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SPACES WITH EXCEPTIONAL FUNDAMENTAL GROUPS

Boris A. Rosenfeld

Abstract. The geometric interpretations of all real exceptional simple Lie groups of classes
G2, F4,FEe,E7 and Eg are described. In particular, we describe the interpretations of the four
last classes as groups of motions of elliptic and hyperbolic planes over algebras of octaves and
split octaves and over tensor products of them and algebras of usual and split complex numbers,
quaternions and octaves. The explicite expressions of motions of these planes are found. The
symmetry figures and parabolic figures of all considered spaces and geometric interpretations of
all fundamental linear representations of real exceptional simple Lie groups are found.

1. Spaces with classical fundamental groups

The geometric meaning of the complex simple Lie groups of the infinite series
Ay, Bp, Cp, Dy, (7 classical simple Lie groups”) was well known to the founder of the
theory of these groups Sophus Lie. Lie knew that: the groups A, are the groups
of collineations of the complex projective n-spaces CP"™, the groups B, are the
groups of motions of the complex non-Euclidean 2n-spaces CS?™, the groups C,
are the groups of symplectic transformations of the complex symplectic (2n — 1)-
spaces CSy?"~!, and the groups D,, are the groups of motions of the complex non-
Euclidean (2n — 1)-spaces CS?"~!. The spaces CS" are the spaces CP" in which
the quadrics 3, (z%)? = 0 are given; the motions of these spaces are the collineations
preserving these quadrics called the absolutes of these spaces; the spaces CSy?"~!
are the spaces CP?"~! in which the linear complex of lines ), p?»?*1 = 0 is
given (p¥ = ziy? —y'zd are the Pliickerian coordinates of the lines), the symplectic
transformations are collineations preserving this linear complex, defined just as the
spaces CS?™. All complex simple Lie groups were found by Killing [1888-1890] and
by Cartan [1894].

All real simple Lie groups were found by Cartan [1914]. The geometric mean-
ing of some of these groups was known in 19th century: certain non-compact real
groups A, and C), are the groups of collineations of the real projective spaces P"
and the groups of symplectic transformations of the real symplectic spaces Sy>"~!
defined just as the complex ones; the compact real groups B,, and D,, are the groups
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of motions of elliptic spaces S?* and $2"~! with imaginary absolutes having the
same equations as the absolutes of the complex non-Euclidean spaces. It was also
known that the non-compact real groups B,, and D,, are the groups of motions of
hyperbolic (Lobachevskian) spaces H?™ and H*"~! whose absolutes are real oval
quadrics, and that the compact real groups A, are the groups of motions of complex
Hermitian elliptic spaces CS™ defined by Study [1905]. The spaces CS™ are the
spaces CP"™ in which the absolute is an imaginary Hermitian quadric ), Fiz!; the
motions of this space are the collineations preserving this absolute. Study [1905]
also defined the complex Hermitian hyperbolic spaces CH™ whose group of motions
is a non-compact real group of the same class.

The geometric interpretations of many real simple Lie groups were found
by Cartan in his extended translation [1915] of Fano’s paper in the Encyclopae-
dia of mathematical sciences, the first 21 pages of which were published in 1914,
but the whole paper was not published then because of World War I and was
published only in Cartans Collected works in 1955. Some results of this paper
were published in Cartan [1931] and in some Cartan’s papers. The non-compact
real groups B, and D,, besides the groups of motions of H?" and H2?"!, are
the groups of motions of real pseudo-elliptic and pseudo-hyperbolic spaces Sf”,
Sgrt, HP™ and HP™ ' whose absolutes are quadrics — Y (%)% + 3 ,(z)? = 0
(1 < a < 1 for pseudo-elliptic spaces and 1 < a <[ for pseudo-hyperbolic spaces)
and the groups of symplectic transformations of the quaternion Hermitian sym-
plectic spaces HSy™ 1, that is the spaces HP™ ! in which the absolute > Tzt is
given. The non-compact real groups A,, besides the groups of collineations of P,
and the groups of motions of CH™, are the groups of motions of complex Hermitian
pseudo-elliptic and pseudo-hyperbolic spaces CS’Z" and CFIZ” whose absolutes are
Hermitian quadrics — ), %%+, 72" =0 (1 <a<land1 < a < respective-
ly) and the groups of collineations of quaternion projective spaces HP(™1/2 The
compact real groups C,,, as Cartan [1927] established, are the groups of motions
of quaternion Hermitian elliptic spaces HS™ ! defined just as the spaces CS™~!
(earlier Cartan used more complicated geometric interpretations of these groups by
means of the spaces CS?"~! with linear complex. This interpretation is equiva-
lent to the interpretation of HS™ by the paratactic congruence of lines in CS?n+1
analogous to the interpretation of CS™ by the paratactic congruence of lines in
S2n+1)_

These compact groups are often called ”unitary symplectic groups” or ”qua-
ternion symplectic groups”. The non-compact real groups C,,, besides the groups of
symplectic transfomations of Sy??~!, are the groups of motions of quaternion Her-
mitian hyperbolic, pseudo-elliptic and pseudo-hyperbolic spaces HH™ 1, HS’I"_1
and HA"" defined just as spaces CH™!, CS/' and CH;""'. The names and
notations of pseudo-elliptic and pseudo-hyperbolic spaces are used by Wolf [1984].
The geometry of all these spaces except HSy™ were described in author’s book
[1955]. The spaces HSy™ were described by Rumyanceva [1963a] (let us note that
the spaces S;* and H} ; have the same absolute but the curvature of the first and
second spaces is positive and negative respectively).
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Fig. 1. Dynkin diagrams for classical groups A, Bn, Cpn, Dy

The complex, compact and split real simple Lie groups are characterized by
Dynkin diagrams (Fig. 1) whose dots represent the simple roots of these groups (all
these roots for compact real groups are purely imaginary; for split groups all these
roots are real). The non-compact and non-split simple Lie groups are characterized
by Satake diagrams (Fig. 2), whose white dots represent the real simple roots of
these groups, while the black dots represent their purely imaginary simple roots,
and the white dots which are joined by double arrows represent their conjugate
imaginary simple roots.

2. Isomorphisms of the classical groups

In the papers mentioned above Killing and Cartan found also the isomor-
phisms between complex and real simple groups Ay = By = Cy, Dy = A; x Ay,
By = C5 and A3 = D3 and all their geometric interpretations (Cartan [1915] called
the geometries with isomorphic groups equivalent geometries).

