AN IMPROVED CONSTANT FOR THE MUNTZ-JACKSON THEOREM

H. N. Odogwu

Abstract. We improve a Newman result [2,3] from 1974 concerning approximation of a continuous function by generalized polynomials. He proved that every $f \in C[0,1]$ there exists a generalized polynomial $P(x) = \sum_{k=0}^{N} c_k x^{\lambda k}$ such that

$$|f(x) - P(x)| \le Aw_f(\varepsilon), \qquad x \in [0, 1]$$

holds. Here $0=\lambda_0<\lambda_1<\cdots\lambda_N$ are given numbers w_f is the modulus of continuity of $f,\,\varepsilon=\max\{\mid B(z)/z\mid\Re\,z=1\},\,B(z)$ is the Blaschke product corresponding to the above set of λ_k 's and A is a constant. Newman [2] proved that (1) holds with A=368. We show that (1) is valid with A=66. We prove this by slightly modifying Newman's proof and choosing the size of an interval, to which a suitable contradiction is extended, optimally.

Muntz's theorem gives a necessary and sufficient condition for the linear hull of the power functions

$$\{x^{p_0}, x^{p_1}, x^{p_2}, \dots\}$$
 $(1 = p_0 < p_1 < \dots, p_n \to \infty \text{ as } n \to \infty)$

to be dense in C[0,1]. Jackon's theorem determines the rate of approximation of a continuous function by polynomials in terms of the modulus of continuity. Several authors tried to combine the two theorems. Let $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_N$ be given numbers, $\Lambda = \{\lambda_0, \lambda_1, \dots, \lambda_N\}$ and denote by P_* the set of all generalized polynomials, i. e.

$$P_* = \{ P(x) = \sum_{k=0}^{N} C_k x^{\lambda_K} \mid \lambda_K \in \Lambda, \ C_k \ \text{real}; \ k = 0, \dots N \}$$

How well can a function $f \in C[0,1]$ be approximated by elements of p_* ? After several attempts the correct rate of approximation was found by Newman [3] in 1974.

104 Odogwu

THEOREM 1(Newman [3, 2]). For every $f \in C[0,1]$ there exists a generalized $P \in P_*$ such that

$$|f(x) - P(x)| \le Aw_f(\varepsilon)$$

where A is a universal constant, w_f is the modulus of continuity of f and ε_* is given by

$$\varepsilon_* = \max_{\Re z = 1} |B_*(z)/z|$$

 $B_*(z)$ being the Blaschke product corresponding to Λ , i.e.

(3)
$$B_*(z) = \prod_{k=1}^N \frac{z - \lambda_k}{z + \lambda_k}$$

In [3] Newman proved that (1) holds with A = 100. This proof however seems to contain some minor errors which influence the value of A.

In [2] a slightly different proof, free of the above errors, was given for Thorem 1; however, the constant was increased to 368.

In this note we make an effort to reduce the value of A in (1).

Theorem 2. Theorem 1 is valid with A = 66.

We follow the notations and proof of [2] with some changes. Let, for an $f \in C[0,1],$

$$E_*(f) = \inf_{P \subseteq P} \|f - P\|$$

be the distance of f from the subspace P_* and let

$$\rho_* = \sup_{g \in S[0,1]} E_*(g).$$

Instead of (1) we show that for every $g \in S = S[0, 1]$:

$$(4) E_*(g) \le 33\varepsilon_*;$$

thus, $\rho_* \leq 33\varepsilon_*$. This implies (1) since by Theorem (1) of [2, p. 122] we have

(5)
$$E_*(f) < 2w_f(\rho_*) < 2w_f(33\varepsilon_*) < 66w_f(\varepsilon_*).$$

To prove (4) let $g \in S[0,1]$, and extend g to the interval [-a,a], a > 1 such that it remains a contraction on [-a,a]. We need the following

Lemma 1. There exists an algebraic polynomial P_M of degree $\leq M$ such that

(6)
$$|g(x) - P_M(x)| \le \frac{\pi^2}{2} \cdot \frac{a}{M+1}, \text{ if } x \in [-a, a]$$

(7)
$$|P'_M(x)| \le \frac{a}{\sqrt{a^2 - 1}} \text{ if } x \in [-1, 1],$$

Proof. Let $f(u) = g(a \cos u), u \in [-\pi, \pi]$. Then

$$| f(u+t) - f(u) | = | g(a \cos(u+t)) - g(a \cos u) | \le a | \cos(u+t) - \cos u | \le |t|.$$

Let further

$$\sigma_M(u) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u+t) K_M(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(y) K_M(u-y) dy,$$

where $K_M(t) = 1/2 + \sum_{k=1}^{N} \rho_{M_k} \cos kt$, be such that $K_M(t) \ge 0$, $t \in [-\pi, \pi]$ and $\rho_{M1} = \cos \pi/M + 2$.

