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SYMPLECTIC AND COSYMPLECTIC FOLIATIONS
ON COSYMPLECTIC MANIFOLDS*

Domingo Chinea, Manuel de Leén, and Juan C. Marrero

Abstract. We prove that a compact symplectic or cosymplectic foliation on a cosymplectic
manifold is stable. This result extends to the odd-dimensional case the corresponding one for
symplectic foliations on symplectic manifolds. A large family of examples is given.

1. Introduction

As it is* well-known a compact holomorphic foliation of a Kahler manifold is
stable (see [10]). The result holds for compact almost complex (resp., symplectic)
foliations of an almost K&hler (resp., symplectic) manifold (see [6, 7]).

In this paper, we study the stability of foliations on cosymplectic manifolds.
First, we introduce the notion of symplectic and cosymplectic foliations on a cosym-
plectic manifold, accordingly to the dimension of the foliation. Then we prove that
a compact symplectic or cosymplectic foliation on a cosymplectic manifold is stable.
To prove this, we use our previous results for the stability of invariant foliations of
almost contact manifolds [2].

2. Algebraic preliminaries

Let E be a (2n + 1)-dimensional vector space over R. The space E is called
cosymplectic if there exist a 2-form ® and a 1-form 7 such that n A @™ # 0. In such
a case we say that the pair (®,7) is a cosymplectic structure on E and the triple
(E,®,n) is called a cosymplectic vector space.

Let (E,®,n) be a cosymplectic vector space. Then there is a unique vector &
such that
77(5) =1, (}(gav) =0,
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for all vector v € E. The vector £ is called the canonical vector of the cosymplectic
vector space (E,®,n). Note that the vector & is characterized by the following
condition :

wENAP* =wA I,

for all 1-forms w on E.
Let E#‘ be the annihilator space of 7, i.e.,

Ey ={veE|n() =0}

It is clear that E,J,- is a symplectic vector space with respect to the induced
2-form ®.

A 2s-dimensional subspace F is called symplecticif it is a symplectic subspace
of E#- If dim F = 2s + 1, then F is called cosymplectic if the pair (®,7) induces
a cosymplectic structure on F' with canonical vector &.

A (2n + 1)-dimensional vector space E over R is said to be almost contact if
it admits a linear mapping ¢ : E — E, a vector £ and a 1-form n : E — R such
that

@ =-IT+n®¢ nlE) =1

A subspace F of E is said to be invariant if ¢(v) € F for all v € F (see [11]).
We easily see that only two cases occur for any invariant subspace F' of E.

(1) If the vector £ ¢ F , then F has even dimension, ¢ induces an almost
complex structure on F' and n p = 0.

(2) If the vector £ € F, then F' has odd dimension and it is an almost contact
vector space endowed with the restrictions of ¢ and 7.

These definitions may be extended fiberwise to vector bundles. Thus, let
m: E — M be a vector bundle over an n-dimensional manifold M and with fiber
R2?27+1 Then 7 : E — M is called cosymplectic if there exist cross-sections ® and
n of A2E* and A'E*, respectively, whose restrictions to the fibers of E define a
cosymplectic structure. Hence there exists a unique cross-section £ of 7 : E — M
such that

77(5) =1, q)(é.aX) =0,
for all sections X of E.

The section £ is called the canonical section of the cosymplectic vector bundle
7w : E — M. Note that for each point £, is the canonical vector of the cosymplectic
structure induced in the fiber E,.

A vector bundle 7w : E — M is called almost contact if there exist a vector
bundle automorphism ¢, a cross-section £ of E and a cross-section 5 of A E*, whose
restrictions to the fibers of F define an almost contact structure.

In a similar way, we define symplectic and cosymplectic subbundles of a
cosymplectic bundle, and invariant subbundles of an almost contact bundle.

Next, let (E,®,n) be a cosymplectic vector bundle over M with canonical
section &, and F' a symplectic or cosymplectic subbundle. Then we have
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PROPOSITION 1. There exists an almost contact structure ($,€,7m) and a
metric g in E such that:

(1) ga(bats; $2v) = gz (u,v) — 0z (w)nz(v),

(2) ®o(u,v) = ga2(u, $ov),

(3) Fy is an invariant vector subspace of E,,
forallz € M,u,v € E,.

