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ORDER PRESERVING OR INCREASING MAPPINGS
FREEDOM OR INCOMPARABILITY PRESERVING MAPPINGS

Puro R. Kurepa

Summary. One recalls the definitions of increasing, SI, (s. 2:0) ASI(s. 3:0) mappings of
ordered sets and introduces FP mappings (s. 4:0). Main theorems 2:2, 2:2:7, 3:1, 3:5:1, 4:8 are
established.

0. Introduction

0:0. In 1937:4 was introduced a very important notion of increasing (decreas-
ing) mappings between ordered sets accompanied by statements—solution of some
problems which were put earlier. At the same time were submitted the papers
1937:2, 1940:1, 1940:2, 1941:1, 1945:1, concerning ASI mapings (sf. no 3:0). It was
proved that every uncountable tree in which there exists a real strictly increasing
transformation is equinumerous to a free subset.

0:1. In the present paper analogous statements are proved for SI transformations
of trees into linearly ordered sets L. Almost SI transformations from T into L are
examined as well and in this area a very interesting theorem 3:5:1 is found showing
a great difference in the behavior of SI and ASI transformations of ordered sets.
In particular, the transfer of the main corolary 2:2:7 concerning SI transformations
to the statement 3:5. concerning ASI transformations 7' — L has a postulational
character.

0:2. Terminology and notations are as in other author’s papers. In particular, T
and L denote any tree and any chain (=linearly ordered set) respectively; unless
otherwise stated, 7" is assumed to be infinite.

0:3. In particular the rank or the height vT is defined as the first ordinal which
is not embeddable into T; one has the fundamental partition T'= UR;T, (i < vT')
into rows or levels R;T of T'; one puts

0:4. mT : =sup pR;T, (i < ~T); pX denotes the power (=cardinality) of X.
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0:5. (4)(E, <) is said to be degenerate or a d-set if for every z € E the coresponding
cone Ea : = E(-,a] U Ela,-) is a chain; Efa,-) : = {z;z € E,a < z},E(-,a] : =
(E,>)[a,-). The vacuous set is denoted by v or @. If E is finite or if (¢) contains
a d-subset of power pE, we say that (i) is d-reflexive. A free subset of (i) is any
subantichain of (i). b(E, <) : = sup{pD : D is degenerate in (E, <)}.

1. Generalities

1:0. LEMMA. FEwvery tree T satisfies pT < mT - pyT'; if T is infinite, then pT =
mT - pyT and pT € {mT, pyT'}.

The proof is obvious.

1.1. LEMMA. Let T be infinite; If ¢ is any cardinal number < pT', then T' contains
o D-subset X such that pX = c.

Proof. By L. 1:0 one has pT' = mT or pT = pyT. If pT" = mT, then the
relations ¢ < pT' = mT and mT = sup pR;T(i < vT') imply that some i < T
satisfies pR;T > c. If ¢ < pT = pyT, then for the first ordinal i < 7T such that
pi = ¢ and for every z € R;T the left cone T'(-,x) is a chain of power c.

1:1:1. CoOROLLARY. If T is infinite, then bT = pT or pT = (bT)T; the former
holding for every limit pT.

1.2. LEMMA. If (0) pT[z,-) < pT(x € T), then is d-reflexive.

Proof. The disjoint partition (1) T = UT [z, )(x € RTp) and (0) imply that
(2) pRoT = pT or at least (3) pRo > c¢f pT : = n. If (2), everything is done; in
particular, if pT' is regular, then necessarily (2) holds. Therefore, there remains
the case that pT is singular and that (2) does not hold; then n < pR¢T < pT
and sup pT'[z,-) = pT'(z € RyT); therefore, there exists a set A C RoT such
that pA = n and sup pT'(a,-) = pT'(a € A). Let (a;; i < n) be a well ordering
of A and (k;, i < n) an n-sequence of isolated stictly increasing cardinals such
that sup k; = pT thus also sup k; = pT'(i < n). Let by be the first a; such
that pT[ai,-) > ko; if for every 0 < j < n and every i < j a member b; of A
is determined such that pT'[b;,-) > k;, let us define also b; as the first member
in the well-ordering of A such that b; # b;(i < j) and (3) pT'[b;,-) > k;. Of
course, b; exists; so by (transfinite) induction we have an n-subsequence b;(j < n)
of the n-sequence a;(¢ < n) such that (3) holds. Now, in virtue of Lemma 1:1, the
relation (3) implies that (3); contains a d-subset D; for every j < n; then the union
D : =UD;j, (j <n),is arequired d-subset of T such that pD = pT.

