PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 45 (59), 1989, pp. 11-15

PERFECT MATCHINGS IN A CLASS OF BIPARTITE GRAPHS

Ivan Gutman

Abstract. Some relations for the number of perfect matchings in a class of graphs are
established.

In this paper we consider undirected graphs without loops and multiple
edges. Let I, = {i1,d2,... ,i2p} C {1,2,...,n} and ij < ij41, j =1,...,2p— 1.
Consider a graph G(n,I,) having n vertices. These vertices are labeled by
1,2,...,n and the following edges exist in G(n,Ip) : (i,i 4+ 1),i = 1,2,... ,n —
1; (1,n); (4,92p—j4+1), J =1,...,p. It is further required that i, —i; < n—1 and
ip+1 — ip > 1, otherwise we would have to allow multiple edges in G(n, Ip).

The structure of G(n,I,) is presented in Fig. 1. From Fig. 1 it is easy to
conclude that G(n,I,) will be bipartite if n is even and iy, 41 —i; =1 (mod 2)
forj=1,...,p.
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Fig. 1

If G is a graph possessing n vertices and n is even, then a perfect matching
M (G) of G is a set of n/2 edges of G, such that if (u,v) € M(G) and (w, z) € M(G),
then | {u,v,w, 2} |# 3.

The number of distinct perfect matchings of the graph G is denoted by k(G).

In this paper we establish several results for k(G(n, I,)) when G(n, I,) is bi-
partite. In the discussion which follows is always assumed that G(n, I,,) is bipartite.
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THEOREM 1. If p = 1, then k(G(n,Ip)) = 3. If p = 2, then k(G(n,Ip)) =
[9+ (=1)2=4]/2. If p > 2, then k(G(n,I,)) is uniquely determined by the ordered
sequence S = [S1,Sa,... ,Sp—1] of symbols E (even) and O (odd), defined as

g — E 1,f ’ij+1 —’ij =0 (mod 2)
7710 if ijpr—i; =1 (mod 2).

In order to prove Theorem 1 we need an auxiliary result.

Let G be a graph and vy, v2,vs, vy its distinct vertices, such that v; and v; 41
are adjacent, i = 1,2, 3,v; and v4 are not adjacent, and v2 and v3 have degree two.
Let the graph H be obtained by deleting from G the vertices v and vz and by
joining v; and vy.

LEMMA 1. k(H) = k(G).

Proof. We demonstrate a one-to-one correspodence between the perfect
matchings of G and H.

Let M'(G) be a perfect matching of G containing the edge (vi,v2). Then
necessarily (ve,v3) € M'(G), (vs,v4) € M'(G). The corresponding perfect match-
ing of H is M'(H) = M'(G)\{(v1,v2), (v3,v4)} U {(v1,v4)}. Note that (vy,vs)
belongs to M'(H).

Let M"(QG) be a perfect matching of G not containing (vy,vs). Then (vq,v3) €
M'"(@), (v3,v4) € M"(G). The corresponding perfect matching of H is M"(H) =
M”(G)\{(Uz, U3)}. Note that (1)1, ’1)4) ¢ M”(H)

Since any perfect matching of G is either of type M'(G) or M"(G), and
any perfect matching of H is either of type M'(H) or M"(H), the correspodence
described above is a bijection. O

Proof of Theorem 1. For p =1 and p = 2 the statement of Theorem 1 can
be easily verified by direct checking. Therefore we focus our attention on the case
p>2

Denote by g = ¢(S) the number of times the symbol E occurs in the sequence

S.

As an immediate consequence of Lemma, 1, whenever for some j = 1,... ,p—
1, p+1,...2p — 1 we have i;4.1 —i; > 3, we can perform a “contraction” of
G(n,I,) by reducing by two the number of vertices laying between i; and ij41;
this transformation does not affect the value of k. Similar contractions can be
performed between i, and i, provided i,41 — 9, > 3, and between 4, and i,
provided 41 +n — i, > 3.

Applying the contraction as many times as possible, we finally arrive at the
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graph G(n*, I7) for which n* = 4p —2q + 2, I; = {if,i3,... ,i3,} and

=2
" e . 1 if S;=FE |
Lit1 T = bapji1 T l2p—j = 2, if §;=0 Jj=12,...,p—1

" .
bppr1 —ip =3

k%
i3, =n" — L

The contracted graph G(n*,I;) has the same number of perfect matchings as
G(n, I,). On the other hand, it is clear that the structure of the graph G(n*, I¥) is
fully determined by the sequence S. O

Bearing in mind Theorem 1, we shall denote the number of perfect matchings
of G(n,Ip) by k(S). The contracted graph corresponding to S will be denoted by
G(S).

