ORDER PRESERVING OR INCREASING MAPPINGS FREEDOM OR INCOMPARABILITY PRESERVING MAPPINGS

Đuro R. Kurepa

Summary. One recalls the definitions of increasing, SI, (s. 2:0) ASI(s. 3:0) mappings of ordered sets and introduces FP mappings (s. 4:0). Main theorems 2:2, 2:2:7, 3:1, 3:5:1, 4:8 are established

0. Introduction

- 0:0. In 1937:4 was introduced a very important notion of increasing (decreasing) mappings between ordered sets accompanied by statements—solution of some problems which were put earlier. At the same time were submitted the papers 1937:2, 1940:1, 1940:2, 1941:1, 1945:1, concerning ASI mapings (sf. no 3:0). It was proved that every uncountable tree in which there exists a real strictly increasing transformation is equinumerous to a free subset.
- 0:1. In the present paper analogous statements are proved for SI transformations of trees into linearly ordered sets L. Almost SI transformations from T into L are examined as well and in this area a very interesting theorem 3:5:1 is found showing a great difference in the behavior of SI and ASI transformations of ordered sets. In particular, the transfer of the main corolary 2:2:7 concerning SI transformations to the statement 3:5. concerning ASI transformations $T \to L$ has a postulational character.
- **0:2.** Terminology and notations are as in other author's papers. In particular, T and L denote any tree and any chain (=linearly ordered set) respectively; unless otherwise stated, T is assumed to be infinite.
- **0:3.** In particular the rank or the height γT is defined as the first ordinal which is not embeddable into T; one has the fundamental partition $T = \bigcup R_i T$, $(i < \gamma T)$ into rows or levels $R_i T$ of T; one puts
- **0:4.** $mT := \sup pR_iT$, $(i < \gamma T)$; pX denotes the power (=cardinality) of X.

0:5. $(i)(E, \leq)$ is said to be degenerate or a d-set if for every $x \in E$ the coresponding cone $Ea:=E(\cdot,a]\cup E[a,\cdot)$ is a chain; $E[a,\cdot):=\{x;x\in E,a\leq x\}, E(\cdot,a]:=(E,\geq)[a,\cdot)$. The vacuous set is denoted by v or \varnothing . If E is finite or if (i) contains a d-subset of power pE, we say that (i) is d-reflexive. A free subset of (i) is any subantichain of (i). $b(E,\leq):=\sup\{pD:D \text{ is degenerate in }(E,\leq)\}$.

1. Generalities

1:0. Lemma. Every tree T satisfies $pT \leq mT \cdot p\gamma T$; if T is infinite, then $pT = mT \cdot p\gamma T$ and $pT \in \{mT, p\gamma T\}$.

The proof is obvious.

1.1. Lemma. Let T be infinite; If c is any cardinal number < pT, then T contains a D-subset X such that pX = c.

Proof. By L. 1:0 one has pT = mT or $pT = p\gamma T$. If pT = mT, then the relations c < pT = mT and $mT = \sup pR_iT(i < \gamma T)$ imply that some $i < \gamma T$ satisfies $pR_iT \ge c$. If $c < pT = p\gamma T$, then for the first ordinal $i < \gamma T$ such that pi = c and for every $x \in R_iT$ the left cone $T(\cdot, x)$ is a chain of power c.

- **1:1:1.** COROLLARY. If T is infinite, then bT = pT or $pT = (bT)^+$; the former holding for every limit pT.
- **1.2**. Lemma. If (0) $pT[x,\cdot) < pT(x \in T)$, then is d-reflexive.

Proof. The disjoint partition (1) $T = \cup T[x,\cdot)(x \in RT_0)$ and (0) imply that (2) $pR_0T = pT$ or at least (3) $pR_0 \ge cf$ pT := n. If (2), everything is done; in particular, if pT is regular, then necessarily (2) holds. Therefore, there remains the case that pT is singular and that (2) does not hold; then $n \le pR_0T < pT$ and $\sup pT[x,\cdot) = pT(x \in R_0T)$; therefore, there exists a set $A \subset R_0T$ such that pA = n and $\sup pT(a,\cdot) = pT(a \in A)$. Let $(a_i; i < n)$ be a well ordering of A and $(k_i, i < n)$ an n-sequence of isolated stictly increasing cardinals such that $\sup k_i = pT$ thus also $\sup k_i^- = pT(i < n)$. Let k_0 be the first k_0 such that k_0 if for every k_0 if for every k_0 if for every k_0 if k_0 and every k_0 is determined such that k_0 if k_0 is define also k_0 as the first member in the well-ordering of k_0 such that k_0 is define also k_0 as the first member in the well-ordering of k_0 such that k_0 induction we have an k_0 -subsequence k_0 of the k_0 -sequence k_0 such that (3) holds. Now, in virtue of Lemma 1:1, the relation (3) implies that (3) contains a k_0 -subset k_0 for every k_0 or; then the union k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 in the proof k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that k_0 is a required k_0 -subset of k_0 such that $k_$

1:3. Lemma. If T is infinite and $mT > p\gamma T$, then T is equinumerous to a free subset A.