1:3. LEMMA. If T is infinite and mT > pyT, then T is equinumerous to a free
subset A.

Proof. Let U:={z:2 €T, pT[z,-) < pT}. If pU = pT, then (v. L. 1:2) T
is equinumerous to a free subset D. The equality pT" = pD, the disjoint partition of
D into chains Dz, )(z € RoD) and the relation pT = mT < pyT imply pRoD =
pD = pT. If pU < pT, then V : = T\U satisfies (0) pV(z,:) = mV = pV = pT
for every € V. The case when mT (= mV) is regular is settled like in the proof
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in no 1:2. If mV is singular, then some ¢ < vV satisfies pR;V > n; let then
A = (a;,i < m) be a subset of R;V of power n. Since mV(z,:) = pV = pT =
mT =mV = m(xz € V), for any fixed cardinal ¢ < m there is a free subset A(z) in
V(z,-) such that pA(z) > ¢. By arguments like those in no. 1:2 one constructs the
free sets D; in V(a;,-) of power > ¢;, and the free subset D = UA; C V such that
pD =mV = pT.

1:3:1. COROLLARY. If T is infinite and pT > pyT, then T is equinumerous to a
free subset.

1:4. LEMMA. If cf 4T € {1,R¢}. then T is d-reflexive (cf. 1935:2,3 no. 11:2a)).

Proof. In virtue of 1:3 Lemma, it is sufficient to settle the case when pT =
pyT and pR;T < pT'(i < 4T). In addition we can suppose, like in the proof of 1:3
Lemma, that the corresponding set U satisfies pU < pT. Thus V : = T\U satisfies
1:3:(0). Let a;(¢ < w) be a strictly increasing sequence of ordinals — vT'. Let
x; € R;T, (i < w) be a strictly increasing sequence in T'; the existence of such a
sequence is obvious (by induction argument); then L : = UT'(-, 2;](i < w) is a chain
in T of power pyT' (= pT).

1:5. Remark. Unless stated otherwise, we shall assume in the sequel that pT =
pyT > Ny and that every subchain of T' is < pT.

2. Increasing and strictly increasing mappings.

2:0. Definition. Let ((E,<),(F,<r)) be a 2-un of ordered sets; every mapping
f: E — F such that z < y[z < y] in (E, <) implies fz <p fy[fz <r fy] in
(F,<F) is called increasing or orderpreserving [strictly increasing, SI, or strictly
orderpreserving mapping] from (E, <) into (F,<p) (cf. Kurepa 1937:4, 1940:1,2,
1941:1, 1945:1). E. g. each constant automapping of (E, <) is increasing. For every
T the mapping x € T — y(x,T) where x € R, )T is SI, from T onto the section
0]0,~T) of all ordinals < 4T It is interesting to notice the following.

2:1. THEOREM. If there is a SI selfmapping f of an infinite T into a subchain
L CT, then T is not only d-reflexive, but in addion T is equinumerous: to a free
subset A (case mT > pyT') or to L (case mT < pyT). Let F; : = fFET, ¢; =
inf F;(i < 4T); then ¢; < ¢; fori < j < ~T; the set Ly = UT(-,04], (i < 7T) is
a branch of T' such that Lo N R;T # v (i < vT). Although L is a universal chain
in T—for every chain K in T, f/K is an isomorphism of K onto the part fK of
L—L need not be a branch in T. The sets L,Lg and C : = {o; : i < 4T} are
cofinal.