Let us note that the compact real group C} is the group of automorphisms of
the skew field H of quaternions. The Dynkin and Satake diagrams of the isomorphic
groups are similar (Fig. 3 and 4). The isomorphisms 4; = By and By = C3 are
connected with isometries of lines CS' and HS! to the spheres of the Euclidean
spaces R® and R® respectively.

Let us note also that if we replace in the definition of the space CS™ the field
C by the algebra C' of split complex numbers a + be, where a, b are real numbers,
€2 = +1 (this algebra is isomorphic to the direct sum R @ R of two fields R of real
numbers), then we obtain the space C'S™ whose group of motions is isomorphic to
the group of collineations of P™ (the space C'S™ admits interpretation as manifold
of pairs point+hyperplane of P".

If in the definitions of the spaces HP™, HS™ and HSy" we replace the field
H by the algebra H' of split quaternions a + bi + ce + df , where a, b, ¢, d are real
numbers, i2 = —1, €2 = +1, ie = —ei = f (this algebra is isomorphic to the algebra
R, of real 2-matrices), then we obtain the spaces H'P", H'S™ and H'Sy™ whose
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Fig. 2. Satake diagrams for classical groups A, By, Cpn, Dy,
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fundamental groups are isomorphic to the groups of collineations of P27+1 ) to
the groups of symplectic transformations of Sy?"*+! and to the gruop of motions of
S27+1 respectively (these split quaternion spaces admit interpretations as manifolds

of lines of real spaces).
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If in the definitions of the spaces CS™ and HS™ we replace the fields C and
H by the tensor products C ® C, C ® H and H ® H, then we obtain the spaces
(C® )3, (C®H)S and (H® H)S investigated by Abbasov [1962, 1963]
and Rumyanceva [1963b]. The equations of absolutes of the elliptic spaces over
tensor products of fields have the form Y, Z'z = 0, where the involution z — &
consists of the involutions £ — Z and £ — Z in both tensor factors. Abbasov and
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Rumyanceva proved that the groups of motions of these spaces are isomorphic to
the direct products of two groups of motions of CS™ and to the groups of motions
of CS2"*! and §%"*3 respectively, and that these spaces admit interpretations as
manifolds of pairs of points of two CS™, of lines of CS?*+! and of 3-planes of §4"+3
respectively.

3. Octave planes

As was shown by Killing [1888-1890] and Cartan [1894], besides the infinite
series A, By, Cp, D, there are 5 classes of exceptional complex simple Lie groups
G2, Fu, Eg, E; and Eg. Cartan [1914] found all the real simple Lie groups of these
classes and showed that the compact real group G is the group of automorphisms
of the alternative skew field O of octaves (Cayley numbers). The geometric mean-
ing of the remaining exceptional Lie groups was for a long time a riddle for the
matematicians.

Borel [1950] and Freudenthal [1951] proved that the compact real group Fj is
the group of motions of the octave Hermitian elliptic plane OS? and that one of the
non-compact real groups FEs is the group of collineations of the octave projective
plane OP? investigated by Moufang [1939] and Hirsch [1949]. Borel defined the
planes OP? and OS? by means of topological methods, Freudenthal by means of
algebraic methods. Tits [1956] proved that one of the non-compact real groups Fy
is the group of motions of octave Hermitian hyperbolic plane O H?2.

In the cases of the spaces P", CP"™, C'P", HP"™ and H' P™ over the associa-
tive fields and algebras the points of these spaces are characterized by coordinates
z! defined up to the multiciplation ¢ — z*), where X is non-zero element of the
fields R, C, H, and algebras C' and H' and in the two last cases the multiplier A
must not be a zero divisor. But in the case of the plane OP? and the analogous
plane O'P? over the alternative algebra O' of split octaves (having the common
complex form with field O) this is impossible since (zi\)u # 2*(Au). Therefore
Freudenthal used for definition of the plane OP2? the Jordan algebra Js of octave
3-matrices (%) for which 2 = 27" and z¥ 2% = 2972z All elements of these
matrices are from an associative subfield of the alternative field O, since all a® are
real. These associative subfields are isomorphic to the fields H, C or R. Therefore
the points of the plane OP? can be defined by three coordinates z°, ', 22 from
an associative subfield of O connected with elements %/ of 3-matrices (%) of J3
by relations % = F'z’/. The coordinates of points of the plane O'P? are defined
analogously. The absolutes of the planes 05? and O'S? are Hermitian conics with
equations Z°z° + z'z! + Z222 = 0, the absolute of the plane OH? is a Hermitian
conic with equation —z%z° + z'z' + 2222 = 0.

The collineations in the spaces over associative fields and algebras have the

form 'z’ = Y. al f(27), where al and z; are arbitrary elements of a field or of
an algebra and x — f(z) is an automorphism of this field or algebra. In the
spaces over non-associative fields and algebras the collineations have the analogous

i X ; ; s .
form 'z* = )7, a;f(2’?) where the elements z7 are from an associative subfield or
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subalgebra. Here the elements a{ are arbitrary elements of a field or of an algebra,
r — f(z) is an automorphism of this field or algebra and the operation z — & is
a "projection” of the element x onto the associative subfield or subalgebra. This
?projection” for the field O and its subfield H is defined as follows: in the field
O there is an automorphism z — Z preserving the subfield H, for instance for
a =ag+ayi+asj+ask + aql + asp+ agq + a;r we have a — a = ag + ari +asj +
ask — asl — asp — agq — arr and £ = (x + 2)/2. In other cases this ”projection”
is defined analogously. The motions of the planes OS2, OH? and O’S? are the
collineations of the planes OP? and O'P? preserving the absolutes. Therefore the
Lie algebras of the groups of collineations of planes OP? and O'P? are direct sums
of the sets of 3-matrices (a;;) of the algebras O3 or Of over the field O or over
the algebra O’ satisfying one condition agp + a11 + a2 = 0 and of Lie algebras
of the groups of automorphisms of the field O or of the algebra O’; these groups
of automorphisms are compact and split groups G, respectively. Analogously, the
groups of motions of elliptic planes OS2 and O'S? are the direct sums of the sets
of 3-matrices (a;;) of algebras O3 or O} satisfying the conditions a;; = —aj; and
ago + a11 + ase = 0 and of Lie algebras of groups of automorphisms of the field O
or of the algebra O’, and the Lie algebra of the group of motions of the plane O H?
is the direct sum of the sets of 3-matrices (a;;) of the algebra Os satisfying the
conditions Qi; = —Qj;EE; (Eo =—-1l,e1 =gy = 1) and —agg + a11 + azs = 0 and of
Lie algebras of the groups of automorphisms of the field O. Therefore in the case of
the groups Fy the dimension of these Lie algebrasis 8 +8+8+7+7+14 = 52, and
in the case of the groups Eg the dimension of these Lie algebras is 8 -8 + 14 = 78.
These numbers (52 and 78) coincide with the dimensions of the groups Fy and FEjs.

