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ON BEST SIMULTANEOUS APPROXIMATION

S. V. R. Naidu

Abstract. For nonempty subsets F' and K of a nonempty set V and a real valued function
f on X X X the notion of f-best simultaneous approximation to F' from K is introduced as
an extension of the known notion of best simultaneous approximation in normed linear spaces.
The concept of uniformly quasi-convex function on a vector space is also introduced. Sufficient
conditions for the existence and uniqueness of f-best simultaneous approximation are obtained.

The concept of best simultaneous approximation was studied by several au-
thors in normed linear spaces. In [1] the concept was extended to locally convex
spaces. In this paper we extend the notion to arbitrary sets and study it on arbi-
trary sets, vector spaces, topological spaces and topological vector spaces.

Definition 1. Let X be a nonempty set and f be a real valued function
on X x X. Let F and K be nonempty subsets of X. For z in X, we define
fr(z) = sup{f(z,y) | y € F}. We define fr(K) = inf{fr(z) | z € K} and
PL(F) = {z € K | fr(z) = fr(K)}. An element of PL(F) is called an f-best
simultaneous approximation to F' from K. An element z of F' is called an f-
farthest point of an element x in X from F if f(z,2) = fr(x). F is said to be
f-antiproximinal if every element in X admits an f-farthest point from F. F is
said to be f-antiproximinal with respect to K if every element in K admits an f-
farthest point from F. An element z of K is called an f-nearest point of an element
y in X from K if f(z,y) = inf{f(z,y) | z € K}. K is said to be f-proximinal if
every element in X admits an f-nearest point from K. K is said to be f-proximinal
with respect to F if every element in F' admits an f-nearest point from K.

Remark 1. When X is a normed linear space over the field of real numbers
and f(z,y) = ||z — y|| for all z, y in X, the notions introduced above coincide with
the corresponding notions that already exist in literature.

Notation. When X is a vector space over the field of real numbers R, f is a
real valued function on X, F' and K are subsets of X and z € X, we write fr(x) for
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gr(z), fr(K) for gr(K) and P};(F) for P} (F), where g : X x X — R is defined
by g(z,y) = f(z —y) for all z,y in X. Similarly we speak of f-farthest point,
f-nearest point, f-antiproximinal, f-proximinal etc. for the corresponding notions
associated with g. When X is a normed linear space and f stands for the norm
on X, we generally drop f from the terminology. Thus we speak of farthest point
for f-farthest point and so on. We also write Pk (F) for P}; (F).

THEOREM 1. Let X be a topological space, F' and K be nonempty subsets of
X and f be a nonnegative real valued function on X x X. Suppose that f(-,y) is
lower semicontinuous on X for each y in F. Suppose that {k,} admits a convergent
subnet with limit in K whenever {k,} is a sequence in K such that f(ky,, ) is
uniformly bounded on F. Then P};(F) is nonempty. If fr(K) < 400, then PI’;(F)
is countably compact.

Proof . Since f is a nonnegative real valued function, we have 0 < fr(K) <
+oo. If fr(K) = +00, then PL(F) = K # @. Suppose that fp(K) < +00. Then
there exists a sequence {k,} in K such that {fr(k,)} decreases to fr(K). We have
0 < f(kn,y) < fr(kp) for all n = 1,2,... and for all y in F. Hence {f(kn, )}
is uniformly bounded on F. By hypothesis it follows that {k,} has a convergent
subnet with limit, say, k in K. By hypothesis, f(-,y) is lower semicontinuous on
X for each y in F. Hence for any positive real number ¢ and for any y in F,
{r € X | f(k,y) —e < f(z,y)} is an open set containing k. Hence for each
y in F, f(k,y) —e < f(kn,y) for infinitely many n. Hence for each y in F,
flk,y) —e < fr(K). Since this is true for any positive real number &, we must
have fr(k) = fr(K). Hence k € P};(F) A perusal of the above proof shows that
when fr(K) < 400, every sequence in PIf{ (F) admits a convergent subnet with
limit in P{(F). Hence P} (F) is countably compact when PL(F) < +oc.

The following theorem is evident from Theorem 1:

THEOREM 2. Let X be a topological vector space (T.V.S.) over R, F and K
be nonempty subsets of X, and f be a nonnegative real valued lower semicontinuous
function on X. Suppose that {k,} has a convergent subnet with limit in K whenever
{kn} is a sequence in K such that sup{f(k, —y) |n=1,2,..., y € F} is finite.
Then P};(F) is nonempty. If fr(K) < 400, then P};(F) is countably compact.