Proof . First of all, if i < T, F; is a nonempty part of the given wellordered
subset L of T'; therefore, c; is the minimal point of F;. Let us prove that ¢; < ¢; for
i < j <~T. As a matter of fact, let y € R;T such that fy = c;; since ¢ < j there is
a unique x € R;T such that x <7 y and = € R;T; thus ¢; <r fz <7 fy = ¢;, and
¢ <t ¢j; C:={c¢; i <~T}is a chain in T and its order type is vT'; therefore,
in particular, (0) pT' > pC = pyT and the well-ordered sets C, L, Ly, O[0,7T) are
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pairwise order-isomorphic; therefore C, L, Ly are cofinal, i. e. if X,Y € {C,L, Lo}
then X = UX(,,y], (y €Y).

What about pT'? Since T is infinite, pT' = mT or pT = pyT. If mT > pyT,
then pT' = mT and, in virtue of L. 1:3, T contains a free set A of power pT'. If
mT < pyT, then (1) pT = pyT; therefore (0) yields pT = pC = pL. This completes
the proof of 2:1 Theorem.

2:1:1. COROLLARY. An SI mapping f : T — L C T exists if and only if T is
attained in the sense that T contains a chain intersecting every level of T.

2:2. MAIN THEOREM. Let R, be any aleph and (L, <p) any ordered chain such that
the density (=separability) number dL equals N,. Every tree T of power pT > X,
such that there exists an SI mapping f of E into L contains a free subset mA of
power pT (for the case o = 0 see Kurepa 1937:4 Th. I, 1941:1 Th. 6).

The proof of 2:2, is implied by the following facts 2:2:0—2:2:6.

2:2:0. LEMMA. If D is a d-subset of T of power pT, then A : RyD is a required
free subset A of T og power pT.

As a matter of fact, every summand a' : = Dla,-) in D = UD|z,-),(z €
RyD), is order-similar to the well-ordered subset fa' of L; therefore pa’ < dL and
consequently (0) pt = pD < pRyD - dL.

Now, pRoD = pT. In the opposite case one would have pRyT < pT and
therefore pD < pT because both factors in the last term of the relation (0) are
< pT.

2:2:1. In virtue of Lemma 1:3 we may suppose that mT < pyT and sonsequently
(T being infinite) pT" = pyT'. Now, T contains no chain C of cardinality pyT,
because otherwise fC would be a well-ordered subset of L of power pyT" = pT’; this
is impossible because every well-ordered subset of L is < dL < pT.

2:2:2. Let U:={z:2 €T, pT[z,-) < pT}. If pU = pT, then, by L. 1:2, U (and
a fortiori T') is d-reflexive. If pU < pT, the tree V : = T\U is of power pT' and
satisfies pV (a,-) = pV = pT, (a € V). Therefore, there is no restriction to assume
that U =empty (it is sufficient to change the notation to write T instead of T\U).
In order words, we have just proved the following.

2:2:3. LEMMA. In order to prove the Main Theorem 2:2 it is sufficient to prove
the statement 2:2 under the following conditions (0)—(4):

0) pT =N, 7\ T =w,

(1) pR,T < pT (i <~7T)

(2) Every chain in T is < N;;

3) pT[z,-) = pT'(z € T);

(4) There is an SI mapping f of T into a chain L such that dL = N, < pT
=X,.

2:2:4. LEMMA. A consequnce of (0)—(3) is the following.
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(5) mT : =sup pR;T, (i <~T),is >n~ : = (cfpyT)~.

As a matter of fact, if mT < n~, then, by Theor. 5 bis in 1935:2,3 p. 80, T
would contain a chain of power pyT, contrary to (2).
2:2:5. LEMMA. T which satisfies (0)—(5) contains a free subset Ao of power
n:=cfpyT.