Let us note that the plane OS? is compact symmetric Riemannian space V16
which is the irreducible symmetric space FII according to Cartan [1926-1927]. The
lines of this plane are isometric to spheres of R?. The plane OH? is divided by
its absolute into two domains, one of which is non-compact Riemannian symmetric
space V16, and the other is pseudo-Riemannian symmetric space Vi'6. The plane
0'S5? is divided by its absolute into two domains which are the pseudo-Riemannian
symmetric spaces Vg®. All these symmetric spaces are spaces of rank 1. The
isotropy groups of these spaces (the groups of rotations around their points) are
locally isomorphic to the groups of motions of lines OS', OH! and O'S!, that is to
the groups of rotations of R?, R}, or R or to the groups of motions of the spaces
S8, H® and S§.

Fig. 5. Dynkin and Satake diagrams for exceptional groups Fy
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Since all symmetric spaces with groups of motions (isometries) isomorphic to
the fundamental groups of certain spaces can be interpreted as manifolds of sym-
metry figures of this space, the symmetry figures of the plane OS? are points with
their polar lines forming an interpretation of the symmetric Riemannian 16-space
FII, and normal quaternion plane chains (isometric to the plane HS?) forming an
interpretation of the symmetric 28-space FI. The symmetry figures of the plane
OP? are pairs point+line forming an interpretation of the symmetric 32-space EI-
I1, Hermitian conics forming an interpretation of the symmetric 26-space EIV and
more complicated geometric figures interpreting the symmetric 42-space EI and the
40-space EII (we shall consider these figures in the next section). Fig. 5 represents
Dynkin and Satake diagrams for real simple groups Fj.

4. Planes over tensor products

In our paper [1954] it was proved that the group of collineations of the plane
OP? is isomorphic to the group of motions of the Hermitian elliptic plane (C' ®
0)S5? admitting the interpretation as the manifold of pairs point+line of the plane
OP? (analogous to the interpretation of the space C'S™ by the manifold of pairs
point+hyperplane of P™) and that the compact group Ejg is isomorphic to the group

of motions of the Hermitian elliptic plane (C ® O)§ 7,

In our paper [1956] this result was generalized to the compact groups E7 and
Es and was proved that these groups are isomorphic to the groups of motions of
the planes (H ® 0)S? and (O ® O)S9. These planes and their groups of motions
are defined analogously as for the plane OS? and its group of motions, but in these
cases the equations of the absolutes have the form 7 2° + 7 ! + 7 22 = 0, where
the involution  — Z as in the cases of tensor products of associative algebras,
consists of the involutions  — Z and x — Z in both tensor factors. The Lie
algebras of these groups are the direct sums of the sets of 3-matrices (a;;) of the
algebras (C ® O)3, (H® O); and (O ® O); satisfying the conditions a;; = —a;;
and agg + a11 + azs = 0 and of the Lie algebras of groups of automorphisms of
the corresponding algebras. These groups of automorphisms are direct sums of the
Lie algebras of groups of automorphisms of tensor factors of these tensor products.
Therefore in the case of the compact group Eg the dimension of this Lie algebra is
164+16+16+8+8+14 = 78, in the case of the compact group E7 the dimension of
this Lie algebra is 32+ 32432+ 10+10+14+3 = 133, and in the case of the compact
group Fg the dimension of this Lie algebra is 64 + 64 +64+ 14+ 14+ 14+ 14 = 248.
All these numbers (78, 133 and 248) coincide with the dimension of the groups Fjg,
E7 and Eg.

The lines of these planes admit the interpretations as the Grassmann mani-
folds Go,1, G113 and G5 7 of lines of the elliptic space S?, of 3-planes of S'! and
of 7-planes of S'® respectively. The polar manifolds of all these lines, 3-planes are
7-planes, thus the Hermitian elliptic line over the tensor product of 2P- and 29-
dimensional fields admit an interpretation as the Grassmann manifold Gpyq—1,p—1
of (p — 1)- or (¢ — 1)-planes of SPT9~! (this rule is also valid for p,q = 1,2). The
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isotropy groups of points of these elliptic planes are locally isomorphic respectively
to direct products of the groups of motions of S, S'' and S'® and the groups
|a] =1 of the corresponding fields (in the cases of the fields C and H these groups
are the groups of rotation of a circle and of a 3-sphere; in the case of O the set
|a] =1 is not a group, but it is a loop).

The non-compact simple Lie groups admit analogous geometric interpreta-
tions as the planes obtained from Hermitian elliptic planes over tensor products
C® 0, H® O and O ® O by replacing the absolutes of elliptic planes by the
Hermitian conics —# a° + # ! + # 2 = 0 which are the absolutes of hyperbolic
planes, or by replacing one or both fields C, H and O by the coresponding split
algebra C', H' and O'.

Let us note that the planes (C ® O)SQ, H 0)5’2 and (O ® 0)S? form the
interpretations of compact symmetric Riemannian 32-space EIII, 64-space EVI and
128-space EVIII defined in Cartan [1926-1927] and the corresponding Hermitian
hyperbolic planes and Hermitian planes over another tensor products form the
interpretations of symmetric Riemannian or pseudo-Riemannian spaces of the same
dimensions. The ranks of the symmetric 32-, 64-, and 128-spaces EIII, EVI and
EVIII are equal to the ranks of symmetric 16-, 32- and 64-spaces interpreted as lines
of the corresponding elliptic planes over tensor products and as the corresponding
Grassmann manifolds Gy 1, G11,3, and G15,7; these ranks are 2, 4 and 8 respectively.

The symmetry figures corresponding to the compact symmetric Riemannian

~2

spaces EIII, EVI and EVIII are points and their polar lines of the planes (C®0)S ,
(H® 0)S and (O ® O)S respectively. The symmetry figures corresponding to
the compact symmetric 40-space EIl and 26-space EIV are normal bigquaternion

:2
plane chains isometric to (C ® H)S and normal octave plain chains isometric to
0352 respectively. The symmetry figures corresponding to the compact symmetric

54-space EVII are normal plane chains isometric to (C ® O)g' (the isotropy group
of the manifold of normal plane chains of this plane isometric to (H ® H)§ is
isomorphic to the isotropy group of this plane). The symmetry figures correspond-

ing to the compact symmetric 112-space EIX are normal plane chains isometric to

(H® 0)S .

