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AN IMPROVED CONSTANT
FOR THE MUNTZ-JACKSON THEOREM

H. N. Odogwu

Abstract. We improve a Newman result [2,3] from 1974 concerning approximation of a
continuous function by generalized polynomials. He proved that every f € C][0,1] there exists a

generalized polynomial P(z) = chvzo ¢,z * such that
(1) | f(z) — P(z) |< Awg(e), =z €]0,1]

holds. Here 0 = Ao < A1 < ---Ay are given numbers wy is the modulus of continuity of
fy e = max{| B(z)/z | Rz = 1}, B(z) is the Blaschke product corresponding to the above set of
Ar’s and A is a constant. Newman [2] proved that (1) holds with A = 368. We show that (1) is
valid with A = 66. We prove this by slightly modifying Newman’s proof and choosing the size of
an interval, to which a suitable contradiction is extended, optimally.

Muntz’s theorem gives a necessary and sufficient condition for the linear hull
of the power functions

{zPo, 2P, zP2,...} (1=po<p1 <...,pp— 00 as N — o)

to be dense in C[0,1]. Jackon’s theorem determines the rate of approximation of a
continuous function by polynomials in terms of the modulus of continuity. Several
authors tried to combine the two theorems. Let 0 = Mg < A1 < --- < Ay be
given numbers, A = {Xo, A1,...,An} and denote by P, the set of all generalized
polynomials, i. e.

N
P.={P(z) = ZCkx’\K | Ak € A, Cy real; k=0,...N}
k=0

How well can a function f € C[0,1] be approximated by elements of p,? After
several attempts the correct rate of approximation was found by Newman [3] in
1974.
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THEOREM 1(Newman [3, 2]). For every f € C|0,1] there exists a generalized
P € P, such that

(1) | f(z) = P(z) |[< Awg(e)

where A s a universal constant, wy s the modulus of continuity of f and e, is
given by
€. = max | By(2)/7 |
Rz—-1

B, (z) being the Blaschke product corresponding to A, i.e.

N Z—)\k
3) B.(2) = ,cl;[l W

In [3] Newman proved that (1) holds with A = 100. This proof however seems
to contain some minor errors which influence the value of A.

Let S = S[a,b] the class of real valued functions g defined on [a,b] which
satisfy | g(z) — g(y) |<| z — y |. Functions of S will be called contraction on [a, b].
It can be shown [2, p. 122] that g € S[a, b] if end only if g is absolutely continuous
and | ¢'(z) |[< 1 a. e. in [a,b]. In [3, p. 341] the formula (1) does not seem to
hold with the constat 8 (but it certainly holds with 67 instead of 8). On p. 342
N = 1/4e is substituted. Since N is an integer there (degree of a polynomial) only
N = [1/4€] can be taken, but for small values of N, 1/N = [1/4¢]~! can increase
to 8.

In [2] a slightly different proof, free of the above errors, was given for Thorem
1; however, the constant was increased to 368.

In this note we make an effort to reduce the value of A in (1).

THEOREM 2. Theorem 1 is valid with A = 66.

We follow the notations and proof of [2] with some changes. Let, for an
fec,1j,
E.(f)= jnf [If - P

be the distance of f from the subspace P, and let

ps = sup E.(g).
g€S[0,1]

Instead of (1) we show that for every g € S = S[0, 1]:

(4) E.(g) < 33es;

thus, p. < 33e,. This implies (1) since by Theorem (1) of [2, p. 122] we have
(5) E.(f) < 2wy (ps) < 2wy (33e4) < 66wy (e).

To prove (4) let g € S[0,1], and extend g to the interval [—a,a], a > 1 such that it
remains a contraction on [—a,a]. We need the following
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LEMMA 1. There exists an algebraic polynomial Py of degree < M such that

(6) | 9(2) = Pu(z) [< 5
a2 -1

- ) Zf S [_aaa]

M+1

+
if x € [-1,1],

(7) | Py(z) <

Proof. Let f(u) = g(a cos u), u € [-7,7]. Then
| flu+1t) — f(u) |=| g(a cos(u +t)) — g(a cos u) |< a|cos(u+1t)—cosul|<|t].

Let further

ot =1 [ fus K@i =1 [ fa)Kuw - vy,

o T J_

where Kpr(t) =1/2+ Zszl pum, cos kt, be such that Kp(t) >0, t € [-m,n] and
pym1 = cos /M + 2.

The existence of such a Kjs is well-known [1, p. 337, Lemma 13.3.5]. Using
Korovkin’s estimate [1, pp. 335-336, Lemma 13.3.5] we get

™

low) = ) < [ ) = ) | Kar(Oit

—T

1 /" arw
(8) S—/ alt|Ky(t)dt < —+/1—pu1
T J g V2
T ™2 a
—arSi < )
eSS T 19y S 2 M1

The function f is even; thus oy is a cosine polynomial and

9) Py(z) =om (arccos g) _! /7r g [a cos (arccos % + t) ] Ky (t)dt

T J—x

is an algebraic plynomial of degree < M. From (8) we obtain (6) by substituting
u = arccosz/a. To prove (7) we notice that from (9)

P, (z) = —(a® — 2%)"1/20" s (arccos z/a) a.e.
Using (9) and the inequalities | ¢'(z) |< 1 a.e., Kp(t) > 0 we obtain
| Ph(x) |< a(a® —2?) 2 <a(a®-1)"Y2 if ze[-1,1]

which proves (7).
Let us now return to the proof of Theorem 2. By (7) ||P4]|C[-1,1] < a(a® —
1)~'/2 therefore, applying Theorem 12 of [2, p. 21] for P}, we get

| P(0) |< (M = 1)F Y|Pl < a(a® — 1) V2 Mk L,
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Since Pur(z) = Y p, Py ,(0) ¥ by Lemmas 5, 6 of [2, p. 125] for every k = 1,2,.

there is a g € P, such that
| 2* — qi(z) |<| B(k) |< (exk)*  z €][0,1].