Proof . Let ETJ,- be the symplectic subbundle of E whose fiber at x € M is the
space
(EnL):c = {u € E; | nz(u) = 0}.

We consider two cases, say F is a symplectic or cosymplectic subbundle of E. First,
suppose that F' is a symplectic subbundle of E. Thus, F' is a symplectic subbundle
of E,J,- Then, from Theorem 3.4 of [6], there exists an almost complex structure J
on E- (ie., J is an automorphism J : E,- — E,- of the vector bundle E, with
J? = —I) and a metric h in E,- such that:

(i) ho(u,v) = he(Jou, Jyv),

(il) ®z(u,v) = hy(u, Jpv),

(ili) F is a complex subbundle of E;-.

We set

bau = Jo(u — 10 (u)és),
and
9o (1,v) = (v — 1z (W)&e, v — 02 (V)€:) + 1e ()12 (v),

for all z € M,u,v € E,. Then it is easy to prove that (¢, &,n) is an almost contact
structure, g a metric on M and (1), (2) and (3) are satisfied.

Now, suppose that F' is a cosymplectic subbundle of E. Then FnL is a sym-
plectic subbundle of E,J,- Thus, by a similar device, we deduce the result. O

3. Foliations on cosymplectic manifolds

First, we recall some definitions about foliations on manifolds [5, 9].

Let F be a foliation of dimension p on a n-dimensional manifold M. We
denote by T'F the vector subbundle of TM which consists of the tangent vectors
to F', and by T, F the fiber of TF over z. If X is a vector field tangent to F' (i.e.,
X(z) € T,F for all z € M) then we put X € F.

The foliation F' is said to be compact if each leaf of F' is compact. A leaf L
of a compact foliation F' is said to be stable if every neighborhood U of L contains
an invariant neighborhood V' of L, i.e., V is a collection of leaves. F' is said to be
stable if every leaf of F' is stable.

Let M be a cosymplectic manifold with structure (®,7), i.e., n A ®" # 0,
dn=10,d® =0. Then (TM, ®,n) is a cosymplectic vector bundle. A foliation F' of
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dimension p = 2s (resp. p = 2s + 1) is said to be symplectic (resp. cosymplectic) if
the vector subbundle TF of TM is symplectic (resp. cosymplectic).
Let us recall that an almost contact metric manifold (M, ¢,n,&,g) is called

almost cosymplectic (in the sense of Blair [1]) if d® = 0,dn = 0 , where ® is the
fundamental 2-form of M, i.e., ®(X,Y) = g(X, ¢Y).

Now, let (M, ®,n) be a cosymplectic manifold with canonical vector field &,
and F' a symplectic or cosymplectic foliation. Then, from Proposition 1, we have.

PROPOSITION 2. There exists on M an almost contact metric structure
(¢,m,&,9) with fundamental 2-form ® which is almost cosymplectic, and the fo-
liation F' is invariant.

Finally, from Proposition 2 and Theorem 1 of [2] we easily deduce our main
result.

THEOREM 1. A compact symplectic or cosymplectic foliation F of a cosym-
plectic manifold (M, ®,n) is stable.

4. Examples

Let S, be the 2r 4+ 1-dimensional solvable non-nilpotent Lie group of matrices
of the form

e 0 0 0 0 0 0 z
0 e* 0 0 0 0 0 u
0 0 e 0 0 0 0
0 0 e 0 0 0
0 0 0 O e 0 0 z
0 0 0 O 0 e 0 y,
0 0 0 0 0 0 1 2z
0 0 0 0 0 0 0 1

where z;,9;,2 € R,1 <i <r. Then S, may be identified with R?>"*! by assigning
to each matrix in S, its global coordinates (z1,y1, ..., Zr, Yr, 2).

There exists a canonical injective Lie group homomorphism j,. : S, — S,
defined by

jr(xlayla "'5$T7y7‘5z) = (mlayla "'555.7‘7:[/7‘7050)'2)

Then S, may be considered as a Lie subgroup of S,41 and we have a chain of Lie
groups

{e}CcSi1CcSC...CcS CSpp1C...
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Alternatively, S, can be described as the semidirect group S, = R oy R*",
where ¢(z) : R* — R?" is given by the matrix

e 0 0 O 0 0
0 e# 0 0 0 0
0 0 e 0 0 0
0 0 0 €77 0 0
0O 0 0 0 ... e 0
0O 0 0 0 ... 0 e*

A simple computation shows that
{a; = e *dz;, B; = e*dy;, 7 =dz}
is a family of linearly independent left invariant 1 - forms on S,. Then we have
da; = &; N7, dfi = =B N7, dy = 0.