Definitions 2. Let X be a T.V.S. over R, f be a nonnegative real valued
function on X and S be a subset of X. For a real number r, let A(r) = {z € X |
f(z) <r}. We say that S is (i) f-boundedly compact if for every real number r
every net in S N A(r) has a convergent subnet with limit in S, (ii) f-boundedly
countably compact if for every real number r every sequence in S N A(r) has a
convergent subnet with limit in S, (iii) f-boundedly weakly countably compact if
for every real number r every sequence in SN A(r) has a weakly convergent subnet
with weak limit in S, and (iv) f-boundedly weakly compact if for every real number
r every net in S N A(r) has a weakly convergent subnet with limit in S.
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Remark 2. Let X be a T.V.S. over R, f be a nonnegative real valued function
on X and S be a subset of X. Every translate of S in X is f-boundedly weakly
countably compact or f-boundedly countably compact or f-boundedly compact
according as S is weakly countably compact or countably compact or compact.

From Theorem 2 we have the following:

COROLLARY 1. Let X be a T.V.S. over R and f be a nonnegative real valued,
lower semicontinuous function on X. Let F' and K be nonempty subsets of X.
Suppose that the translate of K by some element of F is f-boundedly countably
compact. Then P}; (F) is a nonempty, countably compact set.

The following definitions are known:

Definitions 3. Let X be a midpoint convex subset of a vector space over R.
A real valued function f on X is said to be (i) quasi-convex on X if f((z+y)/2) <
max{f(z), f(y)} for all z, y in X, (ii) strictly quasi-convex on X if f((z +y)/2) <
max{ f(z), f(y)} for all distinct z, y in X.

PROPOSITION 1. Let X be a locally conver T.V.S. over R and f be a lower
semicontinuous, quasi-convex function on X. Then f is lower semicontinuous with
respect to the weak topology on X.

Proof. Let r be a real number and A(r) = {z € X | f(z) < r}. Since f is
lower semicontinuous on X, A(r) is a closed subset of X. Since f is quasi-convex
on X, the midpoint of any two points of A(r) belongs to A(r). Hence A(r) is a
closed, convex subset of X. Since X is locally convex, it follows that A(r) is weakly

closed. Hence f is lower semicontinuous on X with respect to the weak topology
on X.

In view of Proposition 1 we have the following corollary of Theorem 2:

COROLLARY 2. Let X be a locally convex T.V.S. over R, F and K be
nonempty subsets of X and f be a nonnegative real valued, lower semicontin-
uous, quasi-conver function on X. Suppose that {k,} has a weakly conver-
gent subnet with weak limit in K whenever {k,} is a sequence in K such that
sup{f(kn —y) | n = 1,2,..., y € F} is finite. Then PIJ;(F) is nonempty. If
fr(K) < 400, then P}; (F) is weakly countably compact.

From Corollary 2 we have the following:

COROLLARY 3. Let X be a locally convex T.V.S. over R, F and K be nonemp-
ty subsets of X and f be a nonnegative real valued, lower semicontinuous, quasi-
convez function on X. Suppose that the translate of K by some element of F is
f-boundedly weakly countably compact. Then PI]; (F) is a nonempty, weakly count-
ably compact set.

From Corollary 3 we have the following:
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COROLLARY 4 (Theorem 1 of [2]). Let X be a normed linear space; F' be a
nonempty, bounded subset of X and K be a nonempty, boundedly weakly sequentially
compact subset of X. Then the set of all best simultaneous approrimations to F
from K is nonempty and weakly sequentially compact.

Definition 4. A topological space X is said to be locally countably compact
if for each x in X there exists a neighbourhood of z whose closure is countably
compact.

PROPOSITION 2. Let X be a T.V.S. over R and K be a closed, bounded,
star-shaped, locally countably compact subset of X. Then K is countably compact.

Proof . Since K is star-shaped, there exists x in K such that Az+(1—\)y € K
whenever y € K and 0 < X < 1. Since K is locally countably compact, there exists
a neighbourhood V of z such that KNV is countably compact, where bar stands for
closure in X. Let W =V — . Then W is a neighbourhood of zero and V = =+ W.
We have (K —z) NW = (K NV) — 2. Hence (K —z) N W is countably compact.
Since K is bounded, so is K — x. Hence, there exists a real number ¢ > 1 such that
K-z CtW. Ifye K—u=z, then y/t € (K —x2)NW since t > 1 and K — z is
star-shaped with centre at zero. Hence K —z C t((K —2z)NW) C t((K —2z)NW).
Since (K — x) N W is countably compact, so is t((K —x) N W). Since K — z is a
closed subset of t((K —z) NW), it follows that K — z is countably compact. Hence
K is countably compact.

