COMPLETELY REGULAR AND ORTHODOX CONGRUENCES ON REGULAR SEMIGROUPS

Branka P. Alimpić and Dragica N. Krgović

Abstract. Let S be a regular semigroup and E(S) the set of all idempotents of S. Let $\operatorname{Con} S$ be the congruence lattice of S, and let T, K, U and V be equivalences on $\operatorname{Con} S$ defined by $\rho T\xi \Leftrightarrow \operatorname{tr} \rho = \operatorname{tr} \xi, \ \rho K\xi \Leftrightarrow \ker \rho = \ker \xi, \ \rho U\xi \Leftrightarrow \rho \cap \leq = \xi \cap \leq \operatorname{and} \ V = U \cap K$, where $\operatorname{tr} \rho = \rho \mid_{E(S)}$, $\ker \rho = E(S)\rho$, and \leq is the natural partial order on E(S). It is known that T,U and V are complete congruences on $\operatorname{Con} S$ and T-, K-, U- and V-classes are intervals $[\rho_T, \rho^T]$, $[\rho_K, \rho^K]$, $[\rho_U, \rho^U]$, and $[\rho_V, \rho^V]$, respectively ([13], [10], [9]). In this paper U-classes for which ρ^U is a semilattice congruence, and V-classes for which ρ^V is an inverse congruence are considered. It turns out that the union of all such V-classes is the lattice $\operatorname{CRCon} S$ of all completely regular congruences on S, and the union of all such V-classes is the lattice $\operatorname{OCon} S$ of all orthodox congruences on S. Also, some complete epimorphisms of the form $\rho \to \rho^U$ and $\rho \to \rho^V$ are obtained.

1. Preliminaries. In the following we shall use the terminology and notation of [4] and [11]. Throughout the paper, S stands for a regular semigroup. If $\rho \in \operatorname{Con} S$, and α is an equivalence on S/ρ , then the equivalence $\bar{\alpha}$ on S is defined by $a\bar{\alpha}b \Leftrightarrow (a\rho)\alpha(b\rho)$, $(a,b\in S)$. If α is a relation on S then α^* denotes the congruence on S generated by α . If α is an equivalence on S, then α° denotes the greatest congruence on S contained in α , and if $T\subseteq S$, then $T\alpha$ denotes the union of α -classes of all elements of T. If $\rho, \xi \in \operatorname{Con} S$ and $\rho \subseteq \xi$, then the relation ξ/ρ on S/ρ defined by $(a\rho)\xi/\rho(b\rho) \Leftrightarrow a\xi b$ $(a,b\in S)$ is a congruence. If $\rho,\xi,\zeta\in\operatorname{Con} S$, $\rho\subseteq \xi$ and $\rho\subseteq \zeta$, then $(\xi\vee\zeta)/\rho=(\xi/\rho)\vee(\zeta/\rho)$ and $(\xi\circ\zeta)/\rho=(\xi/\rho)\circ(\zeta/\rho)$.

Let \mathcal{C} be a class of semigroups, and let $\rho \in \operatorname{Con} S$. Then ρ is a \mathcal{C} - congruence if $S/\rho \in \mathcal{C}$, and ρ is over \mathcal{C} if $(\forall e \in E(S))e\rho \in \mathcal{C}$.

In the paper, σ , η , α , ν , Y, o denote the least group, semilattice, rectangular band, Clifford, inverse and orthodox congruences on S, respectively. Also, μ and τ denote the greatest idempotent separating and idempotent pure congruences on S, respectively.

Lemma 1. Let C be a class of semigroups closed for homomorphisms and let $\gamma = \gamma_S$ be the least C-congruence on S. If $\rho \in \text{Con } S$, then

- (1) ρ is a C-congruence on $S \Leftrightarrow \rho \supseteq \gamma$,
- (2) $\gamma_{S/\rho} = (\rho \vee \gamma)/\rho$.