Proof. Let $U:=\{x:x\in T,\,pT[x,\cdot)< pT\}$. If pU=pT, then (v. L. 1:2) T is equinumerous to a free subset D. The equality pT=pD, the disjoint partition of D into chains $D[x,\cdot)(x\in R_0D)$ and the relation $pT=mT< p\gamma T$ imply $pR_0D=pD=pT$. If pU< pT, then $V:=T\backslash U$ satisfies (0) $pV(x,\cdot)=mV=pV=pT$ for every $x\in V$. The case when mT(=mV) is regular is settled like in the proof

in no 1:2. If mV is singular, then some $i < \gamma V$ satisfies $pR_iV \ge n$; let then $A = (a_i, i < n)$ be a subset of R_iV of power n. Since $mV(x, \cdot) = pV = pT = mT = mV = m(x \in V)$, for any fixed cardinal c < m there is a free subset A(x) in $V(x, \cdot)$ such that $pA(x) \ge c$. By arguments like those in no. 1:2 one constructs the free sets D_i in $V(a_i, \cdot)$ of power $\ge c_i$, and the free subset $D = \cup A_i \subset V$ such that pD = mV = pT.

- 1:3:1. COROLLARY. If T is infinite and $pT > p\gamma T$, then T is equinumerous to a free subset.
- **1:4.** LEMMA. If $cf \ \gamma T \in \{1, \aleph_0\}$. then T is d-reflexive (cf. 1935:2,3 no. 11:2a)).

Proof. In virtue of 1:3 Lemma, it is sufficient to settle the case when $pT = p\gamma T$ and $pR_iT < pT(i < \gamma T)$. In addition we can suppose, like in the proof of 1:3 Lemma, that the corresponding set U satisfies pU < pT. Thus $V:=T\backslash U$ satisfies 1:3:(0). Let $\alpha_i(i < \omega)$ be a strictly increasing sequence of ordinals $\to \gamma T$. Let $x_i \in R_iT$, $(i < \omega)$ be a strictly increasing sequence in T; the existence of such a sequence is obvious (by induction argument); then $L:= \cup T(\cdot,x_i](i < \omega)$ is a chain in T of power $p\gamma T(=pT)$.

1:5. Remark. Unless stated otherwise, we shall assume in the sequel that $pT = p\gamma T \geq \aleph_0$ and that every subchain of T is < pT.

2. Increasing and strictly increasing mappings.

- **2:0.** Definition. Let $((E, \leq), (F, \leq_F))$ be a 2-un of ordered sets; every mapping $f: E \to F$ such that $x \leq y[x < y]$ in (E, \leq) implies $fx \leq_F fy[fx <_F fy]$ in (F, \leq_F) is called increasing or orderpreserving [strictly increasing, SI, or strictly orderpreserving mapping] from (E, \leq) into (F, \leq_F) (cf. Kurepa 1937:4, 1940:1,2, 1941:1, 1945:1). E. g. each constant automapping of (E, \leq) is increasing. For every T the mapping $x \in T \to \gamma(x, T)$ where $x \in R_{\gamma(x, T)}T$ is SI, from T onto the section $O[0, \gamma T)$ of all ordinals (x, γ) It is interesting to notice the following.
- **2:1.** Theorem. If there is a SI selfmapping f of an infinite T into a subchain $L \subset T$, then T is not only d-reflexive, but in addion T is equinumerous: to a free subset A (case $mT > p\gamma T$) or to L (case $mT \leq p\gamma T$). Let $F_i := fF_iT$, $c_i = \inf F_i(i < \gamma T)$; then $c_i < c_j$ for $i < j < \gamma T$; the set $L_0 = \cup T(\cdot, o_i], (i < \gamma T)$ is a branch of T such that $L_0 \cap R_iT \neq v$ ($i < \gamma T$). Although L is a universal chain in T—for every chain K in T, f/K is an isomorphism of K onto the part fK of L—L need not be a branch in T. The sets L, L_0 and $C := \{o_i : i < \gamma T\}$ are cofinal.