A typical graph of the type G(S) is depicted in Fig. 2. Such graphs consist
of a linear array of squares and hexagons. The number of squares and hexagons is
q+ 2 and p — ¢ — 1, respectively.
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Fig. 2

THEOREM 2. Fori=1,...,p— 1 define the matrices X; as

1 1Y) . . (2 -1\ o
Xi—(l 0) ZfSi—E, Xz—(l O)zfsz—o-

Then k‘(S) = 3(X1Xz . prl)ll + 2(X1Xz . Xp,1)12.

Theorem 2 is equivalent to a result proved in [1]. We mention it for com-
pleteness, and because of its formal similarity with Theorem 3.

For p > 2 the sequence S can be presented as
S = [O"EO" EO" ... EO%] (1)

where t; > 0, and where use the convention OO = 0?, 000 = 03, 0000 =
0%,..., and also EO°E = EE.

THEOREM 3. Let the sequence S be of the form (1). For i = 0,1,...,q
define the matrices Y; as
[ ti+ 1 1
Y = ( X 0) .

Then k(S) = (Y()Yl, .. Yq)11+(YOY1 . Yq)12+(YOY1 .. .Yq)21+(YOY1 . Yq)22.
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Denote the edges (1,n*) and (i, + 1,45 + 2) of the graph G(S) by e1 = e1(S)
and e; = ex(S), respectively. Let further k11 (S), k12(S), k21(S) and ka2(S) denote
the number of perfect matchings of G(S), which contain respectively e; and ez,
only e, only ez, and neither e; nor e;. Then

k(S) = k11(S) + k12(S) + k21(S) + k22(S). (2)

In order to deduce Theorem 3 we prove a somewhat stronger result. Denote
the matrix product YoY1...Y, by Y(S).

LEMMA 2.
Y(8)ij = ki (S), 4,5 €{L,2} (3)
It is evident that Theorem 3 is an immediate corollary of Lemma 2 and eq.
(2).
Proof of Lemma 2. We make an iduction on ¢, the number of symbols E in
S.

First, if ¢ = 0, then eq. (3) is easily verified.

Consider now two sequences S’ and S"” of symbols E and O. Denote by S'®S"
the sequence in which the elements of S' are followed by a symbol E and then by
the elements of S”. Suppose that eq. (3) holds for max{q(S’), ¢(S")}. Then

Y(S' @ S") = Y(S)Y(S"). (4)

In order to obtain the identity (4) we analyse the perfect matchings of G(S'®
S"). The newly added symbol E in S’ @ S" corresponds to a square in the graph
G(S'®8S"). Two of the four edges of this square lie on the boundary of G(S' ®S");
they are denoted by f; and f,. The two additional edges, which do not belong to
the boundary, are denoted by f3 and f;; see Fig. 3.
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Fig. 3

Since we have resticed our consideration to bipartite graphs, it is not difficult
to see that a perfect matching of G(S' @ S") either contains both f; and f> or none
of them.
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We first examine those perfect matchings of G(S’' @ S”) which contain both
of the edges e; and es (see Fig. 3). Their number is k11 (S’ & S”). Among these
perfect matchings some contain f; and f;, and some not.

Perfect matchings which contain f; and f» cannot contain fs3 and f;. Ob-
serving that f3 = ex(S') and fi = e1(S"”), we conclude that the number of such
perfect matchings is k11 (S')k11(S").

For the same reason the number of perfect matchings which contain e; and
e2, but not f; and fo, is equal to k12(S")ka1 (S").
This gives

k11(S"®S") = k11(S")k11(S") + k12(8") k21 (S")
or, by taking into account the induction hypothesis,
ki (S"®S") =Y (S)11Y(S") 11 + Y(S)12Y(S")o1.
This means that the relation
kij (8" @ 8") = [Y(8")Y/(S")];; (5)

is valid for ¢ = j = 1.

The remaining three relations of type (5) are deduced by using a completely
analogous reasoning. Hence (5) holds for ¢, € {1,2}.

If we choose the sequence S” so that ¢(S”) = 0, then ¢(S' & S") = ¢(S') + 1.
Therefore (5) implies that if (3) holds for sequences S possessing g symbols E, then
it will also hold for sequences possessing q + 1 symbols E.

This proves Lemma 2 and therefore also Theorem 3. O
COROLLARY 3.1. The numbers k;;(S) obey the identity
k11 (S)ka(S) — k12(S)k21 (S) = (—1)P,
Proof. Corollary 3.1. is just another way to state that det Y(S) = (=1)P+L.

This latter relation follows from Y(S) = YoY;1...Y, and the obvious fact that
det Yi=—1,i=0,1,...,q.0

COROLLARY 3.2. Cyclic permutations of the factors do not alter the trace of
the product’ Y = YoY1Yo,...Y,.

Proof. It is sufficient to demonstrate that the above statement is true for
Y' = Y1Y2 .. YnYO Let to + 1 =a. Then

Iyl (0 1 a 1
Y =Y, YYO_(1 _a>Y(1 0)
and therefore, Y/} = aYa; + Yoo, Y5, = Y11 —aY2;. Hence, Y/, + Y], = Y11 + Y22.0
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