ON NON-QUASIDIAGONAL OPERATORS - II

S. C. Arora and Shiv Kumar Sahdev*

Abstract. For any operator T on a Hilbert space, the properties of qd(T), the modulus of quasidiagonality are studied. The notion of extremely non-quasidiagonal operators is introduced and studied.

An operator T on a Hilbert Space H is said to be quasidiagonal if there exists an increasing sequence $\{P_n\}_{n=1}^{\infty}$ of finite rank orthogonal projections such that $P_n \to I$, the identity operator strongly and $||TP_n - P_nT|| \to 0$ as $n \to \infty$. The notion of quasidiagonality was introduced 1970 by Halmos [4]. Herrero [5] defined the notion of modulus of quasidiagonality $\operatorname{qd}(T)$ of any operator T on H as

$$\operatorname{qd}(T) = \lim_{P \in \mathcal{P}(H) \atop P \to I} \|TP - PT\| = \lim_{M \in \tau(H)} \|TP_M - P_M T\|,$$

where $\mathcal{P}(H)$ denotes the directed set of all finite rank (orthogonal) projections on H under the usual ordering, P_M denotes the projection on the closed linear subspace M of H and $\tau(H)$ is the collection of all finite-dimensional closed lenear subspaces of H. From [4, p. 902], it follows that T is quasidiagonal if and only if $\operatorname{qd}(T) = 0$. Herrero [5, Theorem 6.13] established that $\operatorname{qd}(T)$ is the distance of T from the class of all quasidiagonal operators on H. The purpose of the present paper is to study the properties of $\operatorname{qd}(T)$ and also to introduce and study the notion of extremely non-quasidiagonal operators.

Throughout the paper H denotes an infinite-dimensional complex separable Hilbert space and $\mathcal{B}(H)$, the set of all bounded linear operators on H. $\mathcal{K}(H)$ denotes the ideal of compact operators on H, and π the natural mapping of $\mathcal{B}(H)$ onto the quotient algebra $\mathcal{B}(H)/\mathcal{K}(H)$. The null space and the range of an operator T are denoted by N(T) and R(T) respectively.

AMS Subject Classification (1990): Primary 47 A 66; Secondary 47 A 30.

Keywords and Phrases: Quasidiagonal, non-quasidiagonal operators, spectral projections, polar decomposition of operators and modulus of quasidiagonality.

^{*}The research of the author is supported by CSIR(INDIA) SRF-Grant No. 9/45/708/92-EMIR-I.

- 1. THEOREM 1.1. Let T be in $\mathcal{B}(H)$ with ||T|| = 1, and for $0 \le \lambda \le 1$, let $E(\lambda)$ denote the spectral projection for $(T^*T)^{1/2}$ that corresponds to the interval $[0,\lambda]$. Then:
 - (i) If $0 \le \lambda_0 < 1/3$ and dim $R(E(\lambda_0)) = \aleph_0$, the cardinality of the set of natural numbers, then $qd(T) \le (3 \lambda_0)/4$.
 - (ii) If $1/3 \le \lambda_0 < 1$ and dim $R(E(\lambda_0)) = \aleph_0$, then $qd(T) \le (1 + \lambda_0)/2$.

Proof. (i) Let T = UA be the polar decomposition of T, where U is a partial isometry and A a positive operator. Since $E(\lambda_0)$ reduces A, we have $A = A_1 \oplus A_2$, with $A_1 \in \mathcal{B}((R(E(\lambda_0)))^{\perp})$ and $A_2 \in \mathcal{B}(R(E(\lambda_0)))$. Also both A_1 and A_2 are positive operators. The spectral theorem implies that $||A_2|| \leq \lambda_0$ and $\lambda_0 \leq A_1 \leq 1$.

Denote $V = U(I - E(\lambda_0))$; then V^*V is a projection and hence V is a partial isometry. Also $R(E(\lambda_0))$ is contained in N(V), and since the space H is separable, dim $R(E(\lambda_0)) = \aleph_0$ implies that dim $N(V) = N_0$, and therefore by [2, Theorem 5 (i)], we have $\operatorname{qd}(V) \leq 1/2$. Now

$$qd(T) = qd(V(1 + \lambda_0)/2 + UA - V(1 + \lambda_0)/2)$$

$$= qd(V(1 + \lambda_0)/2 + U(A - (1 + \lambda_0)/2 \cdot (I - E(\lambda_0))))$$

$$\leq qd(V(1 + \lambda_0)/2 + ||A - (1 + \lambda_0)/2 \cdot (I - E(\lambda_0))||$$

