ON ISOMORPHISMS OF L^1 SPACES OF ANALYTIC FUNCTIONS ONTO l^1

Miroslav Pavlović

Abstract. It is proved that an L^1_{φ} space of analytic functions in the unit disc, with the weight $\varphi'(1-|z|)$, is isomorphic to the Lebesgue sequence space l^1 only if φ is "normal". The converse is known from the papers of Shields and Williams [13] and Lindenstrauss and Pelczynski [4]. The key of our proof are three classical results: Paley's theorem on lacunary series, Pelczynski's theorem on complemented subspaces of l^1 and Lindenstrauss-Pelczynski's theorem on the equivalence of unconditional bases in l^1 .

Throughout the paper we assume that φ is a quasi-normal function [7]. This means that φ is defined, increasing and continuously differentiable on the interval (0,1], $\varphi(0+)=0$, and that

(Q) there is a constant
$$\beta$$
 such that
$$\varphi(t)/t^{\beta} \text{ is almost decreasing for } 0 < t < 1.$$

(A function ψ is almost decreasing if $\psi(t_1) \leq C\psi(t_1)$ for $t_2 > t_1$, where C is a constant, see [1, 15]. If, in addition,

(N) there is a constant
$$\alpha > 0$$
 such that $\varphi(t)/t^{\alpha}$ is almost increasing for $0 < t < 1$,

then φ is said to be normal [13, 15].

For a (complex-valued) harmonic function f on the unit disc U, we define the quantities

$$\|f\|_{1,arphi} = rac{1}{\pi} \int_{U} |f(z)| arphi'(1-|z|) \, dm(z)$$

 $(dm \text{ denotes the Lebesgue measure, and } \varphi' \text{ the derivative of } \varphi) \text{ and }$

$$||f||_{\infty,\varphi} = \sup\{|f(z)|\varphi(1-|z|) : z \in U\}.$$

In this note we are concerned with the following spaces:

$$A^{p}(\varphi) = \{f : \|f\|_{p,\varphi} < \infty, \ f \text{ analytic in } U\} \quad (p = 1, \infty),$$

132 Pavlović

$$A_0(\varphi) = \{ f \in A^{\infty}(\varphi) : |f(z)|\varphi(1-|z|) = o(1), z \to 1^- \}.$$

Analogous spaces of harmonic functions are denoted by $h^p(\varphi)$ and $h_0(\varphi)$.

It is known that each of the harmonic spaces is isomorphic, via a multiplier transform, to a space of Lipschitz functions on the unit circle [8, 9]. On the other hand, it was shown by Shields and Williams [14] that $h^p(\varphi)$ is isomorphic to l^p , and $h_0(\varphi)$ is isomorphic to c_0 , the space of null-sequences (see Remarks at the end). And it follows from the results of Lindenstrauss and Pelczynski [4] and Shields and Williams [13] that h can be replaced by A if φ is normal. Our aim here is to prove the converse. More precisely, we have the following result.

Theorem. If one of the following assertions (i), (ii) or (iii) holds, then the function φ is normal:

- (i) $A^1(\varphi)$ is isomorphic to l^1 ;
- (ii) $A^{\infty}(\varphi)$ is isomorphic to l^{∞} ;
- (iii) $A_0(\varphi)$ is isomorphic to c_0 .

Before discussing the case of $A^1(\varphi)$ we note that the other two cases are contained implicitly in [14, Theorem 7] and [15]. Namely, if $A^{\infty}(\varphi)$ is isomorphic to l^{∞} , then $A^{\infty}(\varphi)$ is complemented in $h^{\infty}(\varphi)$, because l^{∞} is complemented in every space containing it (see [5, p. 105]). Then, by using a method of Rudin [13], we conclude that $A^{\infty}(\varphi)$ is complemented by the "analytic" projection, i.e. that $h^{\infty}(\varphi)$ is self-conjugate and hence, by [15], φ is normal.

If $A_0(\varphi)$ is isomorphic to c_0 , we can use a theorem of Sobczyk that asserts that c_0 is complemented in every separable space containing it. We can also reduce the problem to the case of A^{∞} by using the fact, proved by Rubel and Shields [11], that the second dual of $A_0(\varphi)$ is isometrically isomorphic to $A^{\infty}(\varphi)$.

In order to discuss the case of $A^1(\varphi)$ we use three famous theorems.

Paley Theorem [6]. If $\{m_n\}_0^{\infty}$ is a lacunary sequence of positive integers, then there is a constant $C < \infty$ such that

$$\sum |\hat{f}(m_n)|^2 \le C ||f||_1^2, \qquad f \in H^1,$$

where $\| \ \|_1$ stands for the norm in the Hardy class H^1 .

Pelczynski Theorem [10]. Every infinite dimensional complemented subspace of l^1 is isomorphic to l^1 .

LINDENSTRAUSS-PELCZYNSKI THEOREM [3]. Every normalized unconditional basis of l^1 is equivalent to the canonical basis of l^1 .

