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CONCERNING SPLITTABILITY AND PERFECT MAPPINGS

A. V. Arhangel’skii and Lj. D. Koéinac

Abstract. We consider the following question: let a space X admits a perfect mapping
onto a space Y from some class P of topological spaces and let X be splittable over P. Does X
belong to P?

0. Introduction

The notions of splittability, P-splittability and (M, P)-splittability intro-
duced recently by A. V. Arhangel’skii have been the subject of several papers:
[4], [6], [11], [12]. The definitions are as follows:

Let M be a class of continuous mappings and P a class of topological spaces.
A space X is called (M, P)-splittable or M-splittable over P if for every A C
X there exist some Y € P and a mapping f € M from X onto Y such that
f71f(A) = A. When M is the class of all continuous (perfect) mappings we use
the term splittable over P (perfectly splittable over P) instead of (M, P)-splittable
(see [4]).

Clearly, if there is a continuous bijection from a space X onto a space Y € P,
then X is splittable over P and we can say that X is absolutely splittable over P
in this case. So splittability is a generalization of continuous bijections.

A number of theorems in general topology can be formulated in the following
form: Let P be a topological property. If a space X admits a perfect mapping
onto a space Y satisfying P and a one-to-one mapping onto a space Z satisfying P,
then X satisfies P (see, for example, [5], [9]). This suggests the following natural
question which is the subject of this article: when splittability over P replaces one-
to-one mappings in such theorems; more precisely: let a space X admit a perfect
mapping onto a space from a class P and let X be splittable over a class ). Does
X belong to P or Q7
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All spaces in this article are 7> (unless stated otherwise) and all mappings
are continuous and onto. Recall that a mapping f : X — Y is perfect if f is closed
with f~1(y) compact for each y € Y. We use the usual notation and terminology
[5], [9] and give references (although not necessarily the original source) where the
definitions of undefined concepts can be found.

Let us begin with the following simple but useful result [11]:

Lemma 0.1. Let M be the class of all closed mappings. If a space X is M-
splittable over the class of Hausdorff (regular, Tychonoff, normal) spaces then X
in Hausdorff (regular, Tychonoff, normal).

In the sequel we shall use the following well known result.

LEmMmA 0.2. If f : X — Y is a perfect mapping then for any subset B C'Y
the restriction fp : f~1(B) — B is perfect.

‘We shall often use

LemMA 0.3. Let P be a class of topological spaces which is hereditary and
finitely multiplicative. Suppose that a space X is splittable over P and admits a
perfect mapping onto a space from P. Then

(i) X is perfectly splittable over P;
(ii) every A C X admits a perfect mapping onto a space from P.

Proof. (i) Let f : X - Y € P be perfect. For every A C X there are a space
Z € P and a mapping g : X — Z such that g~!1g(A) = A. Since f is a perfect
mapping the diagonal product ¢ = fAg: X — Y x Z is also perfect — that is well
known. Moreover, o~ 1¢(A) = A. This means that X is perfectly splittable over
the class PasY x Z € P.

(if) This follows from the fact that ¢(A) € P (because P is hereditary) to-
gether with Lemma 0.2.

1. Moore spaces and o-spaces

Let us recall some definitions. A network for a space X is a collection A of
subsets of X such that for every z € X and every open set U with z € U there is
an A € N such that x € A C U. The net weight nw(X) of a space X is the least
cardinality of a network for X. A cosmic space is a regular space with a countable
network. A space X is a o-space if it has a o-discrete network. The definition of
Moore spaces can be found in [10], for example.

THEOREM 1.1. If a space X is splittable over the class P of spaces of weight
(net weight) < 7 and admits a perfect mapping onto a space of weight (net weight)
< T, then X has weight (net weight) < 1.

Proof. Let us note that the class P is hereditary and finitely multiplicative
so that we can apply Lemma 0.3. Hence every subspace A C X can be mapped
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by a perfect mapping onto a space of weight (net weight) < 7. Then the theorem
follows from the following result of Arhangel’skii-Pytkeev (see [3] and [14]): if X is
a Hausdorff space and every subspace of X admits a perfect mapping onto a space
of weight (net weight) < 7, then X itself has weight (net weight) < 7.

CoROLLARY 1.2. If a Lindelof p-space X [5] is splittable over the class of
spaces of countable weight, then X has a countable base.

A similar result can be formulated for perfectly Lindelof spaces (= spaces
which admit a perfect mapping onto a space with a countable network).

From Lemma 0.1 and Theorem 1.1 we get the following

CoRrROLLARY 1.3. If a space X is splittable over the class of cosmic spaces and
admits o perfect mapping onto a cosmic space, then X is cosmic.

