S'') = 0, then $q(S' \oplus S'') = q(S') + 1$. Therefore (5) implies that if (3) holds for sequences S possessing q symbols E, then it will also hold for sequences possessing q + 1 symbols E.

This proves Lemma 2 and therefore also Theorem 3. \square

COROLLARY 3.1. The numbers $k_{ij}(\mathbf{S})$ obey the identity

$$k_{11}(\mathbf{S})k_{22}(\mathbf{S}) - k_{12}(\mathbf{S})k_{21}(\mathbf{S}) = (-1)^{p+1}.$$

Proof. Corollary 3.1. is just another way to state that det $\mathbf{Y}(\mathbf{S}) = (-1)^{p+1}$. This latter relation follows from $\mathbf{Y}(\mathbf{S}) = \mathbf{Y}_0 \mathbf{Y}_1 \dots \mathbf{Y}_p$ and the obvious fact that det $\mathbf{Y}_i = -1, \ i = 0, 1, \dots, q$.

COROLLARY 3.2. Cyclic permutations of the factors do not alter the trace of the product $\mathbf{Y} = \mathbf{Y}_0 \mathbf{Y}_1 \mathbf{Y}_2, \dots \mathbf{Y}_q$.

Proof. It is sufficient to demonstrate that the above statement is true for $\mathbf{Y}' = \mathbf{Y}_1 \mathbf{Y}_2 \dots \mathbf{Y}_n \mathbf{Y}_0$. Let $t_0 + 1 = a$. Then

$$\mathbf{Y}' = \mathbf{Y}_0^{-1} \mathbf{Y} \mathbf{Y}_0 = \begin{pmatrix} 0 & 1 \\ 1 & -a \end{pmatrix} \mathbf{Y} \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$$

and therefore, $Y'_{11}=aY_{21}+Y_{22},\ Y'_{22}=Y_{11}-aY_{21}.$ Hence, $Y'_{11}+Y'_{22}=Y_{11}+Y_{22}.$

REFERENCES

 D. Cvetković and I. Gutman, Kekulé structures and topology. II. Catacondensed systems, Croat. Chem. Acta 46 (1974) 15-23.

Prirodno-matematički fakultet 34000 Kragujevac Yugoslavia (Received 26 02 1988)