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SOME HERMITE METRICS IN COMPLEX FINSLER SPACES

Irena Comié and Jovanka Nikié

Abstract. In many papers and books (as [1], [3]-[8] and others) the complex and almost
complex structures defined on real spaces are examined. In this paper they are defined on complex
Finsler spaces. The complex Finsler space E’ is formed in such a way, that its tangent space T'(E’)
is equal to T'(F1) @ ¢T(F>), where F1 and F» are two 2n-dimensional Finsler spaces. Using the
nonlinear connections N and N of F; and F» respectively, the adapted basis B’ of T(E') is formed.
In T(E') different almost complex structures are given and the form of the corresponding Hermite
metrics is determined.

1. Complex Finsler spaces. Let E be a 4n-dimensional, real C*° dif-
ferentiable manifold E. In a local chart, u € E has coordinates (z%y% %% 9?),
a,b,c,d,e, f,g=1,2,...,n.

The allowable coordinate transformations in E have the form

z® =z° (), % = A? (z)z°, AZ' = 63:“’/6:0“,
y* =y (y), 9% =BY ()", BY =0y"/oy",

where rank [A?] = n, rank [B%] = n.
We shall use the notations 4%, = 8%z/0z"dz¢, B, = 8%y® /dy"dy°.

Let us consider such a complex space E', which is in 1-1 correspondence with

E. If the notation

2% =z% +14y°, 2% = 2%+ iy,
e s a . (2.2)

2T =x" -y, 2= —1y

is used, then to each u = (2% y% 2% y*) € E corresponds one and only one v’ =

(2% 2% 2% ") € E'. The allowable coordinate transformation in E' are determined

by (1.1) and (1.2). Such a complex space E' of real dimension 4n will be called

complex Finsler space.
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The functions 2% = 2% +iy® = 2% (z,y), 2% =% +ig® = 2% (z,y,%,9)

in the general case of (1.1) are not complex analytic, i.e. the equations

927 Pl 829 bl
— =0, —— =0 =0
oz* T ozk BT ’

— =0 (1.3)
oz"
are not satisfied. They would have this property only when A% (z) = B% (y) =
Ag' = const., but this case of linear transformations for the Finsler geometry is not
interesting.

T(E) can be considered as a direct summ of T(Fy) and T(F,), where
F, = Fi(z,%), F» = F»(y,y) are two Finsler spaces, with the allowable coordi-
nate transformations (1.1).

The basis vectors of T'(E) and T'(E') are connected by the relations

0 1(8 .6) 0 0 0

9z¢ 2 \ 9z _Zay“ dza  0z9 + z%’

0 _1(d .0 8 1(8 8
gze 2\ dze  Oy)’ dyr i \9ze 0z22)°

The above relations are valid, when (z,Z,z,y) are substituted by (2, z, Z, 7).
The 1-forms from T*(E) and T*(E') are connected by the formulae:

dz® = dz® +idy®,  dz® = (dz® + dz%)/2,

14
dz® = dx® — idy?, dy® = (dz* — dz®) /2. (1.4)

The above relations are valid, when (z,z,z,y) are substituted by (2, z, &, 7).

To obtain the adapted basis in T(E) we introduce two kinds of nonlinear
connections: N¢(z,%) and N¢(y,y), as arbitrary functions, which, with respect to
(1.1), satisfy the relations

Ng(z, &) = N& (2!, 8" AV A2, — A2 i< AV L5)
Vi'(y,9) = Ny (v, ') BY BY — Byt i By -
5§ & o 8

Using (1.5), the adapted basis B = {w, 3ye’ 03’ e

} of T(E) is formed,

where
5 0 AT Y Y B
S - oz Na(xax)%7 (Sy_a - 8y“ Na(y’y)ayb'

The adapted basis of T*(E) is B* = {dz® dy® %% 6y°}, where dz°, dy®, dz®, dy*
are determined by (1.4) and

