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COMPLETENESS THEOREM FOR A MONADIC LOGIC
WITH BOTH FIRST-ORDER AND PROBABILITY QUANTIFIERS

Miodrag Raskovié¢ and Predrag Tanovic

Abstract. We prove a completeness theorem for a logic with both probability and first-
order quantifiers in the case when the basic language contains only unary relation symbols.

Let A C HC be an admissible set which contains infinite ordinals and let L
be a nonempty A-recursive language which contains only unary relation symbols;
HC(C denotes, as usual, the set of hereditarily countable sets.

Definition 1. The set of formulas of (L, p3)4p is the least set such that:
(i) each atomic formula of first-order logic without equality symbol is a formula
of (L,p3)ap; (ii) if ¢ is a formula, then —¢ is a formula; (iii) if ® € A is a set
of formulas, then A® is a formula; (iv) if ¢ is a finite formula, then (Juv,)y is a
formula; (v) if ¢ is a formula and » € AN[0,1], then (Px > r)yp is a formula.

Abbreviations (Px <r), (Px =r) and (Yv,,) are introduced as usual.
Definition 2. A probability structure for L is a structure (2, ) where 2 is

a first-order structure for L (with universe A), and u is a o-additive probability
measure on A such that each relation of 2 is o-measurable.

We can define in the usual way satisfaction relation in a probability structure;
here p™ denotes the n-fold product of p’s.

Thus: (A, p) E (Px > r)e(x,a) iff ug"{b € A" | (A, p) F ¢(b,a)} >r.

The axioms for (L,p3)ap are the axioms A1-A6 and B1-B6 from [K] with

the usual first-order axioms. The rules of inference are the rules R1-R3 from [K]
with the usual first-order generalization added.

SOUNDNESS THEOREM. If the set ® of sentences of (Lyp3)ap has a model,
then it is consistent.

LemMA 1. Each (L, p3)ap sentence is (L, p3) ap-equivalent to a o-Boolean
combination of finite sentences.
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Proof. The proof can be obtained in the similar way as the proof of the
Normal Form Theorem from [H2]. So we omit it.

The notion of a weak structure (2, in)new can be introduced as in [H1].

LemMA 2. A sentence of (L,p3)ap is consistent if and only if it has a weak
model in which each theorem of (L, p3)ap is true.

Proof . Hoover’s modification of Henkin’s argument (see [H1]) would work.

LEMMA 3. Let (A, in)new be o weak structure, p(x,y) a finite (Lyp3)ac p-
formula and b € A™. Then there is a quantifier free formula ®(x) such that:
(A, pn)new F (V%) (¢(x,b) <= &(x)).

Proof. We use induction on the complexity of ¢. If ¢ is atomic the statement
is trivial. The inductive step when ¢ is a propositional combination of formulas of
smaller rank is also trivial. Suppose now that ¢ is of the form (Pz > r)iy(x,z). By
the inductive assumption we may assume that v is a finite quantifier free formula.
Further, suppose that x is (zg, 1,-.. ,%,) and that all relational symbols which
occur in 1) are Ro, Ry,... , R. Now define: T'(v) = {/\{R{(’)(v) |0<i<k}|fe
2k+1 } .

Let X(x) be the set of all formulas of the form

N\{®i(2:) | 0<i <n}&(z;) € T(:)

for which there exists ag, a1, .. ,an, € A with: (A, pp)new E i(a;) for 0 < i < n,
and (2, pin)new F (Pz > r)¢(a,z). Finally let ®(x) be the formula VX(x). It is
straightforward to check that the following holds:

(A, tn)new F (V%) (0(x,b) <= ().

The case when ¢ is of the form (3z)y(x,z) can be dealt with in the same way as
the previous one, so the claim of the lemma is established.

CoroLLARY 1. Let (2, pin)new be a weak probability structure.
(a) If B C A™ is definable by a finite formula, with parameters from A, then
B is "y measurable; here by "y we denote the finitely additive n-product of py’s.

(b) If B C A™ is definable by a formula, possible infinite with parameters
from A, and p,, is o-additive then B is ul-measurable.
1

Thus, the corollary allows us to identify (2, u1) with (2, ttr)new when only
finite formulas are considered.

CoROLLARY 2. Let (2, fin)new be a weak probability structure. Then for every
finite (Lo p3) e p-formula o(x,y) with parameters from A, the set {"ui{b € A™ |
(A, 1) E p(b,a)} |a€ A™} is finite.

COMPLETENESS THEOREM. A sentence ¢ of (L, p3) ap is consistent if and only
if it has a probability model.
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Proof. The nontrivial part is to prove that ¥ ¢ implies ¥ ¢, so suppose ¥ .
By Lemma 2 there is a weak structure (2, pi, )ne which is a model for —¢ and every
axiom. By Lemma 1 it is enough to find a probability structure (28, v) which is a
model for all finite (L, p3)ap sentences which hold in (2, tr)new- To do that we
will use Ragkovié’s method from [R]. Let K = LU C ((K,pa)ap) be the language
(logic) introduced in Hoover’s construction [H1], where C is a countable set of new
constant symbols and C € A.