The existence of such a K_M is well-known [1, p. 337, Lemma 13.3.5]. Using Korovkin's estimate [1, pp. 335–336, Lemma 13.3.5] we get

(8)
$$|\sigma_{M}(u) - f(u)| \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |f(u+t) - f(u)| K_{M}(t)dt$$

$$\leq \frac{1}{\pi} \int_{-\pi}^{\pi} a |t| K_{M}(t)dt \leq \frac{a\pi}{\sqrt{2}} \sqrt{1 - \rho_{M1}}$$

$$= a\pi \operatorname{Sin} \frac{\pi}{2(M+2)} \leq \frac{\pi^{2}}{2} \frac{a}{M+1}.$$

The function f is even; thus σ_M is a cosine polynomial and

(9)
$$P_M(x) = \sigma_M \left(\arccos \frac{x}{a}\right) = \frac{1}{\pi} \int_{-\pi}^{\pi} g \left[a \cos \left(\arccos \frac{x}{a} + t\right)\right] K_M(t) dt$$

is an algebraic plynomial of degree $\leq M$. From (8) we obtain (6) by substituting $u = \arccos x/a$. To prove (7) we notice that from (9)

$$P'_{M}(x) = -(a^{2} - x^{2})^{-1/2} \sigma'_{M}(\arccos x/a)$$
 a.e.

Using (9) and the inequalities $|g'(x)| \le 1$ a.e., $K_M(t) \ge 0$ we obtain

$$\mid P_M'(x) \mid \le a(a^2 - x^2)^{-1/2} \le a(a^2 - 1)^{-1/2}$$
 if $x \in [-1, 1]$

which proves (7).

Let us now return to the proof of Theorem 2. By (7) $||P_M'||C[-1,1] \le a(a^2-1)^{-1/2}$ therefore, applying Theorem 12 of [2, p. 21] for P_M' we get

$$|P_M^{(k)}(0)| \le (M-1)^{k-1} ||P_M'|| < a(a^2-1)^{-1/2} M^{k-1}.$$

106 Odogwu

Since $P_M(x) = \sum_{k=1}^M \frac{P_M^{(k)}(0)}{k!} x^k$ by Lemmas 5, 6 of [2, p. 125] for every $k = 1, 2, \ldots$ there is a $q_k \in P_*$ such that

$$|x^{k} - q_{k}(x)| \le |B(k)| \le (\varepsilon_{*}k)^{k} \quad x \in [0, 1].$$

With $Q(x) = \sum_{k=0}^{M} \frac{|P_M^{(k)}(0)|}{k!} q_k(x)$ $(q_0(x) = 1)$ we have $Q \in P_*$ and

(10)
$$|P_{M}(x) - Q(x)| \leq \sum_{k=1}^{M} \frac{|P_{M}^{(k)}(0)|}{k!} (\varepsilon_{*}k)^{k} \leq \sum_{k=1}^{M} \frac{a}{\sqrt{a^{2} - 1}} \frac{M^{k-1}}{k} (\varepsilon_{*}k)^{k} \text{ if } x \in [0, 1].$$

The inequality (6) implies that

(11)
$$|g(x) - P_M(x)| < \frac{\pi^2}{2} \frac{a}{M+1} \text{ if } x \in [0,1],$$

thus, by the triangle inequality (10), (11), we obtain

(12)
$$E_*(g) \le |g(x) - Q(x)| \le \frac{\pi^2}{2} \frac{a}{M+1} + \frac{1}{M} \frac{a}{\sqrt{a^2 - 1}} \sum_{k=1}^M \frac{1}{k!} (M \varepsilon_* k)^k.$$

Lemma 2. (13)
$$k! > \sqrt{2k/3e}(k/e)^k$$
 for $k = 1, 2, ...$

Proof. Let A_k be the area bounded by the curves $y=\ln x,\ y=0,\ x=1.5$ and x=k+0.5. Then

$$A_k = \int_{1.5}^{k+0.5} \ln x dx = \ln(k+1/2)^{k+1/2} - \ln(3/2)^{3/2} - (k-1)$$

and since the function $y = \ln x$ is concave, we have $A_k \leq T_k = t_2 + t_3 + \dots + t_k t_n$ being the area bounded by x = n - 1/2, x = n + 1/2, y = 0 and $y - \ln x = 1/n(x - n)$ (the tangent line to $y = \ln x$ at x = n). We find that $T_k = \sum_{k=2}^k \ln n = \ln k!$ Using the inequality

$$(k+1/2)^k > {k \choose 0} k^k + {k \choose 1} k^{k-1} \cdot 1/2 = 3/2k^k$$

we easily obtain (13) from $A_k \leq T_k$.