The symmetries of plane chains are determined by involutive automorphisms
of one tensor factor of the tensor product. The symmetry figures with symmetries
determined by involutive automorphisms in both factors of the tensor product are
normal bichains. These figures correspond to the compact symmetric 42-space
EI and 70-space EV (the isotropy group of the manifold of normal bichains of

~2
(O®0)S is isomorphic to the isotropy group of this plane). The normal bichains

are isometric to the split octave bi-Hermitian plane 0’5'2 determind by N. M.
Zablotskikh [1969] and to analogous bi-Hermitian planes over the algebra with
basis elements 1, i, j, I, JI, Jp, Jq, Jr, Kl, Kp, Kq, Kr, where 1, 4, ..., r are the
basis elements of the algebra O and 1, I, J, K are the basis elements of the
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algebra H commuting with 1, ¢, ..., r, and the algebra with basis elements 1, i, j,
I, J, K, Ll, Lp, Lq, L, Pl, Pp, Pq, Pr, Ql, Qp, Qq Qr, Rl, Rp, Rq, Rr, where
1,4,...,r7rand 1, I, ..., R are the basis elements of two commuting algebras O;
the subalgebras of these algebras with basis elements 1, 4, j, k, JI, Jp, Jq, Jr, ...,
and 1, i, j, k, Rl, Rp, Rq, Rr are isomorphic to the algebra O'. The fundamental
groups of these _bi-Hermitian planes are isomorphic to the groups of motions of
these spaces HS®, (C ® H)S®, and (H ® H)S?, respectively and there are the
bijective correspondence between points of the absolutes of these spaces and bi-
Hermitian planes and between lines of these spaces and points of the bi-Hermitian
planes. These interpretations of the manifolds of lines of Hermitian spaces on the
bi-Hermitian planes are analogous to the Kotelnikov—Study interpretation of the
manifold of lines of the space S in the form of plane C'S2. Fig. 6 represents the
Dynkin and Satake diagrams of real simple Lie groups Eg, E7 and Eg.

5. Symplectic and metasymplectic geometries

Freudenthal [1954-1963] defined the octave Hermitian symplectic 5-space
OSy® and proved that its fundamental group is a non-compact group E;. In the
same paper he defined also four metasymplectic geometries and proved that their
fundamental groups are non-compact groups of all 4 classes Fy, E5, E7 and Eg.

Since a projective space over a non-associative field or algebra can exist only
if its dimension is < 2, the definition of OSy® as the space OP® with restricted
group of collineations is impossible; therefore Freudenthal defined the space OSy®
only as the set of 2-planes O P? analogous to isotropic 2-planes P2 and HP? of the
spaces Sy® and HSy5.

If in the definition of the space HSy® we replace the field H by the field C,
then we obtain the complex Hermitian symplectic spaces CSy™ coinciding with
space CS™ or CS}* (the general form of the absolute 3, #¥iz’ = 0is )°,; #a;;a’ =
0, where a;; = —a;;, but in CP™ this equation is the equation of an Hermitian
quadric); the isotropic points, lines and planes of the complex Hermitian symplectic
spaces coincide with points and rectilinear and planar generators of the Hermitian
quadric and the symplectic transformations of the spaces CSy™ coincide with the
motions of CS™ and CS.

Freudenthal [1954-1963] defined also the ”magic square” now called the
Freudenthal magic square. This square consists of 16 groups
Bl A2 03 F4
A2 A2 X A2 A5 E@
Cs As D¢ E;
F Eg E; Es

The groups of the first row of this square are the groups of motions of the
elliptic planes S?, CS2?, HS2, OS2. The groups of the second row are the qroups
of collineations of the projective planes P2, CP2, HP?, OP2. The groups of
the third row are the groups of symplectic transformations of the symplectic 5-
spaces Sy®, CSy®, HSy%, OSy®, where CSy® is the space CS} with real 2-planer
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generators, that is CS5. Therefore Freudenthal called the geometries of the fourth
row metasymplectic geometries. Let us denote these geometries by Ms, CMs,
HMs, OMs.

Freudenthal considered these geometries as geometries of the sets of symplecta
which are sets of isotropic 2-planes of the spaces of the third row, these 2-planes
are planes of the second row, and they contain the projective lines and points.

The compact groups of the same classes as the groups of Freudenthal magic
sguare are the groups of motions of the Hermitian elliptic planes

52 cs? HS? 0§?
CS? (C®C)S (Ce®H)S (C®0)S
H$? (Ho C)§ HeH)S (Ho 0)§
052 (0e0)s5 (0eH)S (020)5

The split groups of the same classes are the groups of motions of the planes
obtained from compact groups by substitution of all fields by corresponding split
algebras. In the groups considered by Freudenthal himself only the first tensor
factors of tensor products are replaced by corresponding split algebras. If in the
square of planes with the compact groups of motions we replace all planes by the
lines over the same algebras, then we obtain the square of Hermitian elliptic lines
with the groups of motions isomorphic to the groups of motions of the real elliptic
spaces forming the square

st §2 gt g8
s? 8% g5 g0
S4 S5 S7 Sll
SS SQ Sll 515

6. Parabolic figures

Tits [1956] defined an important class of geometric figures called by him
fundamental elements. These figures are the cases of parabolic figures — figures
whose isotropy groups are parabolic subgroups of the fundamental group of the
space. Tits [1957] called the manifolds of such figures R-spaces, Wolf [1969] called
them flag manifolds. These manifolds can be called, by analogy with symmetric
spaces, parabolic spaces, (see our paper with Zamakhovsky and Timoshenko [1990]).
Each kind of Tits’ fundamental elements corresponds to one simple root of the
fundamental group of the space and to one dot on the Dynkin or Satake diagram of
this group; the real and imaginary figures correspond to white and black dots of the
Satake diagrams respectively, the imaginary conjugated figures correspond to white
dots of these diagrams which are joined by double arrows, general parabolic figures
correspond to a set of simple roots or dots of the Dynkin or Satake diagrams. Let
us call the parabolic figures corresponding to simple roots a; or to sets of simple
roots Qi , Qiy,y - - - , A4y, qi-figures and (@, , Qiy, - - - , Qi )-figures respectively.

