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ON NON-QUASIDIAGONAL OPERATORS - II

S. C. Arora and Shiv Kumar Sahdev*

Abstract. For any operator T on a Hilbert space, the properties of qd(7"), the modulus of
quasidiagonality are studied. The notion of extremely non-quasidiagonal operators is introduced
and studied.

An operator T on a Hilbert Space H is said to be quasidiagonal if there
exists an increasing sequence {P,}32; of finite rank orthogonal projections such
that P,, — I, the identity operator strongly and ||T'P,, — P, T'|| — 0 as n — co. The
notion of quasidiagonality was introduced 1970 by Halmos [4]. Herrero [5] defined
the notion of modulus of quasidiagonality qd(T) of any operator T on H as

q(T) = lm |TP—PT|= lim |[TPy - PyTI,
PeP

(H) MeT(H)
P—I

where P(H) denotes the directed set of all finite rank (orthogonal) projections on H
under the usual ordering, Pys denotes the projection on the closed linear subspace
M of H and 7(H) is the collection of all finite-dimensional closed lenear subspaces
of H. From [4, p. 902 ], it follows that T is quasidiagonal if and only if qd(T") = 0.
Herrero [5, Theorem 6.13 ] established that qd(7') is the distance of T' from the class
of all quasidiagonal operators on H. The purpose of the present paper is to study
the properties of qd(T") and also to introduce and study the notion of extremely
non-quasidiagonal operators.

Throughout the paper H denotes an infinite-dimensional complex separable
Hilbert space and B(H), the set of all bounded linear operators on H. KX (H) denotes
the ideal of compact operators on H, and m the natural mapping of B(H) onto the
quotient algebra B(H)/K(H). The null space and the range of an operator T' are
denoted by N(T') and R(T') respectively.
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1. THEOREM 1.1. Let T be in B(H) with ||T]| =1, and for 0 < X\ < 1, let
E(\) denote the spectral projection for (T*T)'/? that corresponds to the interval
[0,A]. Then:

(1) If 0 < Ag < 1/3 and dim R(E(Xg)) = N, the cardinality of the set of natural

numbers, then qd(T) < (3 — A\g)/4.

(i) If1/3 <X <1 and dim R(E(Xo)) = o, then qd(T) < (14 Xo)/2.

Proof. (i) Let T = U A be the polar decomposition of T', where U is a partial

isometry and A a positive operator. Since E(Ag) reduces A, we have A = A; @ A,,

with 4; € B((R(E(X)))t) and As € B(R(E(X))). Also both 4; and A, are
positive operators. The spectral theorem implies that [|Az]| < Ag and Mg < A3 < 1.

Denote V = U(I — E()\g)); then V*V is a projection and hence V is a par-
tial isometry. Also R(E(Xo)) is contained in N(V), and since the space H is
separable, dim R(E(Xo)) = N¢ implies that dim N(V) = Ny, and therefore by [2,
Theorem 5 (i)], we have qd(V) < 1/2. Now

ad(T) =aqd(V(1+ X)/2+UA -V (1+ X)/2)
=qd(V(14+ X)/24+U(A - (14 X)/2-(I—E(N))))
<qd(V(1+X)/2+ |4 = (1+ X)/2- (I = E(M))l
< I+ 20)/4+[[(Ar = (1+X0)/2) ® 4.
Since
|41 = (1 + X0)/2(] < Supro<azt [ A= (1 + X)/2 = (1= X)/2,

and [|Az2|| < Ao < (1—X0)/2, we have qd(T) < (14 Xo)/4+(1—X0)/2 = (3—X0)/4.
(ii) Proceeding exactly as above, we have

qd(T) < qd((1 = A)V) + [[A = (1 = Xo)(I — E(Xo))l
< (1 =X0)/2+ [[(A1 = (1 = Qo)) @ A2

Since [|A; — (1 — Xo)|| < Suprg<a<i | A — (1= Xo) |< Ao and [|42]| < Ao, we
have qd(T) < (1 — Xo)/24+ o = (1 + Xo)/2.