Proof of the Theorem. Assume that $A^1(\varphi)$ is isomorphic to l^1 . Let Y denote the subspace spanned by the elements $h_n(z) = z^{2^n}$, and $Pf(z) = \sum \hat{f}(2^n)z^{2^n}$, $f \in A^1(\varphi)$. By the Paley theorem,

(1)
$$M_1(r, Pf) < M_2(r, Pf) < CM_1(r, f), \quad 0 < r < 1,$$

where C is independent of r, f. (Here we use the usual notation for the integral means of f [2]). Multiplying inequality (1) by $\varphi'(1-r) dr$ and then integrating from 0 to 1, we conclude that P is a bounded projection of $A^1(\varphi)$ onto Y. Hence, by Pelczynski's theorem, Y is isomorphic to l^1 . Using (1) again we see that

$$M_1(r, f) \times M_2(r, f), \qquad f \in Y, \ 0 < r < 1,$$

which implies that $\{h_n\}$ is an unconditional basis of Y. Hence, by Lindenstrauss-Pelczynski's theorem, there is a constant c > 0 such that

(2)
$$\|\sum a_n h_n\|_{Y} \ge c \sum |a_n| \|h_n\|_{Y}$$

for scalar sequences $\{a_n\}$.

To deduce from (2) that φ is normal, we need some calculation. We have

$$||h_n||_Y = \int_0^1 \varphi'(1-r)r^{2^n} dr,$$

whence, by Lemma 3.2 of [7],

$$||h_n||_{Y} \asymp \varphi(2^{-n}).$$

Extend φ so that

(4)
$$\varphi(t)\varphi(1/t) = \varphi(1)^2, \qquad t > 1,$$

and let F denote the inverse function. In view of condition (Q), there is a constant $m \geq 2$ such that $F(mt)/F(t) \geq 4$ for t > 0. It follows that the interval

$$E_t := [\log F(t), \log F(mt)] \qquad (\log = \log_2)$$

contains at least two integers. For a fixed t with $\log F(t) > 0$ define $\{a_n\}$ in the following way:

$$a_n = \begin{cases} \varphi(2^n) & \text{for } n \in E_t, \\ 0, & \text{otherwise,} \end{cases}$$

and let $f_t = \sum a_n h_n$. It follows from (2), by (3) and (4), that

(5)
$$||f_t||_Y \ge c \left(\log F(mt) - \log F(t)\right),$$

where c > 0 is independent of t. On the other hand, by Parseval's relation,

$$M_1^2(r, f_t) \le M_2^2(r, f_t) = \sum |a_n|^2 r^{2^{n+1}} \le \sum \varphi(2^n)^2 r^{2F(t)} \qquad (n \in E_t).$$

Since $\varphi(2^n) \leq \varphi(F(mt)) = mt$ for $n \in E_t$, we see that

$$M_1(r, f_t) \le mtr^{F(t)} (\log F(mt) - \log F(t) + 1)^{1/2}.$$

Multiply thus by $\varphi'(1-r) dr$, then integrate and use the estimate

$$\int_0^1 r^x \varphi'(1-r) \, dr \approx \varphi(1/x), \qquad x > 1$$

(see [7, Lemma 3.2]). As a result we obtain

$$||f_t||_Y \le C (\log F(mt) - \log F(t))^{1/2}.$$

From this and (5) we find that $F(2t) \leq KF(t)$ for t > 0, where K is a constant. As a consequence, $F(t)/t^{\beta}$ is almost decreasing for t > 0, where $\beta = \log_2 K$. Hence, φ satisfies the condition (N) with $\alpha = 1/\beta$, which was to be proved.

134 Pavlović

Remarks. Shields and Williams [14] proved that $h_0(\varphi)$ is isomorphic to c_0 if φ satisfies some regularity conditions. However, it follows from Theorems 1 and 7 of [14] and the relation $h_0(\varphi)^* = h^1(\varphi)$ [7] that $h_0(\varphi)$ is isomorphic to c_0 whenever φ is quasi-normal. It would be interesting to construct an explicit isomorphism between $h_0(\varphi)$ and c_0 , or between $h^1(\varphi)$ and l^1 . In the case of $A^1(\varphi)$, where φ is a power function, an explicit isomorphism onto l^1 was constructed by Wojtaszczyk [17].

REFERENCES

- [1] S.N. Bernstein, On majorants of finite or quasi-finite growth, Dokl. Akad. Nauk SSSR (NS) 65 (1949), 117-120.
- [2] P. L. Duren, Theory of H^p-Spaces, Academic Press, New York, 1970.
- [3] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in L_p spaces and their applications, Studia Math. 29 (1968), 275-326.
- [4] J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Springer Verlag, Berlin-Heidelberg-New York, 1977.
- [6] R. E. A. C. Paley, On the lacunary coefficients of power series, Ann. of Math. 34 (1933), 615-616.
- [7] M. Pavlović, Mixed norm space of analytic and harmonic functions I, Publ. Inst. Math. (Beograd) 40 (54) (1986), 117-141.
- [8] M. Pavlović, Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J. 35 (1988), 301-311.
- [9] M. Pavlović, On the moduli of continuity of H^p functions, Proc. Edinburgh Math. Soc. (to appear).
- [10] A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- [11] L. A. Rubel and A. L. Shields, The second dual of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
- [12] W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429-432.
- [13] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in space of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- [14] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265-279.
- [15] A.L. Shields and D.L. Williams, Bounded projections and the mean growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.
- [16] A. Sobczyk, Projections of the space m onto its subspace c₀, Bull. Amer. Math. Soc. 47 (1941), 938-947.
- [17] P. Wojtaszczyk, H_p-spaces and spline systems, Studia Math. 76 (1984), 290-319.

Matematički fakultet 11001 Beograd, p.p. 550 Yugoslavia (Received 28 01 1991)