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ON REGULAR AND ABSOLUTELY REGULAR
DISTRIBUTIONS IN K},

Saleh Abdullah

Abstract. We characterize spaces of regular and absolutely regular distributions of rapid
growth and study their topological structure.

Introduction. Pilipovié [5] characterized regular K),{M,} distributions
for some sequences M), of functions which satisfy some suitable conditions. In this
paper we study absolutely regular and regular K, distributions. The space K}, is
a K4, {M,} space with M,(z) = e?M(®) where M(z) is a function. This sequence
satisfies the conditions (1)—(5) and (N) of [5]. The distributions studied in [5]
here will be called absolutely regular. We will distinguish them from what we will
call regular K}, distributions. We utilize an example of Pilipovié¢ to show that
in K}, the absolutely regular distributions are properly contained in the regular
ones. It turns out that the space of absolutely regular distributions in K}, is not
stable under differentiation. Moreover, we provide the space (K},)q, of absolutely
regular distributions in K}, with several topologies, and find relations between
them. Finally we characterize the space (K),), of regular distributions in K},
provide it with two topologies and show that they are equal.

Notation and preliminary results

We will use the standard notation as in [4]. The space K of test functions
consists of all C'"*°-functions ¢ such that

(@) = sup eM*?) | DY(z)| < 00; k=0,1,2,... .
z€R™
lo| <k
The function M (z) is even, incereasing and convex. An example of such function
is M(z) = |z|P/p; p > 1, and M(z) = e®. We provide K)s with the topolo-
gy generated by the family of seminorms {v;; k& = 0,1,2,...}. The space K
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is Frechet, nuclear, barreled, reflexive, bornologic, Montel and a normal space
of distributions. It turns out that Kj,; coincides with the intersection of the
spaces e M(k2)g. k= 0,1,2,..., provided with the projective limit topology.
By K, we denote the space of continuous linear functionals on Kjps provided
with the strong dual topology, which will be denoted by B(K),, Kar). It turns
out that K, coincides with the space which consists of the union of the spaces
eMk2) gl | = 0,1,2,..., provided with the inductive limit topology. For more
details on the spaces Kjs and K}, we refer the reader to [1]. We denote by
O.(K'; K',) the union of the spaces eM(*?)S; k =0,1,2,..., provided with in-
ductive limit topology. The space O.(K'; K},) is boronologic, and it coincides
with the strong dual of O%(K},; K},) of convolution operators in K},. The folow-
ing theorem which characterizes the elements of K}, will be used later in the lext.

THEOREM A [1, Theorem 4]. Let T be any distribution; the following state-
ments are equivalent.

(a) T is in K}y;
(b) T = D*[eM*2) f] for some multi-index o, a positive integer k and a bounded
continuous function f;

(c) For any ¢ € Ky, there exists a positive integer ki such that
D*(T*p)(z) = O(eM*12)) | for all multi-indices o.

Following [5] we denote by (Kar)eo the vector space of functions f defined
almost everywhere on R"” for which the seminorms

ar(f) = esssup{e™ ™ |f(2); 2 €R"}; k=0,1,2,... ,

are finite. We equip this space with the topology defined by the family of seminorms
gr; £=0,1,2,... . By L{ . we denote the space of all locally integrable functions
on R", provided with the topology generated by the family of seminorms ||ul|1,x =
Jx luldz; K any compact subset of R". The space L} . is contained in D', the
space of Schwartz distributions.

Regular and absolutely regular distributions in K/,

We give first the definitions of regular and absolutely regular distributions in

Definition 1. A distrubution w € K}, is said to be absolutely regular if
u € LL. and up € L' for every ¢ € Ky. The set of all absolutely regular
distributions in K}, will be denoted by (K};)qr-

We should mention that in [5] the space (K},)q.r was called the space of
regular K, distrubutions. We called the elements of this space absolutely regular
to distinguish them from the elements of K, which satisfy the following defintion.

Definition 2. A distribution u € K}, is said to be regular if u € L] _, i.e.
(Ky)r = Ky N L

loc*
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After T finished writting the paper, I found out that the above distinction
between regular and absolutely regular distributions, in the general space K'{M,},
was given independently by Pilipovié [6].