Proof. (1) Clearly, if $S/\rho \in \mathcal{C}$, then $\rho \supseteq \gamma$. Conversely, if $\rho \supseteq \gamma$, then $S/\gamma/(\rho/\gamma) \in \mathcal{C}$, i.e. $S/\rho \in \mathcal{C}$.

(2) From (1) it follows that $(\rho \vee \gamma)/\rho \supseteq \gamma_{S/\rho}$. Since $\rho \subseteq \bar{\gamma}_{S/\rho}$ and $\bar{\gamma}_{S/\rho}$ is a \mathcal{C} -congruence on S, we get $\rho \vee \gamma \subseteq \bar{\gamma}_{S/\rho}$, which yields $(\rho \vee \gamma)/\rho \subseteq \gamma_{S/\rho}$.

For $a \in S$, let V(a) denote the set of all inverses of a in S. Let \mathcal{U} and \mathcal{V} be equivalences on S defined by $a\mathcal{U}b \Leftrightarrow V(a)\mathcal{H} = V(b)\mathcal{H}$, and $a\mathcal{V}b \Leftrightarrow V(a) = V(b)$.

RESULT 1. [9] If $\rho, \xi \in \text{Con } S$, then

(1)
$$\rho T \xi \Leftrightarrow \bar{\mathcal{H}}_{S/\rho} = \bar{\mathcal{H}}_{S/\xi} \quad and \quad \rho^T = \bar{\mathcal{H}}_{S/\rho}^{\circ}, \quad \rho_T = (\operatorname{tr} \rho)^*,$$

(2)
$$\rho K \xi \Leftrightarrow \bar{\tau}_{S/\rho} = \bar{\tau}_{S/\xi}$$
 and $\rho^K = \bar{\tau}_{S/\rho}$,

(3)
$$\rho U \xi \Leftrightarrow \bar{\mathcal{U}}_{S/\rho} = \bar{\mathcal{U}}_{S/\xi}$$
 and $\rho^U = \bar{\mathcal{U}}_{S/\rho}^{\circ}$, $\rho_U = (\rho \cap \leq)^*$,

(4)
$$\rho V \xi \Leftrightarrow \bar{\mathcal{V}}_{S/\rho} = \bar{\mathcal{V}}_{S/\xi} \quad and \quad \rho^V = \bar{\mathcal{V}}_{S/\rho}^{\circ}.$$

In particular we have $\varepsilon^T = \mathcal{H}^{\circ} = \mu$, $\varepsilon^K = \tau$, $\varepsilon^U = \mathcal{U}^{\circ}$, $\omega_U = (\leq)^*$ and $\varepsilon^V = \mathcal{V}^{\circ}$, where ε is the equality, and ω is the universal relation on S.

COROLLARY 1. For $\rho \in \text{Con } S$ we have $\rho^T/\rho = \mathcal{H}_{S/\rho}^{\circ} = \mu_{S/\rho}$, $\rho^K/\rho = \tau_{S/\rho}$, $\rho^U/\rho = \mathcal{U}_{S/\rho}^{\circ}$, $\rho^V/\rho = \mathcal{V}_{S/\rho}^{\circ}$.

Result 2. [9] A congruence ρ on S is over completely simple semigroups if and only if $\rho \subseteq \mathcal{U}$.

RESULT 3. [8] Let L be a complete lattice and C be a complete congruence on L. Then for any $x \in L$ the C-class xC is the interval $[x_C, x^C]$ of L, and for any $A \subseteq L$,

$$(\bigvee_{x \in A} x)_C = \bigvee_{x \in A} x_C, \quad (\bigwedge_{x \in A} x)^C = \bigwedge_{x \in A} x^C.$$

RESULT 4. [7] Let S be a regular semigroup and $\rho, \xi \in \text{Con } S$. Then

- (i) if ξ is idempotent separating, then $\rho \lor \xi = \rho \circ \xi \circ \rho$. In particular $\rho \lor \mu = \rho \circ \mu \circ \rho$;
- (ii) if S is completely regular, then $\rho \lor \eta = \rho \circ \eta \circ \rho$;
- (iii) if S is orthodox, then $\rho \vee Y = \rho \circ Y \circ \rho$.
- 2. Completely regular congruences. In this section we establish certain characterizations of completely regular congruences.