Now, we introduce a language M with three sorts of variables. Let

X,Y,Z,... be variables for sets, xg,x1,... variables for urelements and r,s,...
variables for reals from [0,1]. We suppose that predicates of our language are
E,(xo,%1,-.. ,op_1,X) for n > 1 (with a canonical meaning (xg,Z1,--- ,Zn_1) €

X) and p(X,r) (with a meaning u(X) = r). For each finite (K, p3)gc p-formula
we have a constant symbol A, for a set, for each real number r € [0, 1] a constant
symbol r, and a set D of new constant symbols of the cardinality of the continuum.
Functional symbols are 4+ and - for reals.

Let T be the first order theory with the following list of axioms:

(1) (VX) Apcrmn ~(3%,¥)(Em(x,y, X) A En(x, X)), where {x} N {y} = @.
(2) Axioms of extensionality: (Vx)(E,(x,X) < E,(x,Y)) < X =Y.
(3) Axioms of satisfaction:

(a) (Vx)(En(x,4,) < Nyeca E,.(x,A,)) for ¢ is A®, ® finite;

(b) (Vx)(En(x,A4,) <= —E,(x,Ay)) for ¢ in —p.

(€) (Vx)(En(x,Ay) <= (Jy)En(x,y, Ay)) for ¢ is (Iy)y;

(d) (¥x)(En(x,4p) = (HX)((X,r{) vV u(X,rd) V...V u(X,rg) A
(Vy)(En+m(x7YJA¢') g Em(YaX)))) for ¢ is (Px > r)i) where
r{,ry,...,ry are all reals from the set

[Pun{b € A7 | () F $(b,a)} |2 € A )

(4) Axioms of additivity:
(a) (VX)(GFr)u(X,r)
(b) (VX)(VY)(-(Ex)(En(x, X) A En(x,Y)) = (3Z)((3x)En(x,2) A
(Vx)((Bn(x,Z) <= (En(x,X)VEL(x,Y))Apu(Z,r+35)))) forn € w.
(5) Axioms which are transformations of finite axioms of (K, p3)mc p:
Vx)E,(x,A,) where ¢ is a finite axiom.
® 14
(6) Sets of axioms which ensures o-additivity of extended measure:
{En(d,Ay)} U{-En(d, A,,) |mew}

where {¢p, | m € w} is a sequence of finite formulas, d is a tuple of different constant
symbols from D and all such tuples for a different sequences of formulas are pairwise
disjoint, {{a € A" | (A, ) F ¢n(a)} | m € w} is a monotone increasing sequence
of subsets of A™, (A, p) F (VX)(pm(x) = ¢(x)) and

p({ae A" | (% p) F o(a)})
>sup{p({a€ A" | (A ) Fom(a)})} mew (%)
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(7) Axioms of a field (for real numbers) with a diagram for + and -.

Let a standard structure for the first order logic for M be the struc-
_ m M m _
ture M = (M, B,F,E), p™, +,-,d™, A )n>1 | ges,rer aep (for short, M =
(M,B,F,A,)s), where B C Un>173( ) F = F'nJ[0,1], F' C R a field,
E,?th"xB,pm:B—)F,+,-:F2—)F,dfmeM,Az)ﬁeBand
S C{p € (Lupa)acp | ¢ is finite}.
We claim that T is consistent. To prove the claim it is enough, by compact-
ness, to show that all finite subtheories of T' are consistent.

First, note that a weak structure can be transformed to a standard structure
by taking:

AEm {aGM"|(Qlu Eo(a } B = {A<p|(,0€( K,p3)ucp is ﬁnite},

and arbitrarily interpeting constants from D, we may get a model for a fixed finite
subtheory of T'.

Let T' be a finite subtheory of T' and let ¢, {¢n | n € w} be as in the axiom
6. Pick some m € w such that —E, (d A,,) € T' for all k > m. By (**) we may
choose d™ € {a € M™ | (A, 1) F p(a)} \UKm{a € M™ | (A, ) F p;(a)}. Thus
we get a model for T".

Since every finite subtheory 7" C T has a model, by compactness, we conclude
that T has a model, say 9. Now we can transform our model 9t to a probability
structure with a first order part 8. For a relational symbol R of the language L
we define relation R® = {z € M | E?(z)}, and a finitely additive measure & on
the ring {A,, | ¢ is finite} with: @(A,) = r iff u(A,,r) holds in M = (M, ...).

Note that axiom 3d ensures i to map {A, | ¢ is finite} into the reals. Axiom
6 allows us to apply Karatheodory’s Theorem to the measure ({A,, | ¢ is finite}, 7z).
Thus 7 can be extended to a o-additive measure v on the o-ring which extends
{A, | ¢ is finite}. Let v be the og-additive extension of . It is straightforward to
check that (B8, v) is a probability structure which satisfies the same finite (L, p3) ap
sentences as (U, p1) does. That finishes a proof of the theorem.
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