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ON A CLASS OF p-VALENT ANALYTIC FUNCTIONS
DEFINED BY RUSCHEWEYH DERIVATIVE

K.S. Padmanabhan and M. Jayamala

Introduction. Let A(p) denote the class of functions of the form f(z) =
2P 4+ Y r apykz?tE, (p € N = {1,2,3,...}) which are analytic in the unit disk
E = {z:|z| < 1}. We denote by f * g(z) the Hadamard product of two functions
f(2) and g(z) in A(p). Following Goel and Sohi [2] we put,

zp

A =z)mtr * f(2), (n > —p)

for the (n + p — 1)-th order Ruscheweyh derivative of f(z) € A(p). Let h be convex
univalent in E with h(0) = 1.

Definition 1. We say that a function f(z) € A(p) is in Ty, p(h) if and only if
(D™7f(2))'[(p2P~") < h(2), z € E.
We will prove that T, ,(h) C Tp_1,(h) and that f is preserved under the

Bernardi integral operator under certain conditions. Finally some coefficient esti-
mates for the class will be also obtained.

D f(z) =

We require the following theorems which provide a method for finding the
best dominant for certain differential subordinations.

THEOREM A [1]. Let f and v be complex constants and let h be convex
(univalent) in E with h(0) = 1 and Re[Bh(z) ++4] > 0. Ifp(z) = 1+ p1z+--- is
zp/(2)

Bp(z) +

THEOREM B [1]. Let 8 and v be complex constants and let h be convex in E
with h(0) = 1 and Re[Bh(2)+~] > 0. Let p(z) =1+ p1z+--- be analytic in E and
let it satisfy the differential subordination

analytic in E, then p(z) + =< h(z) implies p(z) < h(z).

2p'(2) ;
(1) p(2) + TOFTR h(z).
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zp'(2)
z)+7
solution q(z), then p(z) < q(z) < h(z) and ¢(z) is the best dominant of (1).

If the differential equation q(z) + = h(z) with ¢(0) = 1 has a univalent

COROLLARY A [1]. Let p(z) be analytic in E and let it satisfy the differential
subordination,

zp'(z) 1-—(1-29)z
p(z) + Bp(z) + 1+2

Then the differential equation

h(z) with B >0 and —Re(y/B) <d < 1.

2q'(z)  _ _
q(z) + Ba) +7 h(z), q(0) =1,

has a univalent solution ¢(z). In addition p(2) < q(2) < h(z) and q(z) is the best
dominant.

THEOREM 1. If (n+p) > 0, then T, p(h) C Ty—1,p(h), where h is a convex
univalent function in E with h(0) = 1.

Proof. Set g = (D"tP~1f)'/(pzP~1). Taking logarithmic derivatives and
multiplying by z we get

29'(z) _ (D™PTLf)"

(2) oG) =y (p—1).
Using the fact
(3) Z(D™PL ) = (n+ p)D™TP f — D™l f
(2) can be reduced to

! n+p /
(4) (29 fp)) +9(2) = (Dpz# < h(z),

since f € T, ,(h). Now if (n + p) > 0, we can conclude, by Theorem A, that
9(z) < h(z), that is f € Tp,_1 p(h).

Choosing n = —p + 1, we get the inclusion relations, T}, (h) C T\,—1,(h) C
(D°f) f'(z)

- <hor——= < h. IfReh >0,
pzP~ pzP~!
it follows that f is p-valent, by a result due to Umezawa [6]. Hence we have the
following

.. CT py1p(h). So f € T_piq p(h) implies

COROLLARY 1. Let f € Ty, ,(h), n+ p > 0, where Reh > 0, h(0) =1 and h
is univalently conver in E. Then f is p-valent.