Proof. First of all, if $i < \gamma T$, F_i is a nonempty part of the given wellordered subset L of T; therefore, c_i is the minimal point of F_i . Let us prove that $c_i < c_j$ for $i < j < \gamma T$. As a matter of fact, let $y \in R_j T$ such that $fy = c_j$; since i < j there is a unique $x \in R_i T$ such that $x <_T y$ and $x \in R_i T$; thus $c_i \leq_T fx <_T fy = c_j$, and $c_i <_T c_j$; $C := \{c_i : i < \gamma T\}$ is a chain in T and its order type is γT ; therefore, in particular, (0) $pT \geq pC = p\gamma T$ and the well-ordered sets $C, L, L_0, O[0, \gamma T)$ are

pairwise order-isomorphic; therefore C, L, L_0 are cofinal, i. e. if $X, Y \in \{C, L, L_0\}$ then $X = \bigcup X(\cdot, y], (y \in Y)$.

What about pT? Since T is infinite, pT = mT or $pT = p\gamma T$. If $mT > p\gamma T$, then pT = mT and, in virtue of L. 1:3, T contains a free set A of power pT. If $mT \leq p\gamma T$, then (1) $pT = p\gamma T$; therefore (0) yields pT = pC = pL. This completes the proof of 2:1 Theorem.

- **2:1:1.** COROLLARY. An SI mapping $f: T \to L \subset T$ exists if and only if T is attained in the sense that T contains a chain intersecting every level of T.
- **2:2.** MAIN THEOREM. Let \aleph_{σ} be any aleph and (L, \leq_L) any ordered chain such that the density (=separability) number dL equals \aleph_{σ} . Every tree T of power $pT > \aleph_{\sigma}$ such that there exists an SI mapping f of E into L contains a free subset mA of power pT (for the case $\sigma = 0$ see Kurepa 1937:4 Th. I, 1941:1 Th. 6).

The proof of 2:2, is implied by the following facts 2:2:0—2:2:6.

2:2:0. LEMMA. If D is a d-subset of T of power pT, then $A: R_0D$ is a required free subset A of T og power pT.

As a matter of fact, every summand $a':=D[a,\cdot)$ in $D=\cup D[x,\cdot), (x\in R_0D)$, is order-similar to the well-ordered subset fa' of L; therefore $pa'\leq dL$ and consequently (0) $pt=pD\leq pR_0D\cdot dL$.

Now, $pR_0D = pT$. In the opposite case one would have $pR_0T < pT$ and therefore pD < pT because both factors in the last term of the relation (0) are < pT.

- **2:2:1.** In virtue of Lemma 1:3 we may suppose that $mT \leq p\gamma T$ and sonsequently (T being infinite) $pT = p\gamma T$. Now, T contains no chain C of cardinality $p\gamma T$, because otherwise fC would be a well-ordered subset of L of power $p\gamma T = pT$; this is impossible because every well-ordered subset of L is $\leq dL < pT$.
- **2:2:2.** Let $U := \{x : x \in T, pT[x, \cdot) < pT\}$. If pU = pT, then, by L. 1:2, U (and a fortiori T) is d-reflexive. If pU < pT, the tree $V := T \setminus U$ is of power pT and satisfies $pV(a, \cdot) = pV = pT$, $(a \in V)$. Therefore, there is no restriction to assume that U = empty (it is sufficient to change the notation to write T instead of $T \setminus U$). In order words, we have just proved the following.
- **2:2:3.** LEMMA. In order to prove the Main Theorem 2:2 it is sufficient to prove the statement 2:2 under the following conditions (0)—(4):
 - (0) $pT = \aleph_{\tau}, \ \gamma T = \omega_{\tau}$
 - (1) $pR_iT < pT$ $(i < \gamma T)$
 - (2) Every chain in T is $< \aleph_{\tau}$;
 - (3) $pT[x,\cdot) = pT(x \in T);$
- (4) There is an SI mapping f of T into a chain L such that $dL = \aleph_{\sigma} < pT = \aleph_{\tau}$.
- **2:2:4.** Lemma. A consequence of (0)—(3) is the following.

(5) $mT := \sup pR_iT$, $(i < \gamma T)$, $is \ge n^- := (cf p\gamma T)^-$.

As a matter of fact, if $mT < n^-$, then, by Theor. 5 bis in 1935:2,3 p. 80, T would contain a chain of power $p\gamma T$, contrary to (2).