Wi Py ><0)\ -
ith Q(z) = Ek 0 2—aqr(z) (go(x) =1) we have Q € P, and

M (k)
P/ (0
| Pacta) — Q) 1< 30 AL Oy
(10) o
a Mk—l v
SZ =1 & (e«k)® if z €]0,1].

k=1

The inequality (6) implies that
a

(11) | 9(z) — Pu(z) |< 2M—+1 if z €[0,1],

thus, by the triangle inequality (10), (11), we obtain

71'2
(12)  Eu(9) <l g@) - Q@) 1< o ;waz_z = (Me.k)
LeEMMA 2. (13) k! > /2k/3e(k/e)* for k=1,2,...

Proof. Let Ay be the area bounded by the curvesy =Inz, y =0,z = 1.5
and x =k 4+ 0.5. Then

k+0.5
Ay = / In zdz = In(k + 1/2)"1/2 —1n(3/2)*/? — (k — 1)
1.5

and since the function y = In z is concave, we have Ay < Ty =ty +t3 + - -- + txt,
being the area bounded by z =n—1/2, z =n+1/2, y =0and y—In z = 1/n(z—n)
(the tangent line to y = In z at z = n). We find that T}, = 2222 In n =In k! Using
the inequality

(k+1/2)% > <'g) k" + (’1“) khl.1/2 =3/2k"

we easily obtain (13) from Ay < T.
By Lemma 2 our formula (12) can be written as

2 a 1 M
(13) E.(9) < CWY; 2 (Mek)

[1/4e,], if 0<e,<1/8

M= M) =
() { 1, if 1/8<e.
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First we show that
(14) 1/M +1 < 4e,.
If 0 < e. <1/8, then 1/4e, — 1 < M < 1/4e,; therefore 1/4e, < M + 1 which
implies the inequality (14). If 1/8 < €., Then M =1 and again 1/4e, <2 =M +1
Secondly we show that

M
1 k
(15) i ,;(eg*M) < 5e/4 — ee,

We shall distinguish five cases.
Case 1. 0 < £,1/20 then 1/5e, < 1/4e. —1 < M < 1/4e.. Hence,

M M k [eS) k
k € ¢y - _°€
1/M < 5¢, and ;(es*k) S;(J 52(4) 4—¢

k=1
which implies (15).

Case 2. 1/20 < e, < 1/16. Now M = 4 and 1/5e, = 20/5 = 4 < 1/4e..
Hence 1/M < 5e, and, as in case 1, Yp, (ee.k)* = e/4—e.

Case 3. 1/16 < e, < 1/12. Now M = 3 and 575~ < 1575 = M < 1/4e..

Hence, 1/M < 16/3¢. and Y p, (ee.k)* < 3°%_, (e/4)* < 1.46. Since 16/3.1.46 <
be/4 — e, (2) is again valid.

Case 4. If 1/12 < e, < 1/8, then M = 2 and 1/6e, < 12/6 = M = 1/4e,.
Hence 1/M < 6g, and Y n (ee. M) < 32 (e/4)* < 1.15. Since 6(1.15) <
be/4 — e, (2) is valid.

Case5.1/8 <e. Now M =1, 1/M = 1. On the other hand, ch\il(ee*M)’C =

egy; thus, by e < 5e/4 — e, (2) is again valid. Thus for all values of ¢, > 0 we can
use (1) and (2) to estimate E,(g). We obtain

w2 3 5 a
" < - — — -
E(g)_[(él 2>a+ 21— T_l]e

Now we would like to choose a > 1 such that the expression in the bracket has a
minimal value. Denote the function in bracket by h = h(a). Since

agrlr}ro h(a) = algrolo h(a) = 400, h(a) >0

and h is continuous, it a positive minimum for a > 1 The equation h'(a) = 0 gives

3 5 7(2 2
2 1)3/2 _ 4. ~ 0.2420449.

Hence, a = a; ~ 1.1782978. Since h"(a) = 1/3/25/4 — e3a(a®> —1)75/2 > 0, h
assumes its minimum at a = ay, min h(a) = h(a;) = 32.391968 < 33 and finally
E.(g) < 33¢,. This is exactly (4) which implies (5), proving Theorem 2.




108 Odogwu

REFERENCES

[1] J. P. Davis, Interpolation and Approzimation, Blaisdell, 1961, 335-339.

[2] R. P. Feinerman and J. D. Newman, Polynomial Approzimation, Waverly, 1974.

[3] D.J. Newman, A generalized Muntz Jackson’s theorem, Amer. J. Math. 96 (1974), 340-345.
[4] H. N. Odogwu, Approzimation by Generalized Polynomial, M. Sci. Dissertation, Lagos,

1983.
Correspondence and Open Studies Institute (Received 12 03 1985)
University of Lagos (Revised 01 03 1989)

Lagos, Nigeria.