Remarks. However, we observe that A need not be the best dominant for g
in Theorem 1. We proceed to find the best dominant for g using Theorem B. In
fact if ¢ is the best dominant for g in (4), then ¢ should satisfy,

(5) 2¢' /(n+p)+q=nh
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and q should be univalent. Hence, ¢’ 4+ (n +p)z~1q = (n +p)z~'h. Solving, we get
the best dominant,

6) g(z)= O TP / () s

zn"l‘p

h is univalently convex with h(0) = 1. We show that ¢ is also univalently convex.
Set Q@ =1+ z¢"/q'. Taking logarithmic derivative and multiplying by z we get,

zQI B 1 quII qul

Q-1 ¢ ¢
! "t
(7) Q+QZC_21=2+zqq,,.
From (5) we get,
2Q)’
B Q"‘m"‘(""‘l’)
W (n+p+1)
14—
Q-1
Using (7) this reduces to
2R ZQI
1+ =Q+—2%
B AR N TEYY

Since h is convex, we have (1 4+ zh"/h') < (1 — 2)/(1 + z), therefore

zq" 1—2 . 1—2z
1+—) < , f Rel —= > 0,
( q’) 1+ 2 ' e(1+z+(n+p)

which is true; hence ¢ is convex univalent.

Set h(z) = [1+ (2a—1)2]/(14+2),0 < a < 1, in (6) so that Re h(z) > a. The
best dominant ¢ for g in this case is given by,

_(n+p) [ p1l+2a-1)z
W= T T

By integration we get,

(8) q(z)=1—W[1og(1+z)— <z—z2—2+---—;:+;>],

when (n + p) is even,
2(1 — a)(n + p) 2?2 2"tP
N I Sl /A G0 21 ARG TG DY (I
@ a)=1+ ogl1+2)— (2= 5+ + 2],
when (n + p) is odd.

So we obtain the following
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COROLLARY 2. Setp=1,n=0 and a =0 in (9). Then the best dominant
q(2) reduces to q(z) =2z 1log(1 + 2) — 1.

We note that Reg(e??) = Req(e™?) and Im ¢q(e?’) = —Imgq(e~%). Further-
more Re g(—1) = +o00. Hence the curve given by the set of points g(e?’), 0 < 8 < 27
is symmetrical about the real axis and since g is convex, Re g(e?) is minimum at
6 = 0 and the minimum value is Re¢(1) = 2log2 —1=.38...

THEOREM 2. If f(2) € T,—1,p(h), then

c+p
zC

(10) Fz) = / U f @) dt € Ty 1p(h)  forc+p>0.
0
Proof. From (10) we have,
(1) ADMPUEY = (e 4 p) (D) — o(DHIE).
Differentiating (11) we get,
(12) DT 4 (DR = (e p) (D ) — (DY

Set G = (D™"*P~1F)'/(pzP~!). Taking logarithmic derivatives and multiplying by
z we get,
2G'(z) _ z(D™PlE)"

G(z) ~ (DviFy (p=1).
Using (12) this reduces to,
G() (DT

Since f € Tp_1,(h). If (¢ + p) > 0, we conclude, by Theorem A, that G < h, that
is (D"tP=1F) /(pzP~!) < h. If q is the best dominant for G in (13), then ¢ should
satisfy z¢'(z)/(c+ p) + ¢(z) = h(2). Solving it we get the best dominant
q(z) = (c+p) / h(2)z°tP 1 dz.
0

zC+p

If we choose

1 200 — 1
he) = LF@e=Dz oy
142
then the best dominant in this case is given by,
__2(0-0a)(c+p) 22 zetp
(14) Q(Z)—l—,zc—+plog(1+z)— Z_E+..._c+p ’

when (¢ + p) is even,
_ 2(1—a)(c+p) 22 Py
when (¢ + p) is odd.

Evidently ¢(z) is convex, since h is so.



On a class of p-valent analytic functions defined by Ruscheweyh derivative 31

COROLLARY 3. Taking a = 0, p = 1 and ¢ = 1, (14) reduces to q(z) =
427" — 427 21log(1 + z) — 1. Here again we can show that Re q(e?’) = Req(e %),
Img(e®) = —Imgq(e ) and Req(—1) = +oco. Hence the curve extends to oo
and since the curve is convez, it is minimum at 8 = 0 and the minimum value is
Req(l) =3 —4log2=.227....

This is an improvement of the results of Goel and Sohi [3, Remarks (i)
and (ii)].

THEOREM 3. The class T, ,(h) is closed with respect to convex combination,
where h is univalently convez and h(0) = 1.