The following Proposition can be established along the lines of Proposition 2:

PROPOSITION 3. Let X be a T.V.S. over R and K be a closed, bounded,
star-shaped, locally compact subset of X. Then K is compact.

In view of Proposition 2 we have the following corollary of Corollary 1:

COROLLARY 5. Let X be a T.V.S. over R and f be a nonnegative real valued
lower semicontinuous function on X such that f(tx) < f(x) for all x in X and for
all t in [0,1]. Suppose that for each nonnegative real number r, {x € X | f(z) <r}
1s bounded and locally countably compact. Let F' and K be nonempty subsets of X.
Suppose that K is closed. Then P};(F) is nonempty. If fr(K) < 400, then P};(F)
is countably compact.

Proof. For a nonnegative real number r, let A(r) = {z € X | f(z) < r}.
Since f(tz) < f(z) for all z in X and for all ¢ in [0,1], it follows that A(r) is
star-shaped with centre at zero. Since f is lower semicontinuous on X, A(r) is
closed. By hypothesis A(r) is bounded and locally countably compact. In view of
Proposition 2 it follows that A(r) is countably compact. Let {k,} be a sequence
in K such that {f(k, — 2)} is bounded for some z in F. Then there exists a
nonnegative real number s such that f(k, —2) < s for all n = 1,2,.... Hence
{k, — 2} is a sequence in A(s). Since A(s) is countably compact, it follows that
{k, — 2z} has a convergent subnet. Hence {k,} has a convergent subnet with limit,
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say, k. Since K is closed, k € K. From Corollary 1 it now follows that PIf((F) is
nonempty and that, when fr(K) < 400, it is countably compact.

Again from Corollary 1 we have the following:

COROLLARY 6. Let X be a T.V.S. over R and f be a nonnegative, lower
semicontinuous, quasi-convex function on X. Let F and K be nonempty subsets
of X. Suppose that K is closed, star-shaped and that there is a z in F such that
the set (K —z)N{z € X | f(z) < r} is bounded and locally countably compact for
every positive real number r. Then P_,];(F) is nonempty. If fr(K) < +oo, then

P};(F) is countably compact.

Proof. For a nonnegative real number r, let A(r) = {z € X | f(z) < r}.
Since f is lower semicontinuous and quasi-convex, A(r) is a closed, convex subset
of X. Since K is star-shaped, there exists zo in K such that lzg + (1 — )z € K
for all z in K and for all [ in [0,1]. By hypothesis there exists an element z in
F such that (K — z) N A(r) is bounded and locally countably compact for any
positive real number r. Let s be a positive real number such that s > f(zo — 2).
Then the set (K — z) N A(s) is star-shaped with centre at 2o — 2. Since both K
and A(s) are closed, (K — z) N A(s) is closed. Now from Proposition 2 it follows
that (K — z) N A(s) is countably compact. Hence K — z is f-boundedly countably
compact. Now the corollary is evident from Corollary 1.

Remark 3. Corollaries 1, 3, 5 and 6 remain valid if the word “countably” is
deleted from them.

Remark 4. Theorems 2.1 and 2.2 of [1] are corollaries of Corollary 1 as well
as Corollary 3. This shows that many conditions in Theorems 2.1 and 2.2 of [1]
are redundant. The first and second parts of Theorem 2.3 of [1] are corollaries of
Corollary 5 and Corollary 6 respectively.

THEOREM 3. Let X be a nonempty set and f be a real valued function on
X x X. Let F and K be nonempty subsets of X. Suppose that there exist t* in K
and y* in F such that y* is an f-farthest point of x* from F and x* is an f-nearest
point of y* from K. Then fr(K) = f(z*,y*) and x* € P};(F)

Proof. Let x € K. Then fp(z) > f(z,y*) > f(z*,y*) = fr(z*). Hence
fr(K) = fr(z*) and 2* € PL(F).

The following is the vector space analogue of Theorem 3:

THEOREM 4. Let X be a vector space over R and f be a real valued function
on X. Let F and K be nonempty subsets of X. Suppose that there exist z* in K
and y* in F such that y* is an f-farthest point of x* from F and x* is an f-nearest
point of y* from K. Then fr(K) = f(z* — y*) and z* € PI’;(F)

Remark 5. Let F' and K be nonempty subsets of a normed linear space X
over R. Let x1,%s,...,2,, be points of K and y1,¥s2, ... ,¥mn be points of F' such
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that for each 4 in {1,...,m}, y; is a farthest point of z; from F and z;41 is a
nearest point of y; from K, where x,,,41 = x1. In view of Theorem 4 it is natural to
ask whether {z1,z3,... ,2, } NPk (F) # @. The following examples show that this
need not be true even when m = 2, X = R?, F and K are disjoint compact sets
and K is convex. While in Example 1 F' has exactly two elements, in Example 2
F' is convex.