By Lemma 2 our formula (12) can be written as

(13)
$$E_*(g) \le \frac{\pi^2}{2} \frac{a}{M+1} + \frac{1}{e\sqrt{3/2}} \frac{a}{\sqrt{a^2 - 1}} \frac{1}{M} \sum_{k=1}^M (M\varepsilon_* k)^k.$$

Let

$$M = M(\varepsilon_*) = \begin{cases} [1/4\varepsilon_*], & \text{if } 0 < \varepsilon_* \le 1/8 \\ 1, & \text{if } 1/8 < \varepsilon_* \end{cases}$$

First we show that

$$(14) 1/M + 1 < 4\varepsilon_*.$$

If $0<\varepsilon_*\le 1/8$, then $1/4\varepsilon_*-1\le M\le 1/4\varepsilon_*$; therefore $1/4\varepsilon_*< M+1$ which implies the inequality (14). If $1/8<\varepsilon_*$, Then M=1 and again $1/4\varepsilon_*<2=M+1$

Secondly we show that

(15)
$$\frac{1}{M} \sum_{k=1}^{M} (e\varepsilon_* M)^k \le 5e/4 - e\varepsilon_*$$

We shall distinguish five cases.

Case 1. $0 < \varepsilon_* 1/20$ then $1/5\varepsilon_* \le 1/4\varepsilon_* - 1 < M \le 1/4\varepsilon_*$. Hence,

$$1/M < 5\varepsilon_*$$
 and $\sum_{k=1}^{M} (e\varepsilon_* k)^k \le \sum_{k=1}^{M} \left(\frac{e}{4}\right)^k \le \sum_{k=1}^{\infty} \left(\frac{e}{4}\right)^k - \frac{e}{4-e}$

which implies (15).

Case 2. $1/20 < \varepsilon_* < 1/16$. Now M=4 and $1/5\varepsilon_*=20/5=4<1/4\varepsilon_*$. Hence $1/M < 5\varepsilon_*$ and, as in case 1, $\sum_{k=1}^M (e\varepsilon_*k)^k = e/4 - e$.

Case 3. $1/16 < \varepsilon_* < 1/12$. Now M = 3 and $\frac{1}{16/3\varepsilon_*} < \frac{16}{16/3} = M \le 1/4\varepsilon_*$. Hence, $1/M < 16/3\varepsilon_*$ and $\sum_{k=1}^{M} (e\varepsilon_* k)^k \le \sum_{k=1}^{3} (e/4)^k \le 1.46$. Since 16/3.1.46 < 5e/4 - e, (2) is again valid.

Case 4. If $1/12 < \varepsilon_* \le 1/8$, then M = 2 and $1/6\varepsilon_* < 12/6 = M = 1/4\varepsilon_*$. Hence $1/M < 6\varepsilon_*$ and $\sum_{k=1}^M (e\varepsilon_* M)^k \le \sum_{k=1}^2 (e/4)^k \le 1.15$. Since 6(1.15) < 5e/4 - e, (2) is valid.

Case 5. $1/8 < \varepsilon$. Now M = 1, 1/M = 1. On the other hand, $\sum_{k=1}^{M} (e\varepsilon_* M)^k = e\varepsilon_*$; thus, by e < 5e/4 - e, (2) is again valid. Thus for all values of $\varepsilon_* > 0$ we can use (1) and (2) to estimate $E_*(g)$. We obtain

$$E_*(g) \le \left[\left(4 \cdot \frac{\pi^2}{2} \right) a + \sqrt{\frac{3}{2}} \frac{5}{4 - e} \frac{a}{\sqrt{a^2 - 1}} \right] \varepsilon_*.$$

Now we would like to choose a > 1 such that the expression in the bracket has a minimal value. Denote the function in bracket by h = h(a). Since

$$\lim_{a \to 1+0} h(a) = \lim_{a \to \infty} h(a) = +\infty, \quad h(a) > 0$$

and h is continuous, it a positive minimum for a > 1 The equation h'(a) = 0 gives

$$(a^2 - 1)^{3/2} = \sqrt{\frac{3}{2}} \frac{5}{4 - e} \left[4 \cdot \frac{\pi^2}{2} \right]^{-2} \approx 0.2420442.$$

Hence, $a = a_1 \approx 1.1782978$. Since $h''(a) = \sqrt{3/25/4} - e3a(a^2 - 1)^{-5/2} > 0$, h assumes its minimum at $a = a_1$, min $h(a) = h(a_1) = 32.391968 \le 33$ and finally $E_*(g) \le 33\varepsilon_*$. This is exactly (4) which implies (5), proving Theorem 2.

108 Odogwu

REFERENCES

- [1] J. P. Davis, Interpolation and Approximation, Blaisdell, 1961, 335-339.
- [2] R. P. Feinerman and J. D. Newman, Polynomial Approximation, Waverly, 1974.
- $[3]\ \ \mathrm{D.\ J.\ Newman},\ A\ generalized\ Muntz\ Jackson's\ theorem,\ \mathrm{Amer.\ J.\ Math.}\ \mathbf{96}\ (1974),\ 340-345.$
- [4] H. N. Odogwu, Approximation by Generalized Polynomial, M. Sci. Dissertation, Lagos,

Correspondence and Open Studies Institute University of Lagos Lagos, Nigeria. (Received 12 03 1985) (Revised 01 03 1989)