Remark 1.4. Following [4] (see also [11]) denote by wps(X), X is a space,
min{7 : X is perfectly splittable over the class of all spaces ¥ with w(Y) < 7}.
Then Theorem 1.1 gives us a method to prove: w(X) = wps(X); this was proved
in [11] by a different manner. Similarly we have nw(X) = nwys(X) for every space
X (see also [12]).

THEOREM 1.5. If a space X is splittable over the class P of o-spaces and
admits a perfect mapping onto a o-space, then X is a o-space.

Proof. Let f: X — Y € P be a perfect mapping and let Y be an arbitrary
subset of X. Then there exist a space Z € P and a mapping g : X — Z such that
9 1g(A) = A. Put ¢ = fAg. Asin Lemma 0.3 ¢ is perfect and ¢~ 1¢(A) = A. The
set p(A) is a o-space because it is a subspace of Y x Z which is a o-space. Thus
©(A) is a strong X-space (see [10])) and consequently A is also a strong X-space
as this property is an inverse invariant under perfect mappings. Therefore X is a
hereditarily strong ¥-space. On the other hand, X is a perfect space. Indeed, if
A is closed in X then ¢(A) is closed in (a perfect) space Y x Z so that ¢(A) is
a Gs-set. But then A = ¢~ 1p(A) is a Gs-set in X. Now we have to apply the
following result of Z. Balogh [8]: a perfect space X is a o-space if and only if it is
a hereditarily strong Y-space. The theorem is proved.

Now we are going to prove that a similar result is true for the class of Moore
spaces (this class is a subclass of the class of o-spaces).

THEOREM 1.6. If a Tychonoff space X admits a perfect mapping f onto a
Moore space Y and is splittable over the class of Moore spaces, then X is also a
Moore space.

Proof . Using notation from Lemma 0.3 and Theorem 1.5 we have that ¢(A)
is a Moore space. It is known that the perfect inverse image (with completely
regular domain) of a Moore space is a subparacompact [5], [10] p-space [5], [10].
So, every A C X is a p-space, i.e. X is hereditarily p-space. Also, every A C X
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is f-refinable [10], because every subparacompact space is f-refinable. The space
X is perfect — that can be shown as in Theorem 1.5. In [14] Pytkeev has proved
that hereditarily p-spaces are developable if and only if they are perfect. Hence X
is a developable space and as X is (completely) regular, X is a Moore space. The
theorem is proved.

It should be noted that in [6] it was proved (using a result of Balogh-Pytkeev
[8], [14]) that every paracompact p-space splittable over the class of metrizable
spaces is also metrizable.

2. Convergence properties
All undefined concepts can be found in [1], [[2], [13].

THEOREM 2.1. If a space X admits a perfect mapping f onto a (3-FU)-space
Y and is splittable over the class of countably compact FU-spaces, then X is a
Fréchet-Urysohn space.

Proof. Note that X is a k-space and prove first that ¢(X) < No. According
to a result of Ranéin [15] for this it is enough to prove that for every compact
B C X one has t(B) < Ng. We have that B is splittable over the class of spaces of
countable tightness. As B is compact the tightness of B is also countable as was
proved by Arhangel’skil in [4].

Now, let T be any countable subset of X. Fix a continuous mapping g : X —
Z onto some countably compact FU space Z such that g~ 'g(T) = T. Consider
@ = fAg. The space Y x Z is an FU-space (see [2]) so that ¢(T) is also an FU-space
and thus it is a k-space. As the property being a k-space is an inverse invariant
under perfect mappings we have that T is a k-space (according to Lemma 0.2).
Since every subspace of T' is countable we have: every subspace of T is a k-space,
so that T is an FU-space by the well known result of Arhangel’skii. Hence we get:
t(X) < Ng and every countable subset of X is an FU-space. From this it follows
that X is a Fréchet-Urysohn space (see [2], [13]). The theorem is proved.

THEOREM 2.2. If a space X admits a perfect mapping f onto a bisequential
space Y and is splittable over the class of all bisequential spaces, then X is an
No-bisequential space.

Proof. The proof is similar to the proof of Theorem 2.1. We use the same
notation as in that theorem. The space Y x Z is bisequential, so that ¢(A) is
bisequential. Thus p(A) is a bi-k-space. The property being a bi-k-space is an
inverse invariant under perfect mappings so that A is bi-k in X. Hence every
subspace of X is a bi-k-space. From a result of Arhangel’skii [1] it follows that X
is an Ng-bisequential space.

Remark 2.3. In a similar way it can be proved: if a space X admits a perfect
mapping onto an Ng-bisequential space and is splittable over the class of strongly
FU-spaces, then X is FU.
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