Lemma 2. For a regular semigroup S, the following are equivalent:

- (i) S is completely regular,
- (ii) $\eta \subseteq \mathcal{U}$,
- (iii) $\eta = \mathcal{U}$.

Proof. Since any completely regular semigroup is a semilattice of completely simple semigroups, the equivalence (i) \Leftrightarrow (ii) follows immediately from Result 2.

By definition of \mathcal{U} , it follows that $\mathcal{U} \subseteq \mathcal{D}$, and if S is completely regular, then $\mathcal{D} = \eta$. Hence, (ii) \Leftrightarrow (iii).

Theorem 1. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a completely regular congruence,
- (ii) ρ^U is a semilattice congruence,
- (iii) $\rho^U = \rho \vee \eta$,
- (iv) $\rho U(\rho \vee \eta)$.

(iii)⇒(iv) This is evident.

$$\begin{split} (\mathrm{iv}) \Rightarrow &(\mathrm{ii}) \ \rho U(\rho \vee \eta) \Rightarrow \rho \vee \eta \subseteq \rho^U \Rightarrow \rho^U \ \mathrm{is \ a \ semilattice \ congruence}. \\ &(\mathrm{ii}) \Rightarrow &(\mathrm{i}) \ \eta \subseteq \rho^U \Rightarrow \rho \vee \eta \subseteq \rho^U \\ &\Rightarrow (\rho \vee \eta)/\rho \subseteq \rho^U/\rho \\ &\Rightarrow \eta_{S/\rho} \subseteq \mathcal{U}_{S/\rho} \quad \mathrm{(by \ Lemma \ 1 \ and \ Corollary \ 1)} \\ &\Rightarrow S/\rho \quad \mathrm{is \ completely \ regular} \qquad (\mathrm{by \ Lemma \ 2}). \end{split}$$

Let SCon S denote the lattice of all semilattice congruences on S.

COROLLARY 2. (1)
$$(\forall \rho, \xi \in \operatorname{CRCon} S)(\rho U \xi \Leftrightarrow \rho \vee \eta = \xi \vee \eta),$$

(2) $\operatorname{CRCon} S = [\eta_U, \omega] = [\eta, \omega]U \text{ and } \eta U = [\eta_U, \eta],$
(3) $\operatorname{SCon} S = [\eta, \omega] = \{\rho \in \operatorname{CRCon} S \mid \rho^U = \rho\},$
(4) $\mu \subset \mathcal{U}^{\circ} \subset \eta.$

PROPOSITION 1. For $\rho \in \operatorname{CRCon} S$, $\rho \vee \eta = \rho \circ \eta \circ \rho$.

Let δ denote the least completely regular congruence on S. By Corollary 2 we have $\delta = \eta_U \subseteq \rho$. According to Lemma 1 we get $\eta_{S/\delta} = (\delta \vee \eta)/\delta =$ η/δ . So we have

$$\begin{split} (\rho/\delta) \vee (\eta/\delta) &= (\rho/\delta) \circ (\eta/\delta) \circ (\rho/\delta) \quad \text{(by Result 4(ii))} \\ \Leftrightarrow \qquad (\rho \vee \eta)/\delta &= (\rho \circ \eta \circ \rho)/\delta \\ \Leftrightarrow \qquad \rho \vee \eta &= \rho \circ \eta \circ \rho. \end{split}$$

From (1) of Corollary 2 and the implication (i)⇒(iii) of Theorem 1 we get Proposition 8.1 of [9].

Corollary 3. For S the following are equivalent:

- (i) S is completely regular,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^U = \rho \vee \eta$,

- (iii) $\eta = \mathcal{U}^{\circ}$,
- (iv) $\varepsilon U\eta$.