Proof. Let r;(j < w,) be a normal one-to-one well-order of a density base
S of L. Thus S is a subset of L of minimal power dS such that every non-empty

open interval of L contains a point of S. Let g be a mapping of T such that
gt € RiT(t,-)(t € T); then obviously ft <r fgt(t € T). For every j < w, let

(6) T9 ={t:teT, ft <prj <r fg’t}.
Then T7 # v # L(ft, fg*t)(t € T) and
(1) T = UT¥(j < w,).

1. First case: T is regular: n = N,. Since, by assumption (4), 7 > 0, the
partition (7) implies the existence of a j < w, such that

(8) pT? = pT.
Therefore it sufficies to prove that T7 contains a free set Ag of power n. If
some row R of 77 has n points, it is sufficient to put Ag : = R. Therefore, let us

suppose that pR;T7 < n(i < yT7) and consequently
(9) YT7 =T = w,.
By induction procedure, we are going to define a 1-1 sequence

(10) (ai,i < w,) of incomparable points of T7 such that va;(i < w,), where
a; € Ry, T, is ST and = w, and

(11) va; < vga; < vai41(i < wr).

To start with, let ag be a point in RgT7. Let v be any ordinal such that
0 < v < w, and that the v-initial segment of (10) is defined in such a way that
the conditions (11) for i < v are satisfied. Then we consider the ordinal g8 : =
sup 7va;(i < v); since v < n and since n is regular, one has 8 < n; therefore, the
level Rgy2T7 is # v (cf. (9)). We denote by a, any point of this level. Consequently,
the induction procedure of the construction of (10) is going on for every i < w;
and the conditions (11) are satisfied. Let us prove that the points g2a;(i < w,)
are incomparable. First, the w,-sequence vg%a;(i < w;) is SL: if z < y < w;, then
v9%a; < ygay. Therefore, one does not have ga, < g?a,. One has

(12) g%a, < g*ay neither. In the opposite case, the relation (12) would be
possible and the point g2ay would be preceded by a, as well as by g%a,. Therefore,
the points g*a,, a, would be comparable; now, for their ranks vg2a,, ya,, in virtue
of (12), one has (because z < y) vga, < yay; therefore, the relation a, < g2a, is
excluded; one would have g%a, <r a, and fg?a, <r fay; the last inequality with
fay <p ry <p f9?y (cf(6)) would imply fg?a, <p ry, contrary to the defining
relation (6) for every element a, € T7.

IT Second case: T = w, is singular: n < X,. Since by condition (4), dL =
N, < N, there is a regular X, < N, which is > n, dL; in particular, the tree
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X :=T'(,w,) : = URTI(i < w)) is a tree satisfying (0)—(4) with p instead of
T; 7 is regualar; and the above first case of L. 2:2:5. applied to this set X yields an
antichain Ag in X C T? C T of power n. This proves L. 2:2:5 completely.

2:2:6. Final step in the proof of the Main Theorem 2:2. From the free subset
Ap C T of cardinality n : =cfpT it is easy to deduce a free subset A C T of
cardinality pT'. If pT is regular, it sufficies to put A : = Ag. If pT is singular, let
Ao = (a;,i < w(n)) be a 1-1 well-ordering of the free subset A9 C T of cardinality n
(s. L. 2:2:5). Let (c;,i < w(n)) be an ST w(y)-sequence of cardinals < pT such that
sup ¢; = pT'; let b; € Ry iyT(ai,-); then D : = UT (as,b;)(i < w(y)) is degenerate
of power pT’; by L. 2:2:0 the first level RyD is a free subset of T' of power pT as
was required in the Main Theorem 2:2. Q. E. D.

2:2:7. Main Corollary= Wording obtained from 2:2 on replacing “free subset A”
by “degenerate subset D”.

3. Almost Strictly Increasing (ASI) Mappings.

3:0. Definition. An increasing mapping f : (E,<g) — (F,<p) such that z €
E, pE[z,-) > 1implies pf E[z,-) > 1 is said to be ASI (Almost Strictly Increasing);
in other words, unless z is a terminal point of E there is some z <p y € E such
that fr <r fy. The notion was introduced at the same time when was introduced
the notion of increasing and strictly increasing [SI] mappings (s. Definition 2:0).