2:2:5. Lemma. T which satisfies (0)—(5) contains a free subset A_0 of power $n := cf \ p\gamma T$.

Proof. Let $r_j(j<\omega_\sigma)$ be a normal one-to-one well-order of a density base S of L. Thus S is a subset of L of minimal power dS such that every non-empty open interval of L contains a point of S. Let g be a mapping of T such that $gt\in R_1T(t,\cdot)(t\in T)$; then obviously $ft<_Lfgt$ $(t\in T)$. For every $f<\omega_\sigma$ let

(6) $T^j = \{t : t \in T, ft \leq_L r_i <_L fg^2 t\}.$

Then $T^j \neq v \neq L(ft, fg^2t)(t \in T)$ and

(7)
$$T = \cup T^j (j < \omega_\sigma)$$
.

I. First case: γT is regular: $n = \aleph_{\tau}$. Since, by assumption (4), $\tau > 0$, the partition (7) implies the existence of a $j < \omega_{\sigma}$ such that

(8)
$$pT^{j} = pT$$
.

Therefore it sufficies to prove that T^j contains a free set A_0 of power n. If some row R of T^j has n points, it is sufficient to put $A_0 := R$. Therefore, let us suppose that $pR_iT^j < n(i < \gamma T^j)$ and consequently

(9)
$$\gamma T^j = \gamma T = \omega_{\tau}$$
.

By induction procedure, we are going to define a 1-1 sequence

(10) $(a_i, i < \omega_\tau)$ of incomparable points of T^j such that $\gamma a_i (i < \omega_\tau)$, where $a_i \in R_{\gamma a_i} T$, is SI and $\to \omega_\tau$ and

(11)
$$\gamma a_i < \gamma g a_i < \gamma a_{i+1} (i < \omega_\tau)$$
.

To start with, let a_0 be a point in R_0T^j . Let ν be any ordinal such that $0 < \nu < \omega_{\tau}$ and that the ν -initial segment of (10) is defined in such a way that the conditions (11) for $i < \nu$ are satisfied. Then we consider the ordinal $\beta := \sup \gamma a_i (i < \nu)$; since $\nu < n$ and since n is regular, one has $\beta < n$; therefore, the level $R_{\beta+2}T^j$ is $\neq \nu$ (cf. (9)). We denote by a_{ν} any point of this level. Consequently, the induction procedure of the construction of (10) is going on for every $i < \omega_{\tau}$ and the conditions (11) are satisfied. Let us prove that the points $g^2a_i(i < \omega_{\tau})$ are incomparable. First, the ω_{τ} -sequence $\gamma g^2a_i(i < \omega_{\tau})$ is SI: if $x < y < \omega_{\tau}$, then $\gamma g^2a_x < \gamma g^2a_y$. Therefore, one does not have $g^2a_y \leq g^2a_x$. One has

(12) $g^2a_x \leq g^2a_y$ neither. In the opposite case, the relation (12) would be possible and the point g^2a_y would be preceded by a_y as well as by g^2a_x . Therefore, the points g^2a_x, a_y would be comparable; now, for their ranks $\gamma g^2a_x, \gamma a_y$, in virtue of (12), one has (because x < y) $\gamma g^2a_x < \gamma a_y$; therefore, the relation $a_y \leq g^2a_x$ is excluded; one would have $g^2a_x <_T a_y$ and $fg^2a_x <_L fa_y$; the last inequality with $fa_y \leq_L r_y <_L fg^2y$ (cf(6)) would imply $fg^2a_x \leq_L r_y$, contrary to the defining relation (6) for every element $a_x \in T^j$.

II Second case: $\gamma T = \omega_{\tau}$ is singular: $n < \aleph_{\tau}$. Since by condition (4), $dL = \aleph_{\sigma} < \aleph_{\tau}$ there is a regular $\aleph_{\rho} < \aleph_{\tau}$ which is > n, dL; in particular, the tree

 $X := T^j(\cdot, \omega_\rho) := \cup R_i T^j(i < \omega_\rho)$ is a tree satisfying (0)—(4) with ρ instead of $\tau; \gamma$ is regular; and the above first case of L. 2:2:5. applied to this set X yields an antichain A_0 in $X \subset T^j \subset T$ of power n. This proves L. 2:2:5 completely.