COROLLARY 1.2. LetT be in B(H) with ||T|| =1, and for0 < XA <1, let E()\)
denote the spectral projection for (T*T)'/? that corresponds to the interval [0, \].
Then, if qd(T') > 2/3, then there exists A > 1 —qd(T') such that dim R(E()\)) < No.

Proof. Assume on the contrary that for each A > 1 — qd(7"), dim R(E()\)) =
No. Since qd(T") > 2/3, we have 1 — qd(T") < 1/3, and therefore dim R(E(1/3)) =
Ng. Theorem 1.1 (i) implies that qd(7") < (1 +1/3)/2 = 2/3, which is impossible.
Hence we have the result.

The following example shows that 2/3 is the best possible lower bound in
Corollary 1.2.

Example 1.3. Let U be the unilateral shift of multiplicity one on H, and
let T = U @ —1/3. An easy computation shows that T'— 1/3 is bounded below
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by 2/3. Also since the point spectrum of U* is the interior of the unit disc, it
follows that dim N((T' — 1/3)*) # 0. Therefore [1, Theorem 1.1] implies that
qd(T) = qd(T —1/3) > 2/3. Now, when qd(T") = 2/3, we have 1 — qd(T) = 1/3.
Since (T*T)'/? = I ® 1/3, it follows that dim R(E(1/3)) = No. Hence for each
A > 1/3, dim R(E()\)) = Ng. Since ||T|| = 1, this example shows that Corollary 1.2
cannot be extended beyond those operators for which qd(T") > 2/3||T|.

Remark. If 0 < € < 2/3, then we can see that there exists a Fredholm
operator T, in B(H @ H) such that ||T|| = 1, the index of T, is negative and
qd(T,) = €. For example, if V is the unilateral shift of multiplicity one in B(H),
then we may let T, to be the operator in B(H & H) whose matrix is given by

T, = [0 V]
€ 0
Also, if 1/2 < € < 2/3, then since (T*T,)'/? = € ® I, there exists A > 1 — qd(T%)
such that dim R(E(A)) < Rg. This proves that the converse of Corollary 1.2 is false.

2. In general for any operator T' on H, 0 < qd(T") < ||T||- Motivated by this
in this section we introduce and study the extremal case of non-quasidiagonality.

Definition. An operator T on H is called extremely non-quasidiagonal if there
exists M € 7(H) such that for any N D M, N € 7(H), the equality

|TPNx — PNT|| = ||T||

holds.

Example 2.1. The unilateral shift of multiplicity one is extremely non-
quasidiagonal. In fact, every nonunitary isometry is extremely non-quasidiagonal.

Remark. 1In [2, Theorem 7] we have proved that, if T is an operator on H
with finite-dimensional null space, then the following are equivalent:

(i) qd(T) = [l=(T)I|
(ii) T = ||=(D)||V + K, where V is a non-unitary isometry and K is compact.

Hence, if T is extremely non-quasidiagonal operator with finite-dimensional
null-space, then qd(T") = ||T|| > ||=(T)||- Also since by [2, Theorem 1], we have
qd(T) < ||=(T)]l, it follows that qd(T) = ||w(T)||. Therefore [2, Theorem 7] implies
that T' = ||T'||V + K, with V' a non-unitary isometry and K compact. We show
here that K can be chosen to be of finite rank.

THEOREM 2.2. LetT € B(H) be extremely non-quasidiagonal with ||T|| = 1,
and let M € 7(H) such that ||TPy — PNT|| = 1, for every N € 7(H), N D M.
Then we have R(I —T*T) € 7(H) and dim R(I — T*T) < dim M.

