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GENERALIZED HERMITE POLYNOMIALS

Gospava B. Dordevié

Abstract. We consider a new generalization of the classical Hermite polynomials and
prove the basic characteristics of such polynomials hﬁ,m(z) (the generating function, an explicit
representation, some recurrence relations, and the corresponding differential equation). For m = 2,
the polynomial h%,m(w) reduces to Hyp(z,\)/n!, where Hyp(x, ) is the Hermite polynomial with
a parameter. For A = 1, h%,z(w) = Hy(x)/n!, where Hy(z) is the classical Hermite polynomial.
Taking A = 1 and n = mN +¢, where N = [n/m] and 0 < ¢ < m—1, we introduce the polynomials
Pl(vm’q)(t) by AL, . (z) = (2$)qPZ(Vm’q)((2$)m), and prove that they satisfy an (m + 1)-term linear
recurrence relation.

1. Polynomials h)} ,,(x). At the beginning, we define polynomials h;, ,,, (x)
in the following manner.

Definition 1.1. The polynomials hﬁ’m(x), XA € RT, n,m € N, are defined by
the generating function

(o]
F(z,t) = X2ot™) = Z h (@)t (1.1)
n=0
From above we get
A(2zt—t™) 2 (& p AM(2z)nmE
F(z,t) = X071 = -1 .
() =20 =35 (57 o A

Thus, we obtain the following explicit representation

\ e e
hy (@) = A" > (=1) = Te—aTE (1.2)

k=0

Starting from (1.1) we can prove the following theorem.
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THEOREM 1.1. The polynomials hi‘b’m(az) satisfy the three-term recurrence

relation
nhﬁ,m(m) = ’\(2$h271,m('x) - thA’L*m,m(m))J n 2 m (13)

with initial values : h), . (z) = (2Az)"/n!, 0<n <m—1.
Now, we prove the following theorem :

THEOREM 1.2. The polynomials hﬁ,m(:c) satisfy the following relations:

208 () = (206) DR (&) — DRy () (1.49)
DHRY () = VI (0
[n/m]
(2z)" 1
n! = Z thn—mk,m(x) (m > 2); (16)
=2
[n/m] k
€T 1—u™
wh () = 3 LR (17)
k=0 ’
Momla ) =3 B0 (@), (18)
k=0 '

where D = d/dx is the differentiation operator.
Proof. Differentiating (1.1) with respect to z and ¢ we find the next equalities:

(i) OF(x,t)/0x = 2Xter=t=t™) (i) OF(x,t)/dt = (2 — mt™~1)er(22t=t")

Combining these equalities we obtain (1.4).
Differentiating the polynomials h;\hm(w) given by (1.2) k-times we get (1.5).
The generating function (1.1) for A = 1 reduces to

00 o
e2zt—t™ _ Z hé’m(m)t", ie. to 2%t = et E h;\b,m(m)tn.
n—0 n=0

Developing both sides of the last equality in ¢, we obtain

n=0 n=0 n=0
oo [[n/m]
1 n
= Z Z Hhim—mk,m(m) t
n=0 k=0

Now, comparing coefficients of ¢ in the last equality we get (1.6).
Starting from e2*t—t"u" = 271t o ot U e get (1.7).
Finally, from the equality e2(#F9)t—t" = g22t—t" ¢ e2u o get

Zt”Z(—l) kl(n — mk)! -

n=0 k=0
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00 . n 2 nfkt(mfl)k 0 7(20)"
(E:t 23“”k££%6::15f_> (23 2?)>’

n=0 k=0 n=0

wherefrom, after some calculations, we obtain (1.8).

COROLLARY 1.1. Form =2 and A = 1 the equalities (1.4)—(1.8) reduce to
the corresponding relations for the classical Hermite polynomials.

At the end of this section we prove that the polynomials hﬁ,m(x) have an
interesting property.

THEOREM 1.3. The polynomial hﬁ’m(x) is a particular solution of linear
homogeneous equation of m-th order given by

Ln(y) = y'™ = 2mm =A™ Y (zy — ny) = 0. (1.9)
Proof. Using (1.5) and the recurrence relation (1.3) we get
L[k (@) = 2X)™h), (z) = 2™m Iz (20)h) | (x)

n—m,m n—1,m
+ 2mm_1)\m_1nh2,m(x)

= 2mm*1)\m*1(nh;\hm(x) — 2\zh) (z) + m)\hf;_m’m(w)) =0.

n—1,m

2. Polynomials P3"?(t). In this section we introduce a class of polynomials
{PF9(t)} y_y- Let us suppose that n = mN + g, where N = [n/m] and 0 < ¢ <
m — 1. Starting from (1.2) and taking A = 1, we have

N

k=0

(2z.)mN—mk
mN + q — mk)!

— lonNa ((2z)m)N—*
= (20" ) (D e T

k=0
= (22)"P{™7)(t), where t = (2z)™.

In this way we come to
N Nk

> D TG T

k=0

PR(D) =

(2.1)

In fact, the polynomials Py"?(t) depend on two parameters: m € N and
g€ {0,1,...,m—1}

Using (1.3) for A = 1, i.e., nhl . (z) = 2zhl,_, . (z) — mhL_,, . (), where
n > m > 1, we can prove the folloving theorem:

THEOREM 2.1 The polynomials Py (t) satisfy the next recurrence relations:
(mN + )Py (8) = Py (6) = mPyMP (1), for 1< g<m—1,
mN PO () = tP{™™ D (t) —mP{™O(t),  for g =0.
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It is interesting to find a recurrence relation for the polynomials PI(Vm’Q) (t)
where the parameters m and ¢ are fixed.

Using the same method as in [3] we can prove the following result:

THEOREM 2.2. The polynomials Pj(vm’q) (t) satisfy an (m+1)-term recurrence
relation of the form

m
Z Ai,N,qPJ(vn-:-’f)—z’(t) = BN,thJ(\rm’q) ),
i=0

where Bn,q and A;n,g (0 = 0,1,...,m) are constants depending only on N, m
and q.

According to the explicit representation of polynomials PJ(Vm’q) (t) given by
(2.1), we get:

PROPOSITION 2.3 The polynomials PJ(Vm’q) (t) have no negative real zeros.
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