The next result is an analogue of Theorem 1 of [1].

Theorem 2. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a completely simple congruence,
- (ii) ρ^T is a rectangular band congruence,
- (iii) $\rho^T = \rho \vee \alpha$,
- (iv) $\rho T(\rho \vee \alpha)$,
- (v) $\rho U\omega$.

Proof. (i)⇔(ii)⇔(iii)⇔(iv) follows immediately from [1].

(i) \Leftrightarrow (v) ρ is a completely simple congruence

 $\Leftrightarrow \omega/\rho$ is over completely simple semigroups

$$\Leftrightarrow \rho U \omega$$
 (by Theorem 4.10 of [9]).

Let $\operatorname{CSCon} S$ (RBCon S) denote the lattice of all completely simple (rectangular band) congruences on S. Then we have

COROLLARY 4. (1)
$$(\forall \rho, \xi \in \mathrm{CSCon}\, S) \rho T \xi \Leftrightarrow \rho \vee \alpha = \xi \vee \alpha$$
,

(2) CSCon
$$S = [\alpha_T, \omega] = [\alpha, \omega]T$$
 and $\alpha T = [\alpha_T, \alpha]$,

(3) RBCon
$$S = [\alpha, \omega] = \{ \rho \in \operatorname{CSCon} S \mid \rho^T = \rho \},$$

(4)
$$\alpha_T = \omega_U = (\operatorname{tr} \alpha)^* = (\leq)^*$$
.

COROLLARY 5. For S the following are equivalent:

- (i) S is completely simple,
- (ii) $(\forall \rho \in \operatorname{Con} S) \rho^T = \rho \vee \alpha$,
- (iii) $\mu = \alpha$,
- (iv) $\mathcal{U}^{\circ} = \omega$,
- (v) $\varepsilon U\omega$.

PROPOSITION 2. For $\rho \in CSCon S$, $\rho \lor \alpha = \rho \circ \alpha \circ \rho$.

Proof. Let ζ denote the least completely simple congruence on S. By Corollary 4 we have $\zeta = \alpha_T \subseteq \rho$. According to Lemma 1 we get $\alpha_{S/\zeta} = (\zeta \vee \alpha)/\zeta = \alpha/\zeta$. Hence, by Corollary 5, $\mu_{S/\zeta} = \alpha/\zeta$. Thus

$$\begin{split} (\rho/\zeta) \vee (\alpha/\zeta) &= (\rho/\zeta) \circ (\alpha/\zeta) \circ (\rho/\zeta) & \text{ (by Result 4(i))} \\ \Leftrightarrow & (\rho \vee \alpha)/\zeta = (\rho \circ \alpha \circ \rho)/\zeta \\ \Leftrightarrow & \rho \vee \alpha = \rho \circ \alpha \circ \rho. \end{split}$$

3. Orthodox congruences. Now we describe orthodox congruences on S in terms of K and V. Let $\rho \in \operatorname{Con} S$. It is easy to see that ρ is an orthodox congruence if and only if $\ker \rho$ is a subsemigroup of S.

Lemma 3. For a regular semigroup S, the following are equivalent:

- (i) S is orthodox,
- (ii) $Y = \mathcal{V}$,
- (iii) $Y \subset \mathcal{V}$,
- (iv) $Y \subseteq \tau$.

Proof. (i) \Rightarrow (ii) It is proved in [3] and [14].

(ii)⇒(iii) This is evident.

$$(\mathrm{iii}) {\Rightarrow} (\mathrm{iv}) \ Y \subseteq \mathcal{V} \Rightarrow Y \subseteq \mathcal{V}^{\circ} = \varepsilon^{V} \subseteq \varepsilon^{K} = \tau.$$

(iv) \Rightarrow (i) Since Y is orthodox, ker Y is a subsemigroup of S. Thus $Y \subseteq \tau \Leftrightarrow \ker Y = E(S) \Rightarrow E(S)$ is a subsemigroup of $S \Leftrightarrow S$ is orthodox.