$$\leq (1 + \lambda_0)/4 + ||(A_1 - (1 + \lambda_0)/2) \oplus A_2||.$$

Since

$$||A_1 - (1 + \lambda_0)/2|| \le \sup_{\lambda_0 < \lambda < 1} ||\lambda - (1 + \lambda_0)/2|| = (1 - \lambda_0)/2,$$

and $||A_2|| \le \lambda_0 \le (1-\lambda_0)/2$, we have $qd(T) \le (1+\lambda_0)/4 + (1-\lambda_0)/2 = (3-\lambda_0)/4$.

(ii) Proceeding exactly as above, we have

$$qd(T) \le qd((1 - \lambda_0)V) + ||A - (1 - \lambda_0)(I - E(\lambda_0))||$$

$$\le (1 - \lambda_0)/2 + ||(A_1 - (1 - \lambda_0)) \oplus A_2||.$$

Since $||A_1 - (1 - \lambda_0)|| \le \sup_{\lambda_0 \le \lambda \le 1} ||\lambda - (1 - \lambda_0)|| \le \lambda_0$ and $||A_2|| \le \lambda_0$, we have $\operatorname{qd}(T) \le (1 - \lambda_0)/2 + \lambda_0 = (1 + \lambda_0)/2$.

COROLLARY 1.2. Let T be in $\mathcal{B}(H)$ with ||T|| = 1, and for $0 \le \lambda \le 1$, let $E(\lambda)$ denote the spectral projection for $(T^*T)^{1/2}$ that corresponds to the interval $[0, \lambda]$. Then, if qd(T) > 2/3, then there exists $\lambda > 1 - qd(T)$ such that $\dim R(E(\lambda)) < \aleph_0$.

Proof. Assume on the contrary that for each $\lambda > 1 - \operatorname{qd}(T)$, $\dim R(E(\lambda)) = \aleph_0$. Since $\operatorname{qd}(T) > 2/3$, we have $1 - \operatorname{qd}(T) < 1/3$, and therefore $\dim R(E(1/3)) = \aleph_0$. Theorem 1.1 (i) implies that $\operatorname{qd}(T) \le (1+1/3)/2 = 2/3$, which is impossible. Hence we have the result.

The following example shows that 2/3 is the best possible lower bound in Corollary 1.2.

Example 1.3. Let U be the unilateral shift of multiplicity one on H, and let $T = U \oplus -1/3$. An easy computation shows that T - 1/3 is bounded below

by 2/3. Also since the point spectrum of U^* is the interior of the unit disc, it follows that $\dim N((T-1/3)^*) \neq 0$. Therefore [1, Theorem 1.1] implies that $\operatorname{qd}(T) = \operatorname{qd}(T-1/3) \geq 2/3$. Now, when $\operatorname{qd}(T) = 2/3$, we have $1 - \operatorname{qd}(T) = 1/3$. Since $(T^*T)^{1/2} = I \oplus 1/3$, it follows that $\dim R(E(1/3)) = \aleph_0$. Hence for each $\lambda > 1/3$, $\dim R(E(\lambda)) = \aleph_0$. Since ||T|| = 1, this example shows that Corollary 1.2 cannot be extended beyond those operators for which $\operatorname{qd}(T) > 2/3||T||$.

Remark. If $0 < \epsilon \le 2/3$, then we can see that there exists a Fredholm operator T_{ϵ} in $\mathcal{B}(H \oplus H)$ such that $||T_{\epsilon}|| = 1$, the index of T_{ϵ} is negative and $\mathrm{qd}(T_{\epsilon}) = \epsilon$. For example, if V is the unilateral shift of multiplicity one in $\mathcal{B}(H)$, then we may let T_{ϵ} to be the operator in $\mathcal{B}(H \oplus H)$ whose matrix is given by

$$T_{\epsilon} = \begin{bmatrix} 0 & V \\ \epsilon & 0 \end{bmatrix}$$

Also, if $1/2 < \epsilon \le 2/3$, then since $(T_{\epsilon}^*T_{\epsilon})^{1/2} = \epsilon \oplus I$, there exists $\lambda > 1 - \operatorname{qd}(T_{\epsilon})$ such that dim $R(E(\lambda)) < \aleph_0$. This proves that the converse of Corollary 1.2 is false.