2:2:6. Final step in the proof of the Main Theorem 2:2. From the free subset $A_0 \subset T$ of cardinality $n:=\operatorname{cf} pT$ it is easy to deduce a free subset $A \subset T$ of cardinality pT. If pT is regular, it sufficies to put $A:=A_0$. If pT is singular, let $A_0=(a_i,i<\omega_{(n)})$ be a 1-1 well-ordering of the free subset $A_0\subset T$ of cardinality n (s. L. 2:2:5). Let $(c_i,i<\omega_{(n)})$ be an SI $\omega_{(n)}$ -sequence of cardinals < pT such that $\sup c_i=pT$; let $b_i\in R_{\omega(c_i)}T(a_i,\cdot)$; then $D:=\cup T(a_i,b_i)(i<\omega_{(n)})$ is degenerate of power pT; by L. 2:2:0 the first level R_0D is a free subset of T of power pT as was required in the Main Theorem 2:2. Q. E. D.

2:2:7. Main Corollary= Wording obtained from 2:2 on replacing "free subset A" by "degenerate subset D".

3. Almost Strictly Increasing (ASI) Mappings.

3:0. Definition. An increasing mapping $f:(E, \leq_E) \to (F, \leq_F)$ such that $x \in E$, $pE[x,\cdot) > 1$ implies $pfE[x,\cdot) > 1$ is said to be ASI (Almost Strictly Increasing); in other words, unless x is a terminal point of E there is some $x <_E y \in E$ such that $fx <_F fy$. The notion was introduced at the same time when was introduced the notion of increasing and strictly increasing [SI] mappings (s. Definition 2:0).

Here is a theorem concerning a connection between ASI and SI mappings of trees T on chains L.

- **3:1.** Theorem. Let $f:(T,\leq)\to(L,\leq_L)$ be ASI and
- (0) $Tf := R_0(T, \leq) \cup R_0(T, \geq) \cup \underset{c}{\cup} R_0\{y : C <_T y \in T\&fC <_L fy\}, C$ running through the class IT of all subchains of T.
 - (1) The set Tf is the most extensive subset X of T such that $f \mid X$ is SI;
 - (2) Tf is cofinal with T, i. e. $T = \bigcup T(\cdot, x]$ $(x \in Tf)$.

Proof of (1). First, f is SI in Tf: if x < y in Tf, then $fx <_L fy$ in L. As a matter of fact, $fx \leq_L fy$. Now, since $x, y \in Tf$ and x < y, the set $\cup T(\cdot, t](t < y)$ such that $ft <_L fy$ is a chain C; one has $x \in C < y$ and $fC <_L fy$, thus $fx <_L fy$.

Secondly, assume that there exists a subset $X \subset T$ such that $Bf \subset \neq Tf$ and that $f \mid X$ is SI; thus there would exist a point (3) $x \in X \setminus Tf$. The point x is neither initial nor final in T; thus the chain $T(f)(\cdot,x)$ is $\neq \varnothing$; the more is $T(\cdot,x) \neq v$; let C:=C(x) denote the most exstensive initial section of $T(\cdot,x)$ such that $C <_L fx$. The set Y of all points $t \in T$ such that C < t is well determined: so is R_0T as well. By definition of Tf this set is a part of Tf; therefore, the unique point x' in R_0Y which is < x is a well determined point in Tf, thus also in X. Consequently, x', x would be two points in X such that x' < x. Since f is SI in $X, fx' <_L fx$; therefore, by definition of $C(x), x' \in C$, contrary to the fact C < Y and in particular to the fact that $C < x' \in R_0Y$. This contradiction eliminates the assumption (3) as false.