§3% = di® + N (z, 3)dz’, 69° = dij + No(y, 9)dy".
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The basis B of T(E) induces in the similar way the adapted basis B’ of T(E'),

where
% = (ai-a + aza) = Na(e, ) (% + %) ’ % = aaza +%’

T(E") is a vector space of real dimension 4n over the field of real numbers.
The adapted bases B of T(E) and B’ of T(E") are connected by the relations:

oo o s
820 bxe’ dza oy’
é 0 é 0

020 0zt o5 log

The basis B* of T*(E) induces the adapted basis
B"" = {62%62%6:% 02"} = {dx® —idy® §3% —idy*}
of T*(E'"). In what follows we shall use five kinds of indices:

anJCJdJe’f’g: 1)2"" )n) i)j)h5k5l7m7p’q:n+1)"' ’2/,7’)
AB,C,D,E,F,G=2n+1,...,3n, I,JHKLMPQ=3n+1,...,4n,
a)/B>7557X5U7N: 1527"' ,4”.

Using these indices the adapted basis B’ of T(E') gets the form

6 6 & 6 6 .6 0 0
r_ o 0o o 0 — e 0o v Y —
B — {620'7 6217 (5ZA7 éz]} {(Smayz(sy,ia 6¢A7zay_[} {804}

To every field T on E, there corresponds, by definition one and only one
tensor field on E', denoted also by T', such that the product of coefficients of T
on E' and the corresponding tensor product of basic vectors on E’' are equal to
the corresponding product on E. The coefficients of T on E' are the same as the
corresponding coeflicients on E, or differ from them by the factor —1, i or —i. Each
product of the coefficient of T' and the corresponding basic vector T on E' should
be real. That means, that the coefficients of any tensor field T' on E’ are real or
imaginary functions. The metric tensor g on E’ is defined in such a way by (1.12).

The complex Finsler space in which the coefficients of tensors have both real
and imaginary parts has the real dimension 8n. In such a space the Cauchy—
Riemann conditions (1.3) should be satisfied but, as it was noted earlier, it follows
from these equations that only linear transformations of z, y, &, ¢ are allowed,
which are not interesting for Finsler spaces. That is the reason, why we restrict
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our attention to such complex Finsler spaces in which the tensor fields have real or
imaginary coefficients.

The generalized linear connection
V:T(EYQT(E') - T(EY)(X,Y) > VxY,X,Y,VxY € T(E"))
is defined in the following way

Vs, 03 = Fgaaw. (1.6)

We shall use the notation
Fg,, fora=1,...,n;
Fy, fora=n+1,...,2n;
Tfa= ﬂ'yz (1.7)
Cgly, fora=2n+1,...,3n;
Cyyy fora=3n+1,... 4n.
The torsion tensor T'(X,Y) = VxY — Vy X — [X, Y] for the generalized con-
nection V has the form T'(X,Y) = T, ;Y*X?8,, where
T),=T0,-T]. (1.8)
except the following components:
TG = RS = FS + &Ny —6Ny, T,0 = Gt = F, + 6Ny,

g ' ' (1.9)
TjI;'I :Fﬁ[ _Fi? +5J‘NiH—5iNjH; T,% = Ci'% — Fi's + 6k N

THEOREM 1.1 The distribution T(E') is involutive, i.e. [0n,03] = 0 for all
a,f=1,...,4n iff

Ky (2,3) = aNagx,x) —0. RE(2.d) = INg(z,&) O6Nj(w,4) _ 0.

ba o1b ba oxb Sxo (1 10)
=c . . _ ONg(y,y _ . 8N:(y,5) ON:(y,9) :
Ky (y,9) = % =0, Ry.(y,9) = 5;,, - %yb =0.

Proof. By direct calculation we obtain

b .4 b .0
i) =0 [sia| =0

9 z-i,J] ~0, [@-i. -i,] —0. (L.11)
Y Y
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It

i=a+n, A=a+2n, I=
j=b+n, B=b+2n, J=
h=c+n, C=C+2n, H=

then RS, = RS, K§, = K,°,,

and (1.11) follows (1.10).

a+ 3n,
b+ 3n,
c+ 3n,

93

R = Rf,, K/f = K,°,. From these relations

More about the generalized connection and torsion tensor in complex Finsler

spaces can be found in [2].