The a;-figures of the spaces with split classical fundamental groups are as
follows. The ay-figures of the space P™ (see Fig. 1) are points of this space, the
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ao-figures are lines, the a;-figures are (¢ — 1)-planes, the (a;,a,)-figures are pairs
of incident points and hyperplanes of P™ or points of the absolute of C'S™, the
(@, ap_iy1)-figures are pairs of incident (¢ — 1)-planes and (n — 4)-planes of P™ or
(i — 1)-planar generators of the absolute of C'S™, the general parabolic figures of
P™ are flags consisting of incident planes of different dimension (hence the term
”flag manifold”). The a;-figures of S2" are the points of its absolute, the a;-figures
are the (i —1)-planar generators of the absolute. The a;-figures of Sg"*l are points
of this space, the a;-figures are isotropic (i — 1)-planes. The a;-figures of S2n~!
are points of its absolute, the a;-figures (i = 2,3,... ,n — 2) are (¢ — 1)-planar
generators of the absolute, the a,,—1- and «,-figures are (n — 1)-planar generators
of the first and the second families of the absolute ((n — 2)-planar generators are
(an—1, an)-figures).

The symplecta, 2-planes, lines and points of metasymplectic geometries M s,
CM s, HM s and OM s are also parabolic figures. The symplecta of these geometries
are a;-figures of the geometries (see Fig. 5 and 6), the 2-planes are as-figures of these
geometries, the lines are as-figures of Ms, HMs and OM s and (a3, as)-figures of
CM:s, the points are ay-figures of Ms, (a4, as)-figures of CM s, as-figures of HM s
and ay-figures of OMs. All these parabolic figures are real.

The same parabolic figures can be defined on all Hermitian planes over O, O’
and their tensor products by C, C’, H, H', O and O'. The points of metasymplectic
geometries are points of absolutes of corresponding planes (see our paper with
Stepashko [1983]). Symplecta, 2-planes, lines and other parabolic figures of these
geometries are sets of points of absolutes of these planes.

The Hermitian planes with split groups of motions are the planes O’S?, (C'®

O’)5’2, (H' ® O’)S’2 and (O' ® O’)S’2. The geometries of these groups can be
considered also as matasymplectic geometries Ms, C'Ms, H' Ms and O'Ms; the
second and third of these geometries can also be considered as geometries of the
plane O'P? and of the space O'Sy®. All parabolic figures of these geometries are
real.

The dimension of as-, as- and a;-figures of O'S? are 1, 2 and 5. The di-
mensions of manifolds of a;-, as-, az- and ay-figures of this plane are 15, 20, 20
and 15.

ay4- and ag-figures of the plane O’ P? are its points and lines, the dimensions
of a;-figures (i = 1,2,3,5,6) of O'P? are 9, 4, 1, 4 and 8. The dimensions of
manifolds of a;-figures of this plane (i =1,2,...,6) are 21, 29, 25, 16, 25 and 16.

ai-, ar- and ag-figures of the space O'Sy® are its isotropic points, lines and
2-planes, the dimensions of two last parabolic figures of this space are 8 and 16.
The dimensions of a;-figures of H'Ms (i = 1,2,3,4,5,6,7) are 33, 8, 4, 2, 10 and
11. The dimensions of manifolds of a;-figures of this geometry (i =1,2,...,7) are
33, 47, 53, 51, 42, 27 and 42.

The dimensions of a;-figures of O'Ms (i = 1,2,3,4,5,6,8) are 33, 16, 8, 4,
2, 1 and 7. The dimensions of manifolds of a;-figures of O' Ms (i = 1,2,...,8) are
57, 83, 97, 104, 106, 98, 78 and 92.
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7. The geometries of the groups D, and G,

Among classical simple Lie group D, plays a special role since its Dynkin
diagram (Fig. 7 represents the Dynkin and Satake diagrams of real simple groups
D,) has trilateral symmetry. The compact real group Dy is the group of motions
of the elliptic 7-space S7, the split real group Dy is the group of motions of the
pseudo-elliptic space Sj, the other real groups Dy are the groups of motions of the
hyperbolic space H” and the pseudo-elliptic spaces S§ and S% and the group of
symplectic transformations of the space HSy?.

e e

§=-28, 57 0=4, S] §=2, 57 = —4, S] = HSy* 0=-14, ST
Fig. 7. Dynkin and Satake diagrams for classical group Dy

The symmetry figures of the space S are points with their polar hyper-
planes, lines with their polar 5-planes, 2-planes with their polar 4-planes, pairs
of polar 3-planes, and paratactic congruences of lines, that is sets of lines joining
the conjugate imaginary points of conjugate imaginary 3-planar generators of the
absolute of this space belonging to one family of these generators. The space
S7 is the compact symmetric Riemannian space DII. The manifolds of lines and
planes of S7 form interpretations of compact symmetric Riemannian spaces DI, the
manifold of paratactic congruences forms an interpretation of compact symmetric
Riemannian space DIII.

a;-figures of the space S] are the points of its absolute, as-figures of this space
are the rectilinear generators of the absolute, az- and a4-figures of this space are the
3-planar generators of the absolute belonging to two families of these generators.

Triliteral symmetry of the Dynkin diagram of this group defines the principle
of triality of spaces S” and S discovered by Cartan [1925]. According to this prin-
ciple the points of absolutes of these spaces correspond to its 3-planar generators of
both families and the lines joining the conjugate imaginary points of the absolute of
S7 and arbitrary points of the absolute of S] correspond to paratactic congruences
(defined by 3-planar generators belonging to one family); the corresponding figures
have isomorphic stationary subgroups.

This isomorphism defines an isomorphism of the fundamental groups of the
spaces S and HSy® and an interpretation of one of these spaces in the other.

The principle of triality of the space S” and S] is connected with algebras
O and O': in these algebras one can intrduce the metrics of the spaces R® and
R§: the distance between « and 3 is |3 — a|. The hyperspheres |a| = 1 of these
spaces with identified antipodal points are models of the spaces S7 and S}; the
absolutes of these spaces are imaged by bioctaves (elements of the tensor product
C ® O) or split octaves of zero moduls. The 3-planar generators of these absolutes
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are defined by equations af = 0 and £a = 0; therefore these generators are also
defined by bioctaves or split octaves of zero moduls. If @ and 3 define two 3-planar
generators of different families, then their product a8 defines the unique point of
their intersection; if this product is equal to zero, then the intersection of these
3-planar generators is a 2-planar generator (see Weiss [1938]).