- Proof of (2): if $t \in T$ then some $x \in Tf$ satisfies $t \leq x$. First, if t is a terminating point in T i. e. if $t \in R_0(T, \geq)$. then by definition of Tf one has $t \in Tf$. If $t \notin R_0(T, \geq)$, then by definition of the ASI f there exists a $g \in T$ such that $f \in Tf$ the first point $f \in Tf$ of the well ordered set $f \in Tf$ for which $f \in Tf$ is a required member of $f \in Tf$ such that $f \in Tf$ is a required member of $f \in Tf$ such that $f \in Tf$ is a required member of $f \in Tf$ such that $f \in Tf$ is a required member of $f \in Tf$ such that $f \in Tf$ is a required member of $f \in Tf$ such that $f \in Tf$ is an indicate $f \in Tf$.
- **3:2.** THEOREM. Let $f: T \to L$ be ASI; whenever pTf > dL, the set Tf is not only d-reflexive but also equinumerous to a free subset of T (cf. 3:1(0)).
- *Proof*. The d-reflexivity of Tf is implied by the Main Corollary 2:2:7 and the Theorem 3:1. Thus there is a d-set D in Tf such that pTf = pD. We claim that $pD = pR_0D$. This is implied by the decomposition $D = \cup D[a,\cdot)(a \in R_0D)$ of D into disjoint chains and the fact that each summand is $\leq dL$, whence one has $pD \leq pR_0D \cdot dL$; therefore if $pR_0D < pD$, the number pTf(=pD) would be \leq the product of numbers pR_0D , dL each $\leq pTf$, contrary to the hypothesis that pTf > dL.
- **3:3.** Theorem. Let $f: T \to L$ be ASI and pT > dL; if pT is regular, then T is equinumerous to a free subset.
- *Proof*. Due to the decomposition 3:1:(2) one has cf $pT \leq pTf$ (reall that by remark 1:5 we assume that every chain in T is $\langle pT \rangle$ i. e. pT = pTf and pTf > dL; therefore, one can apply the Main Theorem 2:2 for the tree Tf and get a free subset F of $Tf \subset T$ such that pF = pTf = pT.
- **3:4.** THEOREM. Let T be a sequence-tree (i. e. $\gamma T = \gamma T(t)$, where $T(t) = T(\cdot, t] \cup T(t, \cdot)$ for every $t \in T$); if f: $T \to L$ is ASI and pTf > dL, then T is d-reflexive.
- *Proof*. Since f is SI in Tf and since pT > dL, the Main Theorem 2:2 yields a free subset D of Tf such that pD = pTf. As above in 2:2:0 one proves that $pR_0D = pD$. On the other hand, the decomposition 3:1 (2) implies that n: cf $pT \le pTf$; thus $n < pR_0D$. Let A be any subset of R_0D such that pA = n; let $\beta_i := \omega_{(c_j)}(i < n)$ be an n-sequence of ordinals $\to \gamma T$; for every $a \in A$ let $b(a) \in R_{\beta_i}T(a, \cdot)$; then $\cup b(a)$ $(a \in A)$ is a requered d-subset of T of power pT.
- **3:5.** Proposition P_{49} is the statement obtained from the statement of the Main Theorem 2:2 writing ASI instead of SI and a degenerate subset D instead of a free subset A; thus
- **3:5:0.** Definition of P_{49} . Let \aleph_{σ} be any aleph and (L, \leq_L) any linearly ordered set such that the density number dL equals \aleph_{σ} . Every tree T of power $pT > \aleph_{\sigma}$ such that there exists an ASI mapping $f: E \to L$ contains a degenerate subset D of power pT.
- **3:5:1.** Theorem. P_{49} and the RH (Ramification Hypothesis) are equivalent.

The implication $RH \Rightarrow P_{49}$ being obvious, let us prove the converse implication $P_{49} \Rightarrow RH$.

1. If this implication were false, there would exist an infinite tree S in which evert d-subset is $\langle pS \rangle$; in particular every subchain and every free set of S would

be < pS and necessarilly $cf \gamma S > \aleph_0$ (cf. no 11:3 pp. 108–109 Kurepa 1935:2,3; s. also the above 1:4. Lemma).

- 2. Let $S' := \bigcup R_{i+1}S(i < \gamma T)$. Let $La(a \in S')$ be an S'— un of disjoint well ordered sets of order type β each, where $\beta := \omega(2^{pS}) :=$ the first ordinal of cardinality 2^{pS} . Let $Z := S \cup La(a \in S')$; we order Z in such a way that $Z(a^-, a) := La(a \in S')$ and that for incomparable points a, b in S one has $\gamma(a, S) = \gamma(b, S) \Rightarrow La||Lb||$ in Z. Then one checks readily that Z is a tree such that $\gamma Z = \beta$, $mZ = mS = (p\gamma S)^-$; in addition, S is cofinal to Z.
 - 3. Z is not d-reflexive.

In the opposite case there would exist a d-subset D of Z such that pD = pZ and $pR_0D \ge cf \, p\gamma Z = cf \, p\gamma S := n$. If then for every $x \in R_0D$ one denotes by gx a point of S such that $x \le gx$, then the set $A := \{gx, x \in R_0D\}$ would be an antichain in S such than $\{g\}$ such that $\{g\}$ in $\{g\}$ in

The last relation does not hold if γS is regular because by definition of S every antichain in S is of a power $\langle p\gamma S$. The relation (0) holds neither if γS is singular because in this case one would establish (by usual procedure) a d-subset A' of $\cup S[a,\cdot)(a\in A)$ such that pA'=pS, i. e. S would be d-reflexive, contary to the initial assumption.