Proof. Let {e;},;”, be an orthonormal basis in M such that {e;}]_; is a
basis of the subspace My = {z € M : ||(I — Py)Tz|| = ||z||}. By the hypothesis we
can find a unit vector z in M such that ||z|| = ||(T Py — PuT)z|| = ||(I — Pp)Tx||,
and therefore My # {0}. Also,

My C {z € H:|[Tz|| = ||z||} = N(I - T*T).
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Therefore, if any z belongs to (N(I — T*T))*, then {ej,z) = 0, 1 < j < p. Set
k= dimR(I — T*T), n = dim M, and assume that ¥ > n. We can find an
orthonormal system {f;}7_; C (N(I —T*T))" such that (f;,e;) = 0for 1 < j <p,
p <i. As f; belongs to (N(I — T*T))*, it follows that (fj,e;) =0 for 1 < j < p,
1 < i < n. Denote g;(A) = Tej + Afj, 1 < j < p, and if L()\) is the subspace
generated by M and {g;(\)},2,, then L()) € 7(H) and also by the hypothesis we
can find z(A) in L(X) with [|z(A)|| = 1 and

(T = PLoy)TaN)] = [[z(M)]] = 1.
This implies that ||Tz())|| = 1, and hence x(A) belongs to

N(I=T*T), PyTz(}) =0.
Write

n P
N = ajei+ Y Big; (V)
j=1 j=1
and choose A such that
det[{Te;, f3) + My} j—=1 # 0,
det[MTe;, f;) + 5,]]” 1 #0,
then we first obtain that

P
Zﬂi((Tei,fj) + i) = (=(A), f;) = 0,1 <j <p.
i=1
This implies that 8; = 0, 1 < i < p, and hence z(A) belongs to M N N(I — T*T).
Since L(A\)* € M~ we can get even more: that z()) also belongs to My. Therefore,
z(A) = Y7, aje;. Now using the relation Pp()Tz(\) = 0, we obtain that

Zaz Tez:f] + 61]) ( ()‘)7(17'(/\)) =0, 1<j<p

Thus, a; =0, 1 < i < p, that is £(A\) = 0, which is a contradiction to the fact that
(I = Ppoxy))Tz(N)|| = 1 = [|z(A)[|. Therefore our assumption that k& > n is wrong,
and hence k < n.

THEOREM 2.3. Let T be in B(H) with ||T|| = 1. Then the following are
equivalent

(i) T is extremely non-quasidiagonal, (i) dim R(I — T*T) < dim R(I — TT*),
(iii) T =V + K, with V a non-unitary isometry and K a finite rank operator.

Proof. Let T = U A be the polar decomposition of T and let E be the spectral
measure of A. Then we have

M =R(I — T*T) = N(T) + R(E((0,1))),
N =R(I - TT*) = N(T*) + R(UE((0,1))U*)
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dim R(E((0,1))) = dim RUUE((0,1))U*) = (say).

(i) = (ii) If T is extremely non-quasidiagonal operator, we have by Theorem
2.2 that v < dim M < R and since qd(T") = ||T|| > [|T||/2, [2, Theorem 2] implies
that T is not invertible. Therefore, using the fact that dim N(T') < No and T is
non-invertible, we get that dim N(T") < dim N(7"*). Thus,

dimM =dim N(T) + v < dim N(T*) + v = dim N.
(if) = (iii) If dim M < dim N, we have v < dim M < Ry, whence
dim N(U) = dim N(T) < dim N(T*) = dim N (U*).
Let Uy be a finite rank partial isometry such that R(UiUs) = N(U) and R(UpU§) C
N(U*). Then V =U + Uy is a non-unitary isometry.
Also, T=VA=V +V({I-A)=V+ K, with K=V (I - A). But
dim R(K) =dim R(I — A) =dim R((I + A)(I — A))
=dim R(I — A?) = dim R(I — T*T) < Ro.
Thus K has finite rank.

(ifi) = (i) Let T = V + K, with V' a non-unitary isometry and K a finite
rank operator. Choose e € N(V*), e # 0 and denote by M the subspace generated
by e and R(K). Then we obtain that M € 7(H) and also

||(V+K)PN —PN(V+K)|| = ||VPN —PNV” =1,

for every N € 7(H), N D M (see [3, Theorem 3]). This shows that T is extremely
non-quasidiagonal operator.
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