Ezample. We utilize the following example of Pilipovié¢ [5] to show that
(K)ar is properly contained in (K7,)r. Let ¢ be the element of Kps which was
given in [5, p. 33]. 1 is nonnegative, and f(z)y(x) does not belong to L' for any
nonnegative continuous function f. Let F(z) = [y f(t)dt, and let S = &'’ (=), For
p € Kpr we define

(S, ) = /eiF(‘”)go(x)da:, for all p € Ky.

Since (S, )| < [|p(z)|dz, it follows that S € K),. Moreover, S € Ll . since it is
a bounded continuous function. For any ¢ € Kjs one has

‘/Sgodazg/

Thus S is absolutely regular. Let T" be the derivative of S. Since S is differentiable
as a function, namely S’ = if(z)e**'(®), its derivative in the sense of distributions
coincides with its derivative in the usual sense. We claim that S’ does not belong to
(K}y)ar, but S" is in (K},),. Indeed, it was shown in [5] that S’ is not in (K);)qr.

But on the other hand S’ is a bounded continuous function, hence T € L, .

eiF(z)(,O(.Z)‘ dz < /|g0(:1:)|d:t: < 0.

Definition 3. A sequence (¢r; k € N) in D is called an approximate unit
in Ky if the following conditions hold:

(i) limg oo, =1 in &
(i) The set {¢s:k € N} is bounded in B, i.e. for any o € N" there exists a
constant Cy, > 0 such that |D*¢y(z)| < Cq for all z in R™ and all k € N.
This definition is due to, Dierolf [2] who gave an example of such sequences.
Deirolf’s example was given for Schwartz space S of rapidly decreasing functions.

The same example do for Kj;. Moreover, limy,_, o, ¥ = @ in Ky for all ¢ in Ky,
Indeed, given any positive integer m, one has

V(i — ) = sup €M™ |D¥((4hy, — D)p(a)|

lo|<m
zeR™
<3 sup e M) DIy — 1)(x)] M) | D Pp(a)|
R
(1) -
<3 sup M) DOy —1)(a)| sup M) DA Fp()|
B<e foidm faZm

for some constant C;. Since the set {14; k € N} is bounded in B and e~M(m2)
goes to zero as x goes to infinity, it follows that the supremum on the right-hand
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side of (1) occurs when z is bounded. Thus we can find a compact subset K of R"
such that

sup e M (mz) |DP(yYr — 1)(z)| < sup e M) |DF(yhy, — 1)(x)|.
e e

Since limg 0o ¥ = 1 in &, from (1) it follows that
(2) vm((Wap =) < Csuppm | D7 (e = 1)(@)] = Clide = U 1
Since the right-hand side of (2) converges to zero as k goes to infinity, this

completes the proof of the claim.

The following theorem characterizes the elements of (K;)4r; it is a combina-
tion of Theorem 2 of [5] and Proposition 1.1 of [2].
THEOREM 1. Let f € L{,.. The following statements are equivalent:
(i) fis in (Kjy)ar;
(ii) There exists a positive integer k such that e~ M*2) f ¢ LY(R™);
(iii) The map ¢ — fo from Ky into L is continuous;
(iv) The map ¢ — fo from (K)o into L' is continuous;
(v) For every g € L*(R") the linear form

Acp—)/ (z)dx, p€ D

is continuous on D with the topology induced by Kpr.

Proof. We will prove the equivalence of (ii), (iii) and (v). For the proof of
the remaining statements see [5] and [7].

The implication (ii) = (iii). Let k be a positive integer such that
e—M(kz)f € It (Rn)

For any ¢ € K we have

/ \folde = / M) () e M=) | f()|de

3)
0) / e M=) | f(2)]dz < Cu(p).

Since K is bornologic the, inequality (3) implies that fo € L' and the
mapping ¢ — fo from K into L*(R") is continuous.

The implication (iii) = (v). Given g € L®(R"), for any ¢ € D it follows
form (iii) that

[ 9@ @@z < lgle [ 1f@lo@]da
< Cillglann(s) = Cn(o),
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which completes the proof of the implication.

The implication (v) = (ii). The proof is similar to the proof of the implication
(a) = (b) of Proposition 1.1 of [2] and is omitted.