Here is a theorem concerning a connection between ASI and SI mappings of
trees T on chains L.

3:1. THEOREM. Let f : (T,<) = (L,<p) be ASI and
(0)Tf : = Ro(T,<) URy(T,>) UURy{y : C <1 y € T&fC <1 fy}, C
running through the class IT of all subchacins of T.
(1) The set Tf is the most extensive subset X of T' such that f | X is SI;
(2) Tf is cofinal with T, i. e. T =UT(-,z] (x € Tf).

Proof of (1). First, fisSIlin Tf: if x <y in Tf, then fx <i fyin L. As a
matter of fact, fx <j, fy. Now, since z, y € Tf and z < y, the set UT(-,t](t < y
such that ft <, fy) isachain C;onehasz € C < y and fC <y, fy, thus fz <z fy.

Secondly, assume that there exists a subset X C T such that Bf C# Tf
and that f | X is SI; thus there would exist a point (3) z € X\Tf. The point
z is neither initial nor final in T'; thus the chain T'(f)(-,z) is # @; the more is
T(-,z) # v; let C : = C(z) denote the most exstensive initial section of T'(-,z) such
that C' <z, fx. The set Y of all points ¢t € T" such that C' < t is well determined: so
is RoT as well. By definition of T'f this set is a part of T f; therefore, the unique
point ' in RyY which is < z is a well determined point in T'f, thus also in X.
Consequently, z',z would be two points in X such that ' < z. Since f is SI in
X, fo' <p f=z; therefore, by definition of C(z),z' € C, contrary to the fact C <Y
and in particular to the fact that C < ' € RgY . This contradiction eliminates the
assumption (3) as false.
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Proof of (2): if t € T then some z € T f satisfies t < z. First, if ¢ is a
terminating point in 7" i. e. if ¢ € Ro(T,>). then by definition of T'f one has
teTf. Ift ¢ Ro(T,>), then by definition of the ASI f there exists a y € T such
that t <y € T, fT <y fy; the first point z of the well ordered set T'(¢,y] for which
ft <r fx is a required member of T f such that ¢ < x. This finishes the proof.

3:2. THEOREM. Let f : T — L be ASI; whenever pT f > dL, the set T'f is not only
d-reflexive but also equinumerous to a free subset of T (cf. 3:1(0)).

Proof. The d-reflexivity of T'f is implied by the Main Corollary 2:2:7 and
the Theorem 3:1. Thus there is a d-set D in T f such that pTf = pD. We claim
that pD = pRoD. This is implied by the decomposition D = UDJa,-)(a € RyD)
of D into disjoint chains and the fact that each summand is < dL, whence one
has pD < pRyD - dL; therefore if pRoD < pD, the number pT f(= pD) would be
< the product of numbers pRoD,dL each < pT f, contrary to the hypothesis that
pTf > dL.

3:3. THEOREM. Let f: T — L be ASI and pT > dL; if pT is reqular, then T is
equinumerous to a free subset.

Proof. Due to the decomposition 3:1:(2) one has cf pT' < pT'f (reall that by
remark 1:5 we assume that every chain in T is < pT) i. e. pT = pT' f and pT' f > dL;
therefore, one can apply the Main Theorem 2:2 for the tree T f and get a free subset
F of Tf C T such that pF = pT f = pT.

3:4. THEOREM. Let T be a sequence-tree (i. e. vT' = vT'(t), where T'(t) = T'(-,t] U
Tt,-) for everyt € T); if f: T — L is ASI and pTf > dL, then T is d-reflexive.

Proof. Since f is SI in Tf and since pT > dL, the Main Theorem 2:2
yields a free subset D of T f such that pD = pT' f. As above in 2:2:0 one proves
that pRyD = pD. On the other hand, the decomposition 3:1 (2) implies that
n:cf pT < pTf; thus n < pRyD. Let A be any subset of RgD such that pA = n;
let B; : = w(c;)(i < n) be an n-sequence of ordinals — T’; for every a € A let
b(a) € Rg,T(a,-); then Ub(a) (a € A) is a requered d-subset of T' of power pT'.