Proof. Let f,g € T p(h). Therefore (D™ P f)'/(pzP~!) < h and (D"*Pg)'/
(pzP~1) < h. Hence there exist points z1, z2 in E such that
Dntp £y Dntpg)!
@) i
pzP pzP
Let F=tf+(1—1t)g,0<t¢<1. Then
(D™PE) (D™ f) (D trg

e +(1—t)pT)—th(z1) + (1~ t)h(z2) = h(zs)

=h(z1) and

for some 23 in E, because h is convex. In other words F' € T, ,(h).
A connection between the classes T), ; ,(h) and T, 1 ,(h). We now
prove the following

THEOREM 4. Let f € Ty—1,p(h) and let
(16) g(2) = (m+p+ 1)Lz x

Z [ Tmtp—1 ah Lf(21) ](nﬂ’—l)
—_— dzidzs . .. dTmgp—1.
“J, ), / [(n+p—1)! e S
Then g € Ty—1 p(h).

Proof. From (16) we have,

Tmtp—1 :L'?ilf(m'l) (n+p-1)
- — = deidzs ... dT;mip_1-
(m+p—1 / / / [(n+p—1)! T2 Tmtp—1

Differentiating (m + p — 1) times we get

920z )™ () Y
m+p-1! —  (n+p-1)

zp(zn—1f(z))(n+17—1)
(n+p—-1)!

(D™1g(2) _ (D)

pzp-1 pzp—1
Therefore f € T,,_1,p(h) if and only if g € Tp,—1,p(h).

Since

D™ f(z) =

’

it follows that
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Coefficient estimates. THEOREM 5. If f € T, ,(h), where h is univa-
lently convez in E with h(z) =1+ Y ;7 hi2*, then

|h1|p

pen ("N

(17) lap+k| <

k=1,2,3,....

Proof. Our hypothesis implies

(18) (D"+P—1f)’:1+§:(n+p+k—l)(p—;k)

k
o 1 s ap+r2" < h(2).

k=1
Let h(z) =1+ hyz + hyz® +---, 2z € E. From (18) we have, for k = 1,2,3,...

p+k(mn+p+k-1
e (e [

using a result due to Rogosinski [5]. Choosing h(z) = [1 + (2a — 1)2]/(1 + 2),
0 < a <1, we get the sharp coefficient estimate

2p(1 — a)
laptr| <
n+p+k—1
@+m< N )

attained for
o —1)kyptk
[y = rap(i-a)y — 2

k=1(p+k)<n+pzk_1>'

THEOREM 6. If f € T,_1 ,(h), where h is convez univalent in E, with h(z) =
1+ >0, hiz®, then for any complex number -,

2p|hy | max(1, |u|)

(19) |ap+2 = yap44] < (n+p+1)(n+p)(p+2)
where

_(1n+p+1)(p+2phi
(20) —( 2 +p)(p+1) M)

The result is sharp.

Proof. Our hypothesis on f enables us to write

(21) (D™PLE) [ (p2P 1) = h(w(2)),

where w is analytic and |w(2)| < [2] in |2| < 1. Let w = 3772, ¢jz7; then,

ad k-1 k
{1+Z<n+p;— )ap+k(p; )zk}={1+h1(clz+02z2+---)
k=1

+ho(crz+coz® +---) 4+ L
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Equating the same powers of z we get

02 o D@D

TR
1 (n+p+1)(n+p)p+2) ha 2 2 2
(23) Cy = h_l |: 2p ap+2 - W(p + 1) (TL +p) ap+1 .

Define p by (20). Then we have,

1 |[(n+p+1)(n+p)(p+2)
24 — = —
( ) |c2 ,U/Cl | |h1 | 2p ap+2
(hip+h2) (p+1)2(n+p)? ,
- h? P2 Gpi1
(n+p+1)(n+p)p+2)

= |h1 |2p |a17+2 - ,ya127+1 |
Using the coefficient inequality,
(25) |ea — pei| < max(1, |ul)

due to Keog and Merkes [4], in (24) we obtain (19).

The equality is attained in (19) for the function f(z) given by (21) when we
choose w(z) = z or w(z) = 22.
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