The following theorem characterizes the space (K},), of regular distributions
in K.
THEOREM 2. Let f € L _(R"); the following statements are equivalent:
(1) f e Ky
(2) f*p €0, forall p € Ky;
(3) There exists an approzimate unit in Ky, (Yr; k € N), such that for all ¢ in
K the sequence ([g. f(2)Yr(z)p(z)dz; k € N) is convergent.

Proof. Equivalence of (1) and (2) follows from the structure theorem of
rapidly increasing distributions (Theorem A). Next we prove equivalence of (1)
and (3). Let the sequence (vg; k € N) be the approximate unit in Kps. For
every k € N one has ¢, € O, C Oy, where Oy is the space of multipliers
of Kp;. It was shown (after Definition 3) that ¢¥rp — ¢ in Ky for every
¢ € Ky. Hence ¢y — 1 in Op. Thus, for any f € (K},), the sequence
(Yrf) converges to f in K},;. Hence (¢rf,p) — (f,p) for all ¢ € Ky, ie.
(f,vrep) = [ f@)p(x)p(z)de — [ f(z)p(x)dz. Conversely, suppose that the
sequence ({fvr, ) = ([ f(z)yr(z)p(x)dr) converges for every ¢ € Kp. Define
(f, ) = limg oo (ftor,0), o € Kpr. Thus f is a well-defined linar functional on
K. Since K is bornologic, continuity of f is equivalent to sequential continuity.
Let (¢;; j € N) be a sequence in Kjs converging to O in K. Since ¢, — 1 in
O, it follows that 9rp; — ¢; uniformly in j. Thus

lim (f, ;) = lim lim (fyg,@;) = lim lm (f, ;) = lim lim (f, Yrep;).
j—oo j—o0 k—oo k—00 j—00 k—oc0 j—o0
On the other hand since f € L] _, one has for each fixed k
(fooed <[ I @@l @)
sup pyk
< sup |p;(z) |f(@)|[¢x(2)|dz < C) sup |p;(z)]-
zeR™ sup p¥ zeR™

Therefore

(4) lim; o0 (f,05) < limjo0 [(f, )] < limg oo Cr imj o0 SUD,ern |95 (2)]-
Since ¢; — O in K}, the right hand-side of (4) converges to zero. This
completes the proof of the theorem.

From theorems A and 2 it follows that every regular distribution in K}, is
the derivative (in the sense of distributions) of an absolutely regular distribution in
K},. This, together with the example following Definition 2 motivates the following
question. Is it true that the distributional derivative of every absolutely regular
distribution in K, is regular? The following proposition which gives an affirmative
answer to the question is due to S. Pilipovié. The proof which is provided here is
different from the one suggested by him.
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PROPOSITION 1. The derivative of every absolutely regular distribution in
K}, is regular.

Proof. Let u be any absolutely regular distribution in K}, and 3 any multi-
index. Since u € L] ., Theorem 2.3.1 of Hormander [3], integration by parts, and
induction on the order of the derivative imply that D?u is in LL . From part (b)

loc -

of Theorem A it follows that DPu is in K*,;. Thus DPu € (K';)ar-

Topologies of the spaces (K,), and (K),),

The structure theorems of (K},)qr and (K};), (Theorems 1 and 2 respec-
tively) suggest several topologies on these spaces. Both (K},)qr and (K},), are
contained in Kj; N L{ .. In each of those topologies for each of these spaces we
require continuity of the map f — (f, f) from (K};)ar or (K},), into K}y L} ..

We first start by considering topologies of the space (K;)q.. The first topol-
ogy 11 of (K};)qr is the one induced by B(K),; Kpr), the strong dual topology on
K}, i.e. the topology of uniform convergence on bounded subsets of Kys. Proper-
ty (i) of Theorem 1 suggests the inductive limit topology 7» defined by the union
Uken L' j,» where

L', = {f € (K};)ar such that e Mk f e 1}

provided with the topology generated by the norm ||f||_ = [e M*2)|f(z)|dz.
Property (iil) of the same theorem suggests the topology 73 induced by the space
L(K, LY) of continuous linear maps from K s into L' provided with the topology
of uniform convergence on bounded subsets of Kjs. Property (iv) of the same
theorem suggests the topology 74 induced by the space L((K )0, L) of continuous
linear maps from (K ;) into L' provided with the topology of uniform convergence
on bounded subsets of (Kjs).- We have the following

THEOREM 3. The topologies 71,72, 73 and 14 of (K);)ar satisfy the relation
1 <13 <74 <To.