The metric tensor on T*(E) ® T*(E) expressed in the basis B is given by

gab gaj gaB
= [da®, dy’, 634, 657) | 9 9 9B
g [ Y Y ] gAb JAj; JAB
gy 91; 9IB
i=a+n, A=a+2n, I=a+ 3n,
j=b+n, B=b+2n, J=0b+3n,

GaJ dz®
9ig dy’
Jgag © 1 6aP |
grJ 6y’
a=1,...,n,
b=1,...,n.

We shall suppose that the above matrix has rank 4n, is symmetric and posi-

tively definite.

The metric g on T*(E') ® T*(E') in the basis B'* has the form

gab Gaj YaB

— dxa, —id z; (5:};’4, —is - I 9iv 9ij 9iB

g [ 4 4 ] gAab 9gAj; Y9AB
gre  d1; 9IB

where
gab = Jabs Y9aj = Jaj> YGaB = JaB;

9ij = —Gij, 9iB = 10iB,

9AB = JAB,

Definition. The 4n-dimensional differentiable manifold E’, in which the al-
lowable coordinate transformations are induced by (1.1), the adapted basis B’ of

T(E') is formed by N(z, %), N(y,y) ((1.5)) the generalized connection V is defined
by (1.6), (1.7), the torsion tensor T by (1.8), (1.9), the metric tensor g by (1.12),

GaJ dz®
9ig —idy’
AT ® §iB
917 —idy’
GaJ = igaJa
9iJ = —GiJ,
gAJ = 1igAJ,
917 = —91J-

will be called complex Finsler space E'(z, 2, 4,2, N,N,V, T, g).

As usual the connection V in the complex Finsler space is called metric
connection iff Vxg = 0 for all X € T(E'). Under the conditions (1.10) and
I‘[;’a = Fgﬂ Va,B3,v = 1,2,...,4n the coeflicients of the metric connections are

given by 2T 5 = ¢7°(8agsp + 9p9as — 859pa)-
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It looks very similar to the Levi-Civita connection, but the summation goes
overall§ =1,...,4n.

2. Different almost complex structures and the corresponding Her-
mite metrics. It is known, that the almost complex structure F' on E' is a
tensor field of type (1,1), such that at every point u' € E', F? = —I, where
I denotes the identity transformation of T, (E'). The metric tensor g defined
on E' is called Hermitian iff g(FX,FY) = ¢g(X,Y). The complex Finsler space
E'(2,%2,2,Z,N,N,V,T,g) endowed with the almost complex structure F' and the
Hermite metric g, will be denoted by FE'(z,%,%,2,N,N,V,T,Hg,F) or shorter
E'(Hg,F).

In the complex Finsler space E'(z, 2, %,2, N,N,V,T, g), some Hermite metric
for the almost complex structure F', can be obtained in the following way [1]:

Hg(X,Y) = g(X,Y) + g(FX, FY),
where g is determined by (1.12).
The torsion tensor of the almost complex structure F', or the Nijenhuis tensor
of F is defined by
[F,FI(X,Y)=N(X,Y)=[FX,FY]| - [X,Y]|- F[FX,Y] - F[X,FY]
for any X,Y € T(E'). If the Nijenhuis tensor of F vanishes identically on E', we
say that F' is a complex structure on E'.

If the almost complex structure F' is parallel with respect to the generalized
metric connection V, i.e. Vxg =0, VxF =0 for all X € T(E'), then E'(Hg, F) is
called Kéhler complex Finsler space endowed with Hermite metric.

Remark 1. For every almost complex structure F', it is obvious, that —F is
also almost complex structure, i.e. (—F)% = —1I.

Remark 2. The Hermite metric for the almost complex structure —F con-
cides with the Hermite metric for F, i.e. from g(FX,FY) = ¢g(X,Y) it follows
9(-FX,-FY) =g(X,Y).