4. On the other hand, let us define a mapping $f: Z \to L := O[0, \gamma S)$ by $fx = \gamma(x, S)(x \in S), fx = \gamma(a, S)(x \in La, a \in S')$. One checks readily that f is ASI in Z. In addition $pZ = 2^{pS} > pS = pL$. Thus we should be allowed to apply the statement P_{49} and conclude that Z would be d-reflexive, contrary to the fact 3. This contradiction proves the requered implication $P_{49} \Rightarrow RH$.

4. Freedom (Incomparability or Antijoin) Preserving [FP] mappings between ordered sets.

4:0. Definition. A mapping $f:(E, \leq_E) \to (F, \leq_F)$ is said to be FP provided x||y in (E, \leq_E) implies fx||fy in (E, \leq_F) .

Consequently, in every free subset $A \subset E$ the FP mapping f is bijective; on any chain $L \subset E$, f could be even constant.

4:1. Lemma. Let $a(E, \leq)$ denote the system of all antichains of (E, \leq) ; $a(E, \leq)$ is monotone additive in the sense that for any linearly ordered subsystem (M, \subset) of $a(E, \leq)$ the union $\cup M$ is an antichain.

The proof is straighforward because it a,b are 2 distinct points of $\cup M$ let $A,B,\in M$ be such that $a\in A,b\in B$; then $A\subset B$ thus $\{a,b\}\subset B$ or $B\subset A$ thus $\{a,b\}\subset A$; consequently in either case, a,b belong to a member of M, and therefore $a\|b$.

4:2. Lemma. The system $a(E, \leq)$ contains various disjoint subsystems D such that $\cup D = \cup a(E, \leq) = E$.

Proof. Such a system is the system of all singletons $\{x\}(x \in E)$. One can proceed also in the following typical way. Let D_0 be a maximal antichain in (E, \leq) ;

let D_1 be a maximal antichain in $(E \setminus D_0, \leq)$; if disjoint antichains (1) $D_i(i < j)$ are formed; let us consider the set (2) $E \setminus \bigcup D_i(i < j)$; if (2) is v, then (1) is a required disjoint system of antichains exhausting E; if (2) $\neq v$, let D_j be a maximal antichains of (2). By induction procedure one gets in this way a maximal sequence of disjoint nonempty antichains.

Similary one proves the following.

4:3.Lemma. The system $l(E, \leq)$ of all chains of (E, \leq) contains various subsystems of pairwise disjoint chians exhausting E; in particular, there is a disjoint system F of chains exhausting F and such that $pT = st(E, \leq) :=$ the least cardinal c such that there exists a system F of subchains such that pF = n and $\cup F = E$.

Proof of the last phrase of the Lemma. Let G be a system of chains exhausting E and such that $pG = st(E, \leq)$. Let (0) $g_i(i < \beta)$ be a normal well-order of G. Let h_0 be a maximal chain $\supset g_0$; assume $0 < \alpha < \beta$ and that disjoint chains $h_i(i < \alpha)$ are formed such that $h_i \supset g_{ni}$; let us define h_α : let g_{n_α} be the first member of (0) such that g_{n_α} is not contained in $(1) \cup g_{n_i}(i < \alpha)$; we denote by h_α any maximal chain L such that $g_{n_\alpha} \subset L \subset E \setminus (1)$. The procedure is going on for every $\nu < \beta$ because otherwise if it stopped for some $\gamma < \beta$, the system of sets $g_{n_i}(i < \gamma)$ would exhaust E and would be of a power < st E and this is a contradiction.

4:4. THEOREM. Given $((E, \leq), (F, \leq_F))$, if (F, \leq_F) contains an antichain M of power $st(E, \leq)$, then there exists a freedom preserving mapping f of (E, \leq) into (F, \leq_F) such that $fE \subset M$.

Proof. Let H be any disjoint system of chains exhausting E and such that pH = stE; let h be a one-to-one mapping of H into M; if for every $e \in E$ we define fe := h(eH) where $e \in eH \in H$, the mapping $f \mid E$ is FP. As a matter of fact, if $a \mid \mid_e b$ then a, b belong to distinct members aH, bH of H, thus h(aH) := fa, h(bH) = fb are distinct members of M.

- **4:5**. *Remark*. All preceding considerations are transferable to binary graphs, where "sub chain" should be replaced by "complete subgraphs".
- **4:6.** Problem. Is it legitimate to replace in the wording of the theorem 4:4 the phonem $st(E, \leq)$ by $p_s(E, \leq)$?

Let us examine this for trees.

If $p_s(T, \leq)$ is finite, then $p_s = st(T)$, and everything is O. K. If $p_s(T)$ is infinite and attained then RH implies $p_sT = stT$ and everything is O.K.

- **4:7.** Statement TFPSFS (Tree FP Selfmapping into Free Subset): For any tree T there is an FP selfmapping g into a free subset A of (T, \leq) .
- **4:8.** Theorem. TFPSFS is a consequence of the RH and is independent of the usual axioms of the Set Theory.

Proof. According to the theorem 4:4, statement 4:7 holds for every tree T containing a free subset M of power $st(T, \leq)$. Now, the last condition is verified if γT is finite or countable. If $\gamma T = \omega_1$, then $st T = p_s T$ if and only if "The answer

to the Suslin problem is affirmative" (s. 1963:3 Theor. 3:3); and one knows that this answer SH (Suslin Hypothesis) is a postulate. On the other hand, TFPSPS implies that the free number $p_s T$ is attained for every T; (obviously, gT should be an antichain of power $p_s T$). Now, the last fact is provable for every T for which $p_s T$ is not a regular infinite limit cardinal (cf. Kurepa 1987:1 Theor. 2:4). The attainability of $p_s T$ for the case when $p_s T$ is regular limit non countable is implied by the RH and in this case T is a union of $p_s T$ chains and one can apply the theorem 4:4.

- **4:9.** The dual of TFPSFS obtained by substitutions FP|SI, Free subset | chain does not hold: it is violated each time when γT is not attained (s. 2:1 Theorem, 2:1:1 Corollary). Such is the case e. g. for the tree $w(Q, \leq) := \text{set of all well-ordered subset of } (Q, \leq) \text{ ordered by the relation "to be an initial segment of"}.$
- **4:10.** Remark. ASI [FP] mappings are a particular case of Chain [Antichain] Preserving mapping carrying every chain [antichain] $\subset (E, \leq)$ into a chain [antichain]: one agrees that \varnothing and every singleton are chains and antichains. In a next paper we shall examine such transformations.

REFERENCES

- 1935:2 Ensembles ordonnés et ramifiés, Thèse de doctorat soutenue à la Faculté des Sciences à Paris le 1935:12:19; pp. VI+138+2. (Deuxième thèse: Itération des fractions rationneles).
- 1935:3 =1935:2. PMU 4(Beograd 1935) 1-138. JMF 61:2 (1935) 980 (Aumann) Zbl. 14 (1936) 394 (B. Knaster).
- 1937:2 Ensembles linéaires et une classe de tableaux ramifiés. Tableaux ramifiés de M. Aronszajn, P. M. 6 (Beogra 1937) 129–160. JMF 64 (1940) 37 (Aumann) Zbl. 20 (1940) 108 (Blumberg).
- 1937:4 Transformations monotones des ensembles partiellement ordonnés, C. R. 205 (Paris 1935) 1033-1035. JMF 64 (1940) 173 (Seebach) Zbl. 17 (1938) 300 (B. Knaster).
- 1941:1 (continuation of 1940:2) No 437, año 43 (Lima 1941) 483-500. M. R. 3 (1942) p. 225 (J. W. Tuckey).
- 1945:1 Le poblème de Suslin et les espaces abstraits. Revista de Ciencias, 47 (Lima 1945) No 453, pp. 457–488. MR. 7 (1946), p. 4. (J. Todd). Zbl. 60 (1957) p. 396.
- 1953:12 Sur un principe de la théorie des espaces abstraits. CR. 256 (Paris 1953:02:16) 655-657.
 MR. 15 (1954) 409 (Viola, T.). RŽM (1953) 141. Zbl. 51 (1954) 290 (Neumer, W.).
- 1963:3 Star number and antistar number of ordered sets and graphs. Zvjezdani broj i antizvjezdani broj uređenih skupova i grafova. Glasnik Mat. Fiz. Astr. (2), 18 (Zagreb 1963) 27-36-37. MR 30 (1965)# 1945 (L. Gillman), RŽM 1964:12 A 273 (Fedorčuk), Zbl. 127 (1967) 250 (A. H. Kruse)
- 1987:1 On a tree statement (=1986:2) J. Symb. Log. **52** (1986) 1071-2.
- 1987:2 Free power or Width of some kinds of mathematical structures. Publ. Math. 42 (56) (1987), 3-12.

Zagrebačka 7 11000 Beograd, Yugoslavia (Received 15 03 1989)