Proof. 7 is weaker than 73: Let U(B°) = {f € (Kjipar:|{f,0)] <
1 for all ¢ € B}, where B is a bounded subset of Kjs, be a member of 0-
neighborhood base in 77. One can see easily that the set

V(B; |l ll1,1) ={f € (Kp)ar: Ifpll <1 forall ¢ € B},
is a member of 0-neighborhood base in 73, and is contained in U(B?).

T3 is weaker than 74: A member of 0-neighborhood base in 74 is of the form
W (Bi,m1) = {f € (Kjp)ar: [ |f] <1 forall ¢ in By}, where By is a bounded
subset of (K)o and rq is a positive real number. Let V(B, || ||1,5), where B is a
bounded subset of K s and s is a positive number, be a member of 0-neighborhood
base in 73. To prove the assertion it suffices to show that B is a bounded subset of
(Km)oo- Let Wy be a neighborhood of 0 in (Kar)eo. Without loss of generality we
can assume that W1 = {f € (Km)oo: qx(f) < €}, for some positive integer k£ and a
positive €. Let

Vi={¢ € Ky: sup ") |D*(z)] < e}.

la|<k
zeR™
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V1 is a member of 0-neighborhood base in the topology of Kjs. Since B is bounded
in Ky, it follows that there exists a positive number A such that AB C V; C Wjy.
Hence B is bounded in (K ps)oo-

74 is weaker than 75: Let W (Bj,r1) be any member of 0-neighborhood base
in 74. Let k be any positive integer. Since B; is bounded in (K)o, there exists a
positive constant C}, such that g;(6) < Cj for all § in By, i.e. |8(z)| < Cre Mk2)
for almost all . Let

VI T jon) = 1 € (Kl )ar: / =MD | £(2)|dz < 14 /C}.

It is clear that V(k,|| [l1,r/c,) is contained in W(By,r;) for all k. Hence
Ure: V(&I ll1,r/c,,) is contained in W (By,r1). Since without loss of generality
we can assume that W (By,r1) is convex, it follows that T(Uy—; V (K, |l1,r,/c,) is
contained in W(By,r1), where ' denotes the convex hull.

Next we study the topologies of (K},),. The first topology 75 is the topology
of (K,), induced by 8(K, Kar), the strong dual topology. The second topology 7.
is the topology induced by L(K s, O,) of uniform convergence on bounded subsets
of Kjr. A member of O-neighborhood base in 7. is of the form

V(B,U)={fe KyyNL.:f*oeU forall ¢ € B},

where B is a bounded subset of K and U is a neighborhood of 0 in O.. Without
loss of generality we can assume that U = (B.); the polar of B!, a bounded subset
of O.. We have the following

THEOREM 4. On (K},), the topologies s and 7. are equal.

Proof. We show first that 7. is weaker than 75. Let V(B,U) be a member of
0-neighborhood base in 7.. We have

V(B,U) = {f € KjLbe:|(f0,9)| = |(£,¢"S)| < 1, forall p € B and S € B}

where B is a bounded subset of K and B, is a bounded subset of O.. Since the
whole set

{p € Kp: the orbit {¢*S:S € B.} is bounded in Ky}

is of K s, which is of second category, it follows from the uniform boundedness
principle that the set L = {As: Ky — Ky As(p) = ¢*S, S € Bl} is equicon-
tinuous. Hence there exists a bounded subset By of Ky such that B x B! C Bs.
Thus B * B, is bounded in Kj;. Hence (B * B’)° is a member of 0-neighborhood
base in 7,. On the other hand we notice that V(B,U) = (B % B.)°, thus V(B,U)
is a member of 0-neighborhood base in 7.

Finally we show that 7, is weaker than 7. Let W(B) = (K},),NB°, where B
is a bounded subset of Ky, be a member of 0-neighborhood base in 75. It follows
immediatly that W (B) = V(B,{0}°) is a member of 0-neighborhood base in 7.
This completes the proof of the theorem.
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