Trilateral symmetry of the Dynkin diagram of the group D4 defines a 3-
involutive automorphisms o of this group (¢ = 1). The elements invariant under
this automorphism form the group G5 which is a subgroup of the group D, and of
its subgroup Bs. The real simple groups G, are two groups: the compact group
is the group of automorphisms of the field O and the split group is the group of
automorphisms of the algebra O'. If in the algebras O and O’ we introduce the
metrics of the spaces R® and R§ as above, then the groups of automorphisms of
these algebras are subgroups of groups of rotations of these spaces, which are the
groups Dy, preserving the real axes (o = @) of these spaces and 7-planes a = —@
perpendicular to these axes, which are the spaces R” and R}. Therefore the compact
and split groups G are subgroups of rotations of these 7-spaces or of the groups
Bs. The groups G2 are also subgroups of the groups of motions of the elliptic space
S¢ and pseudo-elliptic space S§, admitting models as 6-sphere of the spaces R" and
RY with identified antipodal points. The groups of automorphisms of algebras O
and O’ are transitive on the space S® and on each of domains of S§ defined by its
absolute. The space S® and S§, whose fundamental groups are these subgroups,
were studied by Adamushko [1969] and were called by her G-elliptic space Sg® and
G-pseudo-elliptic space Sg§. Fig. 8 represents the Dynkin and Satake diagrams of
real groups G2 and the groups Bz and D4 containing these groups.

Dy Bs Go
—eo——o ==t §=—14
S7 S6 S¢% = AutO
O—O0=—=0 O==0 §=2
ST S Sg§ = AutO’

Fig. 8. Dynkin and Satake diagrams for exceptional groups G» and for classical
groups D4 and B3 containing these groups

The symmetry figures of the space Sg% are special 2-planes obtained from the
intersections of the 6-sphere which is the intersection of the hyperplane a = —a
and the 7-sphere |a| = 1 with associative subfields of the field O isomorphic to the
field H. The manifold of these 2-planes forms an interpretation of the compact
symmetric 8-space G.

The a;-figures of the space Sg§ are special rectilinear generators of the abso-
lute of this space which are the intersections of this absolute with 2-planes defined
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by associative subalgebras of the algebra Q' isomorphic to the algebras H® and H'®
of semiquaternions and split semiquaternions a + bi + ce + dn and a + be 4 c¢ + df
where a, b, ¢, d are real numbers, i2 = —1, €2 = —1, €2 = 0ie = —¢i = 7,
ec = —ee = 0. The aq-figures of this space are points of the absolute together with
special 2-planar generators of this absolute defined by associative subalgebras of the
algebra O isomorphic to the algebra H of quarter-quaternions a + be + cn + dw,
where a, b, ¢, d are real numbers, €2 = n? = 0, en = —ne = w, through these points.
The special generators of the absolute of Sg§ were studied by Schellekens [1962).

8. Linear representations of the groups

The theory of linear representations of simple Lie groups was created by Car-
tan [1913]. He proved that each linear representation of these groups is defined by
the dominant weight which is rational linear combination of simple roots ;. If the
simple roots of a simple Lie group are o; (i = 1,2,...,n) and if m; = 20;/(a;, i),
where (a, §) is the inner product in the Cartan subalgebra with the metric of R™
induced in this subalgebra by Killing—Cartan metric in the Lie algebra of the simple
Lie group, then the inner products a;; = (a;,7;) are integers forming the Cartan
matriz A = (a;;) which is equivalent to the Dynkin diagram of the simple Lie
group. If the vectors ¢ form the basis reciprocal to the basis m; ((m;,77) = (5? ),
then the simple roots «; and vectors ¢ are connected by the relations a; = aiﬂrj ,
nt = A%q;, where (A¥) = A~! is the matrix inverse to the Cartan matrix A.
Cartan proved that all linear representations are reduced to the fundamental rep-
resentations, the number of which is equal to the rank of the group, and that the
dominant weights of the fundamental representations of simple Lie groups are the
vectors m; mentioned above; the vectors 7’ are called fundamental weights. The
linear combinations of simple roots a; with integer coefficients form the root lattice;
the linear combinations of fundamental weights ¢ with integer coefficients form
the weight lattice. Both these lattices are additive groups and first of them is a
subgroup of the second one and the quotient qroup of these lattices is a finite group,
whose order, the index of connectedness of simple Lie group, is equal to the deter-
minant of the Cartan matrix. All weights of linear representations are vectors of
the weight lattice. Each fundamental representation corresponds to a fundamental
weight 7% and to the corresponding simple root «;; therefore it corresponds to the
corresponding Tits’ fundamental element and this representation can be considered
as a linear transformation of coordinates of this element. Let us denote the funda-
mental representation corresponding to the weight 7! and to the simple root a; by
Pi-

The fundamental representation ¢; of the group of collineations of P", is the
representation of this group by linear transformations of the linear space L™+,
whose vector coordinates are equal to projective coordinates of points of P™. The
representation ¢, of this group is the representation by linear transformations of
L™t whose vector coordinates are equal to tangential coordinates of hyperplanes
of P™. The representations ¢y, of this group (k = 2,3, ... ,n—1) are the representa-
tions by linear transformations of L™, where N = Ck_ |, whose vector coordinates
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are equal to Grassmannian coordinates p' izt = a:[lila:? a:}c’“] (the brackets []
denote alternation of indices) of (k — 1)-planes, for k£ = 2 Pliickerian coordinates of
lines of P™.

The fundamental representations ¢; of the groups B, and D,, which are
the groups of motions of $2” and S2”~!, are the representations of these groups
by linear transformations L2"*! and L?", whose vector coordinates are equal to
projective coordinates of points of $?" and S$2"~!. The representations ¢, of these
groups (k = 2,3,... ,n — 1 for the groups B,, k = 2,3,... ,n — 2 for the groups
D,,) are representations by linear transformations in the same spaces LY as the
representation ¢y of the group A,,. The fundamental representations ¢, of the
group B, and ¢,_1 and ¢, of the group D,, are spinor representations of these
groups by linear transformations of L, where N = 2" for the group B, and
N =271 for the group D,,, whose coordinates are equal to coordinates of (n — 1)-
planar generators of absolutes of S2". In the last case the representations ¢, 1 and
@n correspond to different families of these generators (see Cartan [1938]). Other
representations ¢y of these groups can also be considered as transformations of

coordinates of points and rectilinear and (k — 1)-planar generators of absolutes of
$2" and S?n—L.

The fundamental representation ¢; of the group C,, of symplectic transforma-
tions of Sy?"~! are analogous to the representations ¢; of the groups 4,,, B,, and
D,,, but the representations analogous to the representations ¢j, of these groups
(1 < k < n for the groups A, and B,, 1 < k < n — 1 for the groups D,) are
reducible and the representations ¢y of the groups C,, are their irreducible parts.

The important linear representations of Lie groups are their adjoint groups
— the linear groups in their Lie algebras defined by their inner automorphisms
z — aza~!. The dimensions of the spaces of these representations are equal to
dimensions of the groups. In the cases of groups B,, and D,, these representations
are representations @s. In the case of group A,, this representation is the Kronecker
product @1 ® @, of representations ¢; and ¢,. In the case of group C, this

representation is the representation ¢? in the space of symmetric tensors 2% = 2J¢.