Theorem 3. For $\rho \in \text{Con } S$ the following are equivalent:

- (i) ρ is an orthodox congruence,
- (ii) ρ^V is an inverse congruence,
- (iii) $\rho^V = \rho \vee Y$,
- (iv) $\rho V(\rho \vee Y)$,
- (v) $\rho K(\rho \vee Y)$,
- (vi) ρ^K is an inverse congruence.

Proof. (i)
$$\Rightarrow$$
(iii) ρ is orthodox $\Leftrightarrow \mathcal{V}_{S/\rho} = Y_{S/\rho}$ (by Lemma 3) $\Leftrightarrow \bar{\mathcal{V}}_{S/\rho} = \rho \vee Y$ (by Lemma 1) $\Rightarrow \rho^V = \rho \vee Y$. (by Result 1).

 $(iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi)$ This is evident.

$$\begin{array}{c} \text{(vi)} \Rightarrow \text{(i)} \ Y \subseteq \rho^K \Rightarrow \rho \lor Y \subseteq \rho^K \\ \Rightarrow (\rho \lor Y)/\rho \subseteq \rho^K/\rho \\ \Leftrightarrow Y_{S/\rho} \subseteq \tau_{S/\rho} \\ \Leftrightarrow \rho \ \text{is orthodox} \end{array}$$
 (by Lemma 1 and Corollary 1)

(iii)⇒(ii)⇒(vi) This is evident.

Let ICon S denote the set of all inverse congruences on S.

$$\begin{aligned} \text{Corollary 6.} \quad & (1) \ \, (\forall \rho, \xi \in \text{OCon}\, S) \rho V \xi \Leftrightarrow \rho \vee Y = \xi \vee Y, \\ & (2) \ \, \text{OCon}\, S = [o, \omega] = [Y, \omega] V \ \, \text{and} \ \, YV = [o, Y], \\ & (3) \ \, \text{ICon}\, S = [Y, \omega] = \{\rho \in \text{OCon}\, S \mid \rho^V = \rho\}, \\ & (4) \ \, \mathcal{V}^\circ \subseteq Y. \end{aligned}$$

From Corollary 6(1) and the implication (i) \Rightarrow (iii) of Theorem 3 we get Proposition 8.5 of [9], and from (i) \Rightarrow (v) of Theorem 3 we get oKY [6] and Lemma 2.1 of [2].

COROLLARY 7. For S the following are equivalent:

- (i) S is orthodox,
- (ii) $(\forall \rho \in \text{Con } S) \rho^V = \rho \vee Y$,

- (iii) $Y = \mathcal{V}^{\circ}$,
- (iv) εVY .

Using Result 4(iii), the proof of the following proposition is similar to the proof of the Proposition 1.

Proposition 3. For
$$\rho \in \text{OCon } S$$
, $\rho \vee Y = \rho \circ Y \circ \rho$.

In the following we describe orthodox completely regular (i.e. orthogroup) congruences and orthodox completely simple congruences on S. By [5], any orthodox completely simple semigroup is a rectangular group and conversely.

THEOREM 4. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is an orthogroup congruence,
- (ii) ρ^V is a Clifford congruence,
- (iii) $\rho^V = \rho \vee \nu$,
- (iv) $\rho V(\rho \vee \nu)$.

Proof. (i) \Rightarrow (ii) By Theorem 3, ρ^V is an inverse completely regular congruence, i.e. a Clifford congruence.