Remark 3. For the Hermite metric g and almost complex structure F' the
relation g(X, FX) =0 is valid for all X € T(E").

PROPOSITION 2.1.The structure J defined on T(E') by:

J .0 .0 0
(5) =ta o) =

2.1
AT R A .
9zA ) oy’ oyl ) sz’
satisfies the relation J> = —I. To the almost complex structure J in the basis
B' = {§/6x%i8/6y", 0/0i" ,i0/0y'} corresponds the matriz
0 0 0 -1
0 0 1 0
7= 1o -1 0 o0
1 0 0 O
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(1 stands instead of n x n matrix I).

PROPOSITION 2.2 The metric g determined by (1.12) is a Hermite metric
with respect to J iff

Jab =913, Gij = 9gAB, Gas =916 =0, gaj=gip =0,

(2.3)
9aj = 9ib = —9AJ = —9IB, YaB = 9Ab = 9iJ = 91Ij-

Proof. The first relation in (2.3) follows from

BN N (D 0N
g Sza’ Szb = Gab, 9 Sza’ Sab =g ayIJ ayJ = —915 = 91J-

The others can be obtained in a similar way.

From (2.3), it follows that to the Hermite metric g, with respect to the almost
complex structure .J given by (2.1), in the basis B'* corresponds the matrix

A B (C 0
B E 0 C

Hg(J) = c o E -B| (2.4)
0 ¢C -B A

where A = [gap], B = [gaj]; C = [9uB], E = [gi;]- Remarks 1, 2 and 3 are valid for
the almost complex structure J and for the Hermite metric Hg(J).

ProrosiTiON 2.3 The structures L; given bellow, are almost complex struc-
tures and the matrices H g(L;) are the corresponding Hermite metrics for L;,
i = 1,8 (both expressed in the basis B' and its dual B'").

i: 1

2 3 4
re 0 0 07r—¢ 0 O O re 0 0 O r« 0 0 O
I 0 ¢ 00 0 ¢ 0 0 0 — 0 0] 0 ¢ 0 O
100 i 0 0 0 ¢ O 0 0 ¢ 0 00 — 0
LO O 0 L0 O O 1 LO 0 0 ¢ L0 0 0 ¢
ro 0 0070 B C D0 B 0 0770 0 C 0
Hy(Ls) : 00 0O B 0 0 O B 0 F G 0 0 F 0
10 0 0 O ¢ 0 0 O 0O F 0 O ¢ F 0 I
L0 0 0 0lLD O O OJLO G O OJLO O I O
i ) 6 7 8
r« 0 0 0 —: 0 0 07 r—¢ 0 0O O771—¢ 0 O 07
I 0 ¢ 0 O 0 — 0 0 0 ¢« 0 O 0 ¢« 0 O
10 0 i 0 0 0 4 0 0 0 = 0 0 0 ¢ O
L0 00 —4 LO O O ¢1JLO O O ¢1LO O 0O —cl
ro 0 0 DJro o ¢ D3Jr0 B 0 D10 B C Dj
Hy(Ls) - 0 00 G 0 0 F G B 0 F 0 B 0 0 G
Y10 0 0 I ¢ F 0 0 0 F 0 I ¢ 0 0 I
LD G I 0JLD G 0 OJLD O I OJLD G I Ol
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(i stands instead of n x n matrix I, B = [g4;], C = [gaB], D = [9as], F = [9:iB],
G =[g9i5], I = [9aj]- Remarks 1-3 are valid for L;, 1 =1,8.

PROPOSITION 2.4 The structure F defined on T'(E') by

s\ _ 6 ., b O
F(T)‘E b+ a) g

satisfies the relation F? = —I and in the basis B’ is determined by the matriz
a 0 b 0
0 c 0 d
F=1 10442 0 “a 0
0 —d71(1+¢%) 0 -—c

In the above matrix every of the real scalar fields a b, ¢, d, b # 0, d # 0