Ezample 1. Let X = R?, F = {(—2,0),(2,0)} and K be the convex hull of

{(0,0), (-3, —@), (2, —?)} Let f denote the Euclidean norm of R%. Tt can be

seen that P (F) = {(0,0)}. Set z; = (=3, -%3), 2y = (3,-¥2), y; = (2,0) and
y2 = (—2,0). Then y;, y are the farthest points of z1, z» from F and z,, x; are
the nearest points of y;, yo from K. But neither xz; nor zs belongs to PIf{(F) In
fact, even the convex hull of {zy,z,} is disjoint with PZ (F

(-

).

Ezample 2. Tet X = R?, F = convex hull of {(—2,0),(2,0)} and K =
convex hull of {(—%,—@), (—%,—@), (%,—@), (%,—@ } Let f denote the
Euclidean norm of R%. We see that F and K are compact, convex subsets of R? and
that they are disjoint. We note that PL(F) = {(0, _\/ng) }. Choosing 1,22, y1,Y2
as in Example 1 we see that the observations made about them in Example 1 are
also true here. For each z in K the set of all farthest points of z from F is a subset
of {y1,y2}. We have inf{||lz —yi|| | z € K} = 1 = inf{||lz —y2|| | z € K}. But

fr(K) =+67/4> 2.

Remark 6. Example 2 shows that the equation ‘fr(K) = inf{f(yo — z) |
x € K}’ given in the proof of Theorem 2.6 of [1] is false. It is not known whether
the conclusions of the theorem are true or false (vide M.R. of [1]).

THEOREM 5. Let X be a vector space over R and f be a quasi-convex function
on X such that f(—x) = f(x) for all x in X. Let F' and K be nonempty subsets
of X. Suppose that there exist * in K and y* in F such that fr(z*) = f(z* —y*)
and 2z* —y* € F. Then z* € P}:,(F)

Proof. For k in K we have

f(a:* _y*) =f((21'* —-y* _;:) + (k_y*)> Smax{f(Za?* _y* —k),f(k—y*)}

= max{f(k — (22" —y")), f(k —y")} < fr(k).

Hence fr(z*) < fr(k), so z* € P};(F)

THEOREM 6. Let X be a vector space over R and f be a quasi-convex function
on X such that f(—z) = f(z) for all x in X. Suppose that there exist yi,ys in F
such that (y1 + y2)/2 € K and fr(z) = max{f(z —y1), f(x —y2)} for all z in K.
Then (y1 +y2)/2 € PL(F). If further f is strictly quasi-conves, then PL(F) is a
singleton.



On best simultaneous approximation 83

Proof. Set z = (y1 +y2)/2. We have
fr(z) = max{f(z — 1), f(z —92)} = f((51 —92)/2).

For k£ in K we have

P(252) = s (=T < - 0,1 - )

=max{f(k—w), f(k—y2)} = fr(k).

Hence fr(z) < fr(k) forall kin K, s0 z € PI’;(F). When f is strictly quasi-convex,
for k # z we have

f(<y1 — k) - (k —yz)) < max{/(yr — k), f(k — o)}

so that fr(z) < fr(k). Hence in this case PI’;(F) = {z}.

Remark 7. In Theorem 6 if the condition ‘(y1 + y2)/2 € K’ is deleted from
the hypothesis, then it is natural to ask whether an f-nearest point of (y; + y2)/2
from K can be an element of P};(F) Example 3 shows that this need not be true
even when X = R?, f is the Euclidean norm on R?, and F and K are compact,
convex subsets of R”.

Ezample 3. Let X = R, F = convex hull of {(1,0),(0,1)} and K = convex
hull of {(0,0), (3,0),(%,1)}. Let f be the Euclidean norm of R?. We note that
(%, %) is the nearest point of (0,1) from K and (0, 1) is the farthest point of (%, %)
from F. It can be seen that Px(F) = {(%,1)}. For each z in K the set of all
farthest points of z from F is a subset of {y1,y2}, where y; = (1,0) and y» = (0,1).
The nearest point of (y; + y»)/2 from K is (3, §)-

We shall now obtain a couple of theorems which prescribe conditions under
which P};(F) can have at most one element.

THEOREM 7. Let X be a vector space over R, f be a strictly quasi-convex
function on X, and F' and K be nonempty subsets of X. Suppose that K is mid-
point convex and F is f-antiproximinal with respect to K. Then P};(F) has at
most one element.