The fundamental representations ¢; and ¢, of the group G have the dimen-
sions of their representation spaces (14 and 7). The first of them is the represen-
tation by the adjoint group, the second one is the representation by rotations of
space R” or Rj.

The fundamental representations ¢; of the groups Fy, Eg, F7y and Eg are
representations by adjoint groups. These representations correspond to symplecta
of the metasymplectic geometries. The dimensions of the spaces of these represen-
tations are equal to the dimensions of the groups 52, 78, 133 and 248.

The dominant weights of adjoint representations are 7! + ™ for the group
A,,, w2 for the groups B, and D,, 2r! for the group C,, and w! for all exceptional
simple Lie group. Let us note that the dots of the Dynkin diagrams corresponding
to non-zero coefficients at 7! in these expressions of dominant weight of the adjoint
representations of these groups are those dots of these diagrams with which are
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joined to the dots of the extended Dynkin diagram corresponding to the minimal
root —p (see Wolf’s book [1984, p. 269]).

The linear representations of the exceptional simple Lie groups with minimal
dimension of the spaces of representation are in the case of the groups Fj the
representations 4 corresponding to points of absolutes of Hermitian planes (in
this case this dimension is 26); in the case of groups Ej the representations ¢4 and
e corresponding to points and lines of projective planes (this dimension is 27); in
the case of groups E7 the representations g corresponding to isotropic 2-planes
of symplectic 5-spaces (this dimension is 56), in the case of groups Eg they are
the representations ¢1 mentioned above. The role of vectors of the representations
¢4 and g of the groups Es is played by the 3-matrices X = (z) (z¥ = z7%)
representing the points and lines of projective planes. The role of these vectors of
the representation ¢, is played by the same 3-matrices satisfying the conditions
2% + 21 + 222 = 0 in the cases of elliptic planes and —z% + z'! 4+ 222 = 0 in the
case of hyperbolic plane equivalent to equations of absolutes of these planes. The
role of these vectors of the representation g is played by matrices representing
isotropic 2-planes of symplectic 5-spaces.

The dimensions of the spaces of the representations ¢ and 3 of the groups
Fy are 1274 and 273; the dimensions of the spaces of the representations ¢2, ¢35 and
5 of the groups Fg are 2925, 351 and 351; the dimensions of the spaces of the rep-
resentations ¢; (¢ = 2,3,4,5 and 7) of the groups E; are 8645, 365750, 27664, 1539
and 912; the dimensions of the spaces of the representations ¢; (i = 2,3,...,8)
of the groups Eg are 30380, 2450240, 146325270, 6899072464, 6696000, 3875 and
147250. Let us note that the representations ¢4 of the groups Fi, g4 ® wg of the
groups FEg, @5 of the groups E; and @7 of the groups Eg are representations by
transformations of coordinates of points of corresponding metasymplectic geome-
tries and of points of absolutes of corresponding Hermitian planes.

9. Local absolutes of symmetric spaces

If a Riemannian symmetric space V™ is a space of constant curvature, then its
isotropy group is the group O,, of the rotations of the space R™ tangent to V™ in this
point. If a Riemannian symmetric space V"™ is not a space of constant curvature,
then its isotropy group is a subgroup of the group O,,. If this subgroup preserves a
cone in the tangent space R™ and this cone cuts a surface from the hyperplane at
infinity of this space R™, which is the elliptic space S™ 1, then we call this surface
local absolute of the symmetric space V™. Analogous local absolutes are defined
in pseudo-Riemannian symmetric spaces V. If a symmetric space V™™ or V" is
interpreted as n-space over an r-dimensional algebra A, then the tangent rn-spaces
R™ and R7" of the spaces V™ and V[ ™ can be considered as affine n-spaces AE™
over this algebra and the points of local absolutes are points at infinity of straight
lines of the tangent spaces whose director vectors correspond to singular vectors
of the space AE™, that is non-zero vectors a with zero products by zero divisors
(aA = 0). In the general case local absolutes are subsets of the sets of points at
infinity of lines with singular director vectors. In this case the complete set of these



Spaces with exceptional fundamental groups 115

points in infinity can be called local superabsolute of the symmetric space. The local
superabsolutes are real only if the algebra A has zero divisors, and are imaginary
if this algebra is a field.

The local absolutes and superabsolutes were considered in the papers of the
author with Kostrikina and others [1990], with Burceva [1990] and with Masagutova
[1991]. In the first and the third of these papers it was proved that the local absolute
of the space V2" isometric to C'S™ consists of two (n — 1)-planar generators of the
absolute quadric of S2"~1, and that the local absolute of the space V?" isometric to
CS™ consists of two conjugate imaginary (n — 1)-planar generators of the imaginary
absolute quadric of $27~!. In these papers it was also proved that the local absolute
of the space V37 isometric to H'S™ is a segrean 3, ,,_; on the absolute of Sy ~"
(segrean ), is an algebraic (m+n)-surface of order Cj3*™ = CJ**™ in projective
(mn + m + n)-space defined by parametric equations z!* = ziy® or equations
zia B _ 48 zie — (0, and that the local absolute of the space V4" isometric to HS"
is the imaginary segrean Emnﬂ. on the absolute of S4"~! defined by equations
differing from the equations of the real segrean Zm”_i by replacing of the forms
2122 — 2324 by sums of four squares of coordinates.

In the second case the real lines joining imaginary conjugate points of the
(n —1)-planes form the paratactic congruence of S>»~! isometric to CS™ ! and the
isotropy group of the symmetric space V2" is isomorphic to the direct product of
the groups of motions of CS™~! and S'; therefore the metric of S?”~! induces on
(n — 1)-planar generators of its absolute the metric of CS®~!. These imaginary
(n—1)-planes form the focal surface of the paratactic congruence of lines. The lines
of this congruence are cut from the hyperplane at infinity of the tangent space R2"
of the space V2" by tangent 2-planes to the 2-spheres of V2" which are isometric
to lines of CS™.

In the fourth case the metric of S**~! induces on the rectilinear generators of
the imaginary segrean ;. ; the metric of CS" and on the (2n — 1)-planar gen-
erators of this segrean metric of CS?"~!. The tangent hyperplane to the absolute
in each point of this (2n — 1)-plane cut from this (2n — 1)-plane a (2n — 2)-plane
defined by a null-system; therefore in CS?"~! is defined a paratactic congruence
of lines which is isomorphic to HS™!, and the isotropy group of the space V4"
is isomorphic to the direct product of the groups of motions of HS"~! and CS*.
This imaginary segrean is the focal surface of the paratactic congruence of 3-planes
which are cut from the hyperplane in infinity of the tangent space R*" of the space
V4" by tangent 4-planes to the 4-spheres of V4" which are isometric to lines of
HS".