2. In general for any operator T on H, $0 \le \operatorname{qd}(T) \le ||T||$. Motivated by this in this section we introduce and study the extremal case of non-quasidiagonality.

Definition. An operator T on H is called extremely non-quasidiagonal if there exists $M \in \tau(H)$ such that for any $N \supset M$, $N \in \tau(H)$, the equality

$$||TP_N - P_N T|| = ||T||$$

holds.

Example 2.1. The unilateral shift of multiplicity one is extremely non-quasidiagonal. In fact, every nonunitary isometry is extremely non-quasidiagonal.

Remark. In [2, Theorem 7] we have proved that, if T is an operator on H with finite-dimensional null space, then the following are equivalent:

- (i) $qd(T) = ||\pi(T)||$
- (ii) $T = ||\pi(T)||V + K$, where V is a non-unitary isometry and K is compact.

Hence, if T is extremely non-quasidiagonal operator with finite-dimensional null-space, then $\operatorname{qd}(T) = \|T\| \geq \|\pi(T)\|$. Also since by [2, Theorem 1], we have $\operatorname{qd}(T) \leq \|\pi(T)\|$, it follows that $\operatorname{qd}(T) = \|\pi(T)\|$. Therefore [2, Theorem 7] implies that $T = \|T\|V + K$, with V a non-unitary isometry and K compact. We show here that K can be chosen to be of finite rank.

THEOREM 2.2. Let $T \in \mathcal{B}(H)$ be extremely non-quasidiagonal with ||T|| = 1, and let $M \in \tau(H)$ such that $||TP_N - P_NT|| = 1$, for every $N \in \tau(H)$, $N \supset M$. Then we have $R(I - T^*T) \in \tau(H)$ and $\dim R(I - T^*T) < \dim M$.

Proof. Let $\{e_j\}_{j=1}^n$ be an orthonormal basis in M such that $\{e_j\}_{j=1}^p$ is a basis of the subspace $M_0 = \{x \in M : \|(I - P_M)Tx\| = \|x\|\}$. By the hypothesis we can find a unit vector x in M such that $\|x\| = \|(TP_M - P_MT)x\| = \|(I - P_M)Tx\|$, and therefore $M_0 \neq \{0\}$. Also,

$$M_0 \subset \{x \in H : ||Tx|| = ||x||\} = N(I - T^*T).$$

Therefore, if any x belongs to $(N(I-T^*T))^{\perp}$, then $\langle e_j, x \rangle = 0$, $1 \leq j \leq p$. Set $k = \dim R(I-T^*T)$, $n = \dim M$, and assume that $k \geq n$. We can find an orthonormal system $\{f_j\}_{j=1}^p \subset (N(I-T^*T))^{\perp}$ such that $\langle f_j, e_i \rangle = 0$ for $1 \leq j \leq p$, p < i. As f_j belongs to $(N(I-T^*T))^{\perp}$, it follows that $\langle f_j, e_i \rangle = 0$ for $1 \leq j \leq p$, $1 \leq i \leq n$. Denote $g_j(\lambda) = Te_j + \lambda f_j$, $1 \leq j \leq p$, and if $L(\lambda)$ is the subspace generated by M and $\{g_j(\lambda)\}_{j=1}^p$, then $L(\lambda) \in \tau(H)$ and also by the hypothesis we can find $x(\lambda)$ in $L(\lambda)$ with $||x(\lambda)|| = 1$ and

$$||(I - P_{L(\lambda)})Tx(\lambda)|| = ||x(\lambda)|| = 1.$$

This implies that $||Tx(\lambda)|| = 1$, and hence $x(\lambda)$ belongs to

$$N(I - T^*T), \quad P_{L(\lambda)}Tx(\lambda) = 0.$$

Write

$$x(\lambda) = \sum_{j=1}^{n} \alpha_j e_j + \sum_{j=1}^{p} \beta_j g_j(\lambda),$$

and choose λ such that

$$\det[\langle Te_i, f_j \rangle + \lambda \delta_{ij}]_{i,j=1}^p \neq 0,$$

$$\det[\bar{\lambda} \langle Te_i, f_j \rangle + \delta_{ij}]_{i,j=1}^p \neq 0,$$

then we first obtain that

$$\sum_{i=1}^{p} \beta_i(\langle Te_i, f_j \rangle + \lambda \delta_{ij}) = \langle x(\lambda), f_j \rangle = 0, 1 \le j \le p.$$