(ii)⇒(iii)

$$\rho^{V} \text{ is a Clifford congruence} \Rightarrow \rho^{V} = \rho \vee Y \qquad \text{(by Theorem 3)}$$

$$\Rightarrow \rho^{V} \subseteq \rho \vee \nu \subseteq \rho^{V} \qquad \text{(since } Y \subseteq \nu)$$

$$\Rightarrow \rho^{V} = \rho \vee \nu.$$

- (iii)⇒(iv) This is evident.
- (iv) \Rightarrow (i) By Theorem 3, $\rho V(\rho \vee \nu)$ implies that ρ is orthodox. On the other hand,

$$\rho V(\rho \vee \nu) \Rightarrow \rho U(\rho \vee \nu) \qquad \qquad \text{(since } V \subseteq U)$$

$$\Rightarrow \rho \quad \text{is completely regular} \qquad \text{(by Theorem 1)}.$$

Hence ρ is an orthogroup congruence.

Let $\operatorname{OGCon} S$ (SGCon S) denote the lattice of all orthogroup (Clifford) congruences on S. Then we have

Corollary 9. For S the following are equivalent:

- (i) S is an orthogroup,
- (ii) $(\forall \rho \in \text{Con } S) \rho^V = \rho \vee \nu$,
- (iii) $\mathcal{V}^{\circ} = \nu$,
- (iv) $\varepsilon V \nu$.

THEOREM 5. For $\rho \in \text{Con } S$, the following are equivalent:

- (i) ρ is a rectangular group congruence,
- (ii) ρ^V is a group congruence,

(iii)
$$\rho^V = \rho \vee \sigma$$
,

(iv)
$$\rho V(\rho \vee \sigma)$$
.

Proof. (i) \Rightarrow (ii) By Theorem 3, ρ^V is an inverse completely simple congruence, i.e. ρ^V is a group congruence.

(ii)
$$\Rightarrow$$
(iii) If ρ^V is a group congruence, then $\rho^V = \rho^K = \rho \vee \sigma$, by Theorem 3 of [1].

(iii)⇒(iv) This is evident.

(iv) \Rightarrow (i) $\rho V(\rho \vee \sigma) \Rightarrow \rho$ is orthodox (by Theorem 3). On the other hand,

$$\rho V(\rho \vee \sigma) \Rightarrow \rho U(\rho \vee \sigma) U\omega \qquad \text{(by Theorem 2)}$$

$$\Rightarrow \rho \text{ is completely simple.} \qquad \text{(by Theorem 2)}.$$

Hence, ρ is a rectangular group congruence.

Let $\operatorname{RGCon} S$ (GCon S) denote the lattice of all rectangular group (group) congruences on S. Then we have

COROLLARY 10. (1)
$$(\forall \rho, \xi \in \operatorname{RGCon} S) \rho V \xi \Leftrightarrow \rho \vee \sigma = \xi \vee \sigma.$$

(2) $\operatorname{RGCon} S = [\sigma_V, \omega] = [\sigma, \omega] V \text{ and } \sigma V = [\sigma_V, \sigma],$

(3) GCon
$$S = [\sigma, \omega] = {\rho \in \operatorname{RGCon} S \mid \rho^V = \rho}.$$

COROLLARY 11. For S the following are equivalent:

- (i) S is a rectangular group,
- (ii) $(\forall \rho \in \text{Con } S) \rho^V = \rho \vee \sigma$,
- (iii) $\mathcal{V}^{\circ} = \sigma$,
- (iv) $\varepsilon V \sigma$.
- **4. Some complete epimorphisms.** Using the results of Theorems 1–5 and the Result 2 we get the following

Theorem 6. Let S be a regular semigroup. The mappings

```
\begin{array}{llll} \varphi_1: \operatorname{CRCon} S \longrightarrow & \operatorname{SCon} S & \operatorname{defined} \ by & \varphi_1(\rho) = \rho \vee \eta, \\ \varphi_2: \operatorname{CSCon} S \longrightarrow & \operatorname{RRBon} S & \operatorname{defined} \ by & \varphi_2(\rho) = \rho \vee \alpha, \\ \varphi_3: & \operatorname{OCon} S \longrightarrow & \operatorname{ICon} S & \operatorname{defined} \ by & \varphi_3(\rho) = \rho \vee Y, \\ \varphi_4: & \operatorname{OGCon} S \longrightarrow & \operatorname{SGCon} S & \operatorname{defined} \ by & \varphi_4(\rho) = \rho \vee \nu, \\ \varphi_5: & \operatorname{RGCon} S \longrightarrow & \operatorname{GCon} S & \operatorname{defined} \ by & \varphi_5(\rho) = \rho \vee \sigma \end{array}
```