The corresponding dual basis of left invariant vector fields on S, is

and we have
[X“Z] = _Xi7 [Y;,Z] = 1/;'7
all the other brackets being zero.

Now, let B € S1(2, Z) be an unimodular matrix with positive real and different
eigenvalues A and A~! and P € GI(2, R) such that

(A0
PBP _<0 A_1)

Let be 29 € R such that A = €0 and consider the lattice L, = P.(Z2"), where

P 0 ... 0
O P ... 0
Po=1. . . .
o o0 ... P

Then L, is invariant by ¢(nz9) = ¢(20)", Vn € Z and I', = (20)Z x4 L, is
a co-compact subgroup of S, i.e., Solv(r) = I', \ S, is a compact non-nilpotent
solvmanifold of dimension 2r+ 1. We notice that Solv(1) is the manifold considered
in [8] and Solv(1) x S! is the manifold considered in [3, 4].
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Alternatively, the manifold Solv(r) may be seen as the total space of a T?"-
bundle over S!. In fact, let T?" = R?"/L, the 2r-dimensional torus and p: Z —
Diff(T'?") the representation defined as follows : p(n) represents the transformation
of T?" covered by the linear transformation of R?" given by the matrix

e 0 0 0 0 0
0 e 0 O 0 0
0 0 e 0 0 0
0 0 0 €77 0 0
0O 0 0 0 ... e 0
0o 0 o0 0 ... 0 e*

This representation determines an action 4 : Z x (T?" x R) — T?" x R
defined by
A(n7 [wla Yi,--- ;Z'r,er Z) = (p(n)([wlayla cee 5 Ty yT])7 z+ TL)
Then p: T? xz R — S! is a T?"-bundle where the projection p is given by

p[[xla Yty T,y yT]a Z] = [Z]
Then it is clear that T?" x z R may be canonically identified to Solv(r).
Since j,.(T';) C T';41 then j,. induces a canonical embedding

Jr : Solv(r) — Solv(r + 1).

If . : S, — Solv(r) is the canonical projection, then we have a global basis
{ai, Bi,v} of 1-forms on Solv(r) such that

ﬂ—:ai Zdh W:ﬁl :Bh W:’Y:’77
da’i =ao; N7, dﬂl = _ﬂz A, d’Y = 07
and the corresponding dual basis of vector fields, denoted by {X;,Y;, Z} verifies
[X’L7Z] Z_XZ'7 [Y;;Z] =Y'iy

the other brackets being all zero. Obviously, X;, Y;, Z and X;, Y;, Z are 7,-
related.

Now, for any integer s, 1 < s < r, let us consider the left invariant involutive
distribution F, on S, globally spanned by {X;,Y;,Z |1 < i < s}. Then F, is a
subalgebra of the Lie algebra of S,; in fact, F, is the Lie algebra of the Lie subgroup
S,. Thus, the leaves of the foliation F, determined by F, are all diffeomorphic to
Ss. Furthermore, since F, is left invariant, then it descends to a distribution F,
on Solv(r); Fy defines a foliation F;s on Solv(r) whose leaves are all diffeomorphic

to Solv(s).
Consider the cosymplectic structure (®,7) on Solv(r) defined by

\
o= ainfi, =7
i=1
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A simple computation shows that F is a cosymplectic foliation on the cosym-

plectic manifold (Solv(r), ®,7) and, from Theorem 1, it is stable.

Next, let F be the involutive distribution on Solv(r) globally spanned by

{X;,Y; | 1<i<r}. Then F determines a foliation F on Solv(r) whose leaves are
precisely the fibres of the fibration p : Solv(r) — S!, which are 2r-dimensional
tori. Thus, F' is a compact foliation. Furthermore, it is easy to prove that F' is a
symplectic foliation on the cosymplectic manifold (Solv(r), ®,n) and, from Theorem
1, it is stable. (We notice that this last result follows directly since the leaves of F'
are the fibres of p, which is a fibration with compact fibres [9]).

(1]
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