In the same papers it was also proved that the local absolute of the space
V(m+1)(n=m) which can be interpreted as a Grassmann manifold G m,n of m-planes
of 8™ and also as a %—spaoe over the algebra R,,,11 of real (m + 1)-matrices (the
dimension of this space can be integer and fractional; about spaces of fractional
dimension, see Chakhtauri [1971]) is a segrean ) | in §(m+D)(n=m)=1 "The

space V(m+1)(n—m) i5 jsometric to a grassmannian I'y,m - an algebraic

m,n—m—
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(m+1)(n—m)-surface in the space SV, where N = C;”J:rll —1, with equations
plottim—ilim pimi1-diizm-1] = ( (in these equations p@im = gliogit giml gre
Grassmannian coordinates of m-planes). This symmetric space has also local su-
perabsolutes consisting of points of m-planes intersecting segreans ) 1 in
m + 1 points.

m,n—m—

Compact real simple Lie groups with the Killing-Cartan metric defined by the
metric tensor a;; = —Ci’}gC]’-“h, are also symmetric Riemannian spaces. The local
absolute of the space V*"=1)/2 which is the group O, with the Killing-Cartan
metric, is a grassmannian I';,_1 ;.

Since the symmetric space V® with fundamental compact group G2 can be
interpreted as a manifold of special 2-planes of the space Sg® and since through
each line of this space passes only one special 2-plane space, the space V& can be
interpreted as quotient space Gg,1/G2,1 = V1°/S2. Therefore the local absolute
of V& can be obtained from the segrean 21,4 by corresponding factorization and
consists of a line with fixed points in S7 and of the quadric with 2-planar generators
(which is the grassmannian I's ;) in the polar 5-plane of this line. The isotropy
group of V8 is locally isomorphic to the group Oy.

In the paper of the author and Burceva [1991] the lipschitzian 2, was defined
as an algebraic n(n — 1)/2 surface in the projective (2"~! — 1)-space defined by
equations

m0$i1i2i3i4 — 3”$11 [i2 mi3i4] ,

$0$i1i2...i2k — (2k _ 1)!!$i1[i2xi3i4...i2k]’

In these equations (2k —1)!! is the product of all odd integers from 1 to 2k —1
and the brackets [] denote alternation of indices. The intersection of the cone with
these equations in an Euclidean 2" !-space with the sphere x? = 1 of this space
was considered by Lipshitz [1886]: if this 2"~ 1-space is a Clifford algebra with the
basis 1, e; (i = 1,2,...,n — 1) and €;,4,..5, = €i €, - - -€;, where €2 = —1 and
eie; = —eje; and if the coordinate at 1 is denoted by z° and to each coordinate
with odd number of indices the index n is added, then these equations define the
subgroup of the group of invertible elements of Clifford algebra which is spinor
group SO,, covering the group SO,,. Therefore the lipshitcian Q,, is homeomorphic
to the group SO,,.

In author’s paper with Burceva [1990] it was proved that the local absolute
of the symmetric space V16 isometric to the plane OS2 is an imaginary lipschitzian
Q5 which is the imaginary 10-surface in S5; this imaginary lipschitzian is the focal
surface of the paratactic congruence of 7-planes of S5 which are cut from the
hyperplane in infinity of the tangent space R!® to the symmetric space V16 by
tangent 8-planes to the 8-spheres of V16 which are isometric to lines of OS2. The
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isotropy group of the space V18 is represented by the fundamental representation ¢4
of the group By. The group By is the group of motions of S® and the fundamental
representation ¢4 of this group is defined by 3-planar generators of the absolute of
this space. Cartan [1938] proved that the manifold of planar generators of maximal
dimension of quadric in P?"~2 and each of two famillies of planar generators of
maximal dimension of quadric in P?2?~! are homeomorphic to the group SO,,.
Therefore the manifold of 3-planar generators of the absolute of S® is homeomorphic
to the complex group SOs, and therefore to the imaginary lipschitzian Q5, and
the isotropy group of V!¢ represents transformations of the manifold of 3-planar
generators of the absolute of S® under the fundamental linear transformation ;.

Analogous are the proofs that the local absolutes of the symmetric spaces
V32, V64 and V126 which are isometric to elliptic Hermitian 2-planes over tensor
product O ® C, O ® H and O ® O, are located on the imaginary absolutes of
the elliptic spaces S%!, §% and S'27 and are respectively a couple of conjugate
imaginary lipschitzians 25 in two conjugate imaginary 15-planar generators of the
absolute of S3!, an imaginary segrean 21,31 in 31-planar generators of which are
given imaginary lipszhitzians (¢, and an imaginary lipschitzian s.

The isotropy groups of these symmetric spaces are, respectively, represented
by direct product of the fundamental representation 5 of the group Ds and of the
group of motions of the line S* joining conjugate imaginary points of imaginary
segreans (25, by direct product of the fundamental representation g of the group Dg
and of the group of motions of the line CS!, and by the fundamental representation
g of the group Dsg.

The lipschitzians mentioned above are homeomorphic, respectively, to the
families of planar generators of maximal dimension of absolutes of S?, S'!' and
515 whose groups of motions are isomorphic to the groups of motions of elliptic
Hermitian lines over corresponding tensor products. The local superabsolutes of
these symmetric spaces V32, V%4 and V128 are focal surfaces of the congruences,
respectively, of 15-planes of S3!, of 31-planes of S and of 63-planes of S'27, which
are cut from hyperplanes at infinity of the tangent spaces R*2, R%* and R'?® to
the symmetric spaces by tangent 16-, 32- and 64-planes to the surfaces of these
symmetric spaces defined by lines of corresponding elliptic Hermitian 2-planes over
tensor products. The intersection of local superabsolutes of these symmetric spaces
with the planes of congruences mentioned above are isometric, respectively, to the
sets of lines, 3-planes and 7-planes intersecting in 2, 4 and 8 points segreans 21’7,
237 and ), which are local superabsolutes of the Grassmann manifolds Gy 1,
G11,3 and Gis,7. These local superabsolutes are real.

Since the families of 4-planar generators of the absolute of S°, of 5-planar
generators of the absolute of S'', and of 7-planar generators of the absolute of S'°
are homeomorphic, respectively, to the lipschitzians 5, Qg and Qg, the isotropy
groups of the spaces V3!, V63 and V'27 represents transformations of these families
of planar generators under corresponding fundamental linear representations @5, @g
and g of the groups D5, Dy and Ds.
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