This implies that $\beta_i = 0, 1 \leq i \leq p$, and hence $x(\lambda)$ belongs to $M \cap N(I - T^*T)$. Since $L(\lambda)^{\perp} \subset M^{\perp}$, we can get even more: that $x(\lambda)$ also belongs to M_0 . Therefore, $x(\lambda) = \sum_{i=1}^p \alpha_i e_i$. Now using the relation $P_{L(\lambda)} T x(\lambda) = 0$, we obtain that

$$\sum_{i=1}^{p} \alpha_i(\bar{\lambda}\langle Te_i, f_j\rangle + \delta_{ij}) = \langle Tx(\lambda), q_j(\lambda)\rangle = 0, \quad 1 \le j \le p.$$

Thus, $\alpha_i = 0, 1 \le i \le p$, that is $x(\lambda) = 0$, which is a contradiction to the fact that $\|(I - P_{L(\lambda)})Tx(\lambda)\| = 1 = \|x(\lambda)\|$. Therefore our assumption that $k \ge n$ is wrong, and hence k < n.

Theorem 2.3. Let T be in $\mathcal{B}(H)$ with $\|T\|=1.$ Then the following are equivalent

- (i) T is extremely non-quasidiagonal, (ii) dim $R(I-T^*T) < \dim R(I-TT^*)$,
- (iii) T = V + K, with V a non-unitary isometry and K a finite rank operator.

Proof. Let T=UA be the polar decomposition of T and let E be the spectral measure of A. Then we have

$$M = R(I - T^*T) = N(T) + R(E((0, 1))),$$

$$N = R(I - TT^*) = N(T^*) + R(UE((0, 1))U^*)$$

$$\dim R(E((0,1))) = \dim R(UE((0,1))U^*) = \gamma$$
 (say).

(i) \Rightarrow (ii) If T is extremely non-quasidiagonal operator, we have by Theorem 2.2 that $\gamma \leq \dim M < \aleph_0$ and since $\operatorname{qd}(T) = \|T\| > \|T\|/2$, [2, Theorem 2] implies that T is not invertible. Therefore, using the fact that $\dim N(T) < \aleph_0$ and T is non-invertible, we get that $\dim N(T) < \dim N(T^*)$. Thus,

$$\dim M = \dim N(T) + \gamma < \dim N(T^*) + \gamma = \dim N.$$

(ii) \Rightarrow (iii) If dim $M < \dim N$, we have $\gamma \leq \dim M < \aleph_0$, whence

$$\dim N(U) = \dim N(T) < \dim N(T^*) = \dim N(U^*).$$

Let U_0 be a finite rank partial isometry such that $R(U_0^*U_0) = N(U)$ and $R(U_0U_0^*) \subset N(U^*)$. Then $V = U + U_0$ is a non-unitary isometry.

Also,
$$T = VA = V + V(I - A) = V + K$$
, with $K = V(I - A)$. But $\dim R(K) = \dim R(I - A) = \dim R((I + A)(I - A))$
= $\dim R(I - A^2) = \dim R(I - T^*T) < \aleph_0$.

Thus K has finite rank.

(iii) \Rightarrow (i) Let T = V + K, with V a non-unitary isometry and K a finite rank operator. Choose $e \in N(V^*)$, $e \neq 0$ and denote by M the subspace generated by e and R(K). Then we obtain that $M \in \tau(H)$ and also

$$||(V + K)P_N - P_N(V + K)|| = ||VP_N - P_NV|| = 1,$$

for every $N \in \tau(H)$, $N \supset M$ (see [3, Theorem 3]). This shows that T is extremely non-quasidiagonal operator.

Acknowledgement. The authors are extremely thankful to Prof. B. S. Yadav for his help in preparation of the paper.

REFERENCES

- S. C. Arora and S. K. Sahdev, On quasidiagonal operators II, J. Indian Math. Soc., 59 (1993), no 1-4, 159-166.
- $2. \ \, S.\ \, C.\ \, Arora\ and\ \, S.\ \, K.\ \, Sahdev,\ \, \textit{Some estimates for the modulus of quasidiagonality},\ \, preprint.$
- 3. P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283-293.
- 4. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
- D. A. Herrero, Quasitriangularity, Approximation of Hilbert Space Operators, Vol. I, Research Notes in Math., 72, Pitman, Boston-London-Melbourne, 1982, pp. 135-167.

Department of Mathematics University of Delhi Delhi - 110 007 India (Received 15 04 1993)