are complete epimorphisms. The classes of the complete congruence $\bar{\varphi}$ induced by the epimorphism φ are U-classes, if $\varphi = \varphi_1$; T-classes, if $\varphi = \varphi_2$; and V-classes, if $\varphi = \varphi_i$, i = 3, 4, 5.

For a completely regular semigroup S, the statement concerning the mapping φ_1 is given in [12] (Theorem 4.3(i)).

$$\begin{array}{llll} \text{Corollary 12.} & \text{(i)} & (\cap_{\rho \in F} \rho) \vee \eta & = & \cap_{\rho \in F} (\rho \vee \eta) & & (F \subseteq \operatorname{CRCon} S), \\ & \text{(ii)} & (\cap_{\rho \in F} \rho) \vee \alpha & = & \cap_{\rho \in F} (\rho \vee \alpha) & & (F \subseteq \operatorname{CSCon} S), \\ & \text{(iii)} & (\cap_{\rho \in F} \rho) \vee Y & = & \cap_{\rho \in F} (\rho \vee Y) & & (F \subseteq \operatorname{OCon} S), \\ & \text{(iv)} & (\cap_{\rho \in F} \rho) \vee \nu & = & \cap_{\rho \in F} (\rho \vee \nu) & & (F \subseteq \operatorname{OGCon} S), \end{array}$$

(v)
$$(\cap_{\rho \in F} \rho) \vee \sigma = \cap_{\rho \in F} (\rho \vee \sigma)$$
 $(F \subseteq \operatorname{RGCon} S).$

From (i) of this corollary we get Theorem 4.7 of [7], and from (iii) we get Theorem 2.4 of [2].

REFERENCES

- [1] Alimpić, B.P. and D.N.Krgović, *Some congruences on regular semigroups*, Proc. Conf. Oberwolfach 1986, Lect. Not. Math. **1320** Springer-Verlag, 1-9.
- [2] Eberhart, C. and W. Williams, Congruences on an orthodox semigroup via the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-192.
- [3] Hall, T.E., On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208.
- [4] Howie, J.M., An Introduction to Semigroup Theory, Academic Press, London 1976.
- [5] Ivan, J., On the decomposition of a simple semigroup into a direct product, Mat.-Fyz. Časopis 4 (1954), 181-202 (In Slovak: Russian summary).
- [6] Jones, P.R., The least inverse and orthodox congruences on a completely regular semigroup, Semigroup Forum 27 (1983), 390-392.
- [7] Jones, P.R., Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.
- [8] Pastijn, F., and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.
- [9] Pastijn, F., and M. Petrich, The congruence lattice of a regular semigroup, J. Pure Appl. Algebra 53 (1988), 93-123.
- [10] Pastijn, F., and P.G. Trotter, Lattices of completely regular semigroup varieties, Pacific J. Math. 119 (1985), 191-214.
- [11] Petrich, M., Structure of Regular Semigroups, Cahiers Math., Montpellier, 1977.
- [12] Petrich, M., Congruences on completely regular semigroups, Can. J. Math., 41 (1989), 439-461
- [13] Reilly, N.R., and K.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.
- [14] Schein, B.M., On the theory of generalized groups and generalized heaps, Theory of Semi-groups and its Applications, Saratov Univ. (1966), 286-324 (in Russian).

Matematički fakultet Matematički institut Studentski trg 16 Kneza Mihaila 35 11001 Beograd, p.p. 550 11001 Beograd, p.p. 367 (Received 29 09 1992)