Proof. If possible, suppose that PI’;(F) has more than one element. Let
Z1, T2 be distinct elements of PI’;(F) Since K is midpoint convex, (21 +22)/2 € K.
Since each point of K has an f-farthest point from F', there exists z in F such that
fr((@1 +22)/2) = f((z1 + 22)/2 — 2). Since 1 # z2, we have z1 — z # 22 — 2.
Hence from strict quasi-convexity of f we have

(7)< (2700 g, 1)

2 2
< max{fr(21), fr(z2)} = fr(K).

Thus we have fr((z1 + #2)/2) < fr(K) which is a contradiction. Hence the
theorem.
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Remark 8. In proving Theorem 7 we adopted the line of argument given in
Theorem 3.1 of [1] which was observed to be false in the M.R. of [1].

We shall now introduce the concept of uniformly quasi-convex function as a
generalization of uniformly convex norm.

Definition 5. A nonnegative real valued function f on a vector space X
over R is said to be uniformly quasi-convex if for any positive real numbers r and
€ there corresponds a real number o (depending on 7 and ¢) in (0,1) such that
f((z +y)/2) < ar whenever z, y are elements of X such that f(z) <r, f(y) <r

and max{f(z —y), f(y —2)} > &.

THEOREM 8. Let X be a vector space over R and f be a uniformly quasi-
convex function on X such that f(x) # 0 for x # 0. Let F' and K be nonempty
subsets of X. Suppose that K is midpoint convex and fr(K) < +o0o. Then P};(F)
contains at most one element.

Proof. TIf possible, suppose that there are two distinct elements z1, xo
in PL(F). Since K is midpoint convex, (z; + #2)/2 € K. Since f takes positive
values at nonzero points of X, it follows that either fr(z1) or fr(z2) is positive.
Since both z; and z, are in P};(F), we must have frp(z1) = fr(K) = fr(z2).
Hence fr(K) is positive. Since fr(K) < 400, r = fr(K) is a positive real num-
ber. Set ¢ = max{f(z1 — z2), f(z2 — x1)}. We note that ¢ is also a positive
real number. Since f is uniformly quasi-convex, there exists an « in (0,1) such
that f((z +y)/2) < ar whenever z, y are elements of X such that f(z) < r,
f(y) <r and max{f(z —y), fly —x)} > e. Forall zin F' we have f(z; —2) <r
and f(z2 — z) < r. Hence f((z1 + 22)/2 — 2) < ar for all z in F. Hence
fr((zy + 22)/2) < ar < r = fp(K). This is a contradiction. Hence PI’;(F)
contains at most one element.

In view of Theorem 7 it is of interest to know some sufficient conditions for
the existence of f-farthest points. So we give the following:

ProprosiTION 4. Let X be o T.V.S. over R and f be a real valued upper
semicontinuous function on X. Let F be a nonempty, countably compact subset
of X. Let x be an element of X such that fr(xz) < +00. Then x has an f-farthest
point from F.

The following is a generalization of Proposition 4 to topological spaces:

PROPOSITION 5. Let X be a topological space, f be a real valued function on
X x X and F be a nonempty, countably compact subset of X. Let x € X be such
that fr(z) < +oo and f(x, ) is upper semicontinuous on X. Then x admits an
f-farthest point from F.

Proof. For a positive integer n, let r,, = fr(z) —1/n and U, = {y € X |
f(z,y) < rp}. Since f(z, -) is upper semicontinuous on X, for each positive inte-
ger n, U, is an open subset of X. We note that U, C U, if n < m. If possible,



On best simultaneous approximation 85

suppose that there is no z in F' such that f(z,2) = fr(z). Then {U, |n=1,2,...}
is a countable open cover of F'. Since F is countably compact, it follows that there
exists a positive integer N such that F C Uy. Hence frp(z) < ry. This is a
contradiction. Hence z has an f-farthest point from F'.

Out of heuristic interest we shall now state without proof a proposition which
lays down sufficient conditions for the existence of f-nearest points.

PROPOSITION 6. Let X be a topological space, f be a real valued function on
X x X and K be a nonempty, countably compact subset of X. Let y € X be such
that f(-,y) is lower semicontinuous on X and bounded below on K. Then y admits
an f-nearest point from K.

The following is the vector space analogue of Proposition 6:

PROPOSITION 7. Let X be a T.V.S. over R, f be a real valued lower semi-
continuous function on X and K be a nonempty, countably compact subset of X.
Let y € X be such that f is bounded below on K —y. Then y admits an f-nearest
point from K.
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