3:5. Proposition P9 is the statement obtained from the statement of the Main
Theorem 2:2 writing ASI instead of SI and a degenerate subset D instead of a free
subset A; thus

3:5:0. Definition of Pyg. Let N, be any aleph and (L, <p) any linearly ordered set
such that the density number dL equals X,. Every tree T of power pT > N, such
that there exists an ASI mapping f : E — L contains a degenerate subset D of
power pT'.

3:5:1. THEOREM. P9 and the RH (Ramification Hypothesis) are equivalent.

The implication RH = Pj9 being obvious, let us prove the converse implica-
tion Pyg = RH.

1. If this implication were false, there would exist an infinite tree S in which
evert d-subset is < pS; in particular every subchain and every free set of S would
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be < pS and necessarilly ¢f vS > Ng (cf. no 11:3 pp. 108-109 Kurepa 1935:2,3; s.
also the above 1:4. Lemma).

2. Let §'": = UR;+1S(i < vT). Let La(a € S') be an S'— un of disjoint
well ordered sets of order type 3 each, where 3 : = w(2P%) : = the first ordinal
of cardinality 2P°. Let Z : = S U La(a € S'); we order Z in such a way that
Z(a ,a) : = La(a € S") and that for incomparable points a, b in S one has v(a, S) =
~(b,S) = La||Lb in Z. Then one checks readily that Z is a tree such that yZ =
B, mZ =mS = (pyS)~; in addition, S is cofinal to Z.

3. Z is not d-reflexive.

In the opposite case there would exist a d-subset D of Z such that pD = pZ
and pRoD > c¢fpyZ = cfpyS : = n. If then for every x € RyD one denotes by
gz a point of S such that z < gz, then the set A : = {gz,z € RoD} would be an
antichain in S such thau (0) pA > n.

The last relation does not hold if vS is regular because by definition of S
every antichain in S is of a power < pyS. The relation (0) holds neither if vS is
singular because in this case one would establish (by usual procedure) a d-subset
A" of US[a,-)(a € A) such that pA' = pS, i. e. S would be d-reflexive, contary to
the initial assumption.

4. On the other hand, let us define a mapping f : Z — L : = 0[0,7S) by
fx =7(x,8)(x € 95), fr =v(a,S)(x € La,a € S"). One checks readily that f is
ASI in Z. In addition pZ = 2P% > pS = pL. Thus we should be allowed to apply
the statement Py9 and conclude that Z would be d-reflexive, contrary to the fact
3. This contradiction proves the requered implication P9 = RH.

4. Freedom (Incomparability or Antijoin) Preserving [FP] mappings
between ordered sets.

4:0. Definition. A mapping f : (E,<g) — (F, <p) is said to be F'P provided z||y
Consequently, in every free subset A C E the F'P mapping f is bijective; on
any chain L C E, f could be even constant.

4:1. LeEMMA. Let a(E,<) denote the system of all antichains of (E,<);
a(E, <) is monotone additive in the sense that for any linearly ordered subsystem
(M, C) of a(E, <) the union UM is an antichain.

The proof is straighforward because it a,b are 2 distinct points of UM let
A,B,€ M be such that a € A,b € B; then A C B thus {a,b} C Bor B C A
thus {a,b} C A; consequently in either case, a,b belong to a member of M, and
therefore al|b.

4:2. LEMMA. The system a(E,<) contains various disjoint subsystems D such
that UD = Ua(E,<) = E.

Proof. Such a system is the system of all singletons {z}(z € E). One can
proceed also in the following typical way. Let Dy be a mazimal antichain in (E, <);
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let Dy be a maximal antichain in (E\Dy, <); if disjoint antichains (1) D;(i < j)
are formed; let us consider the set (2) E\ U D;(i < j); if (2) is v, then (1) is
a required disjoint system of antichains exhausting E; if (2) # v, let D; be a
maximal antichains of (2). By induction procedure one gets in this way a maximal
sequence of disjoint nonempty antichains.

Similary one proves the following.

4:3.LEMMA. The system l(E, <) of all chains of (E, <) contains various subsystems
of pairwise disjoint chians exhausting E; in particular, there is a disjoint system F
of chains exhausting F and such that pT = st(E, <) : = the least cardinal ¢ such
that there exists a system F of subchains such that pF = n and UF = E.

Proof of the last phrase of the Lemma. Let G be a system of chains exhausting
E and such that pG = st(E, <). Let (0) g;( < ) be a normal well-order of G. Let
ho be a maximal chain D go; assume 0 < a < § and that disjoint chains h;(i < o)
are formed such that h; D g,;; let us define h,: let g, be the first member of (0)
such that g, is not contained in (1) Ug,, (¢ < a); we denote by h, any maximal
chain L such that g,, C L C E\(1). The procedure is going on for every v < 3
because otherwise if it stopped for some v < 3, the system of sets g, (i < ) would
exhaust E and would be of a power < st E and this is a contradiction.

4:4. THEOREM. Given ((E,<), (F,<r)), if (F,<Fg) contains an antichain M of
power st(E, <), then there exists a freedom preserving mapping [ of (E,<) into
(F,<p) such that fE C M.

Proof. Let H be any disjoint system of chains exhausting E and such that
pH = stE; let h be a one-to-one mapping of H into M; if fot every e € E we
define fe : = h(eH) where e € eH € H, the mapping f | E is FP. As a matter
of fact, if a||.b then a, b belong to distinct members aH,bH of H, thus h(aH) : =
fa, h(bH) = fb are distinct members of M.

4:5. Remark. All preceding considerations are transferable to binary graphs, where
“sub chain” should be replaced by “complete subgraphs”.

4:6. Problem. Is it legitimate to replace in the wording of the theorem 4:4 the
phonem st(E, <) by ps(E, <)?

Let us examine this for trees.

If ps(T, <) is finite, then ps; = st(T), and everything is O. K. If ps(T) is
infinite and attained then RH implies p,T = stT and everything is O.K.

4:7. Statement TFPSFS (Tree FP Selfmapping into Free Subset): For any tree T
there is an FP selfmapping g into o free subset A of (T, <).

4:8. THEOREM. TFPSFS is a consequence of the RH and is independent of the
usual axioms of the Set Theory.

Proof. According to the theorem 4:4, statement 4:7 holds for every tree T
containing a free subset M of power st(T, <). Now, the last condition is verified if
~T is finite or countable. If vT' = wy, then stT = p,T if and only if “The answer
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to the Suslin problem is affirmative” (s. 1963:3 Theor. 3:3); and one knows that
this answer SH (Suslin Hypothesis) is a postulate. On the other hand, TFPSPS
implies that the free number p; T is attained for every T'; (obviously, gT" shoud be
an antichain of power ps T'). Now, the last fact is provable for every T for which
psT is not a regular infinite limit cardinal (cf. Kurepa 1987:1 Theor. 2:4). The
attainability of p; T for the case when p, T is regular limit non countable is implied
by the RH and in this case T is a union of ps; T chains and one can apply the
theorem 4:4.

4:9. The dual of TFPSFS obtained by substitutions FP|SI, Free subset | chain does
not hold: it is violated each time when 4T is not attained (s. 2:1 Theorem, 2:1:1
Corollary). Such is the case e. g. for the tree w(Q, <) : = set of all well-ordered
subset of (@, <) ordered by the relation “to be an initial segment of”.

4:10. Remark. ASI [FP] mappings are a particular case of Chain [Antichain]
Preserving mapping carrying every chain [antichain|C (E, <) into a chain [an-
tichain]: one agrees that @ and every singleton are chains and antichains. In a
next paper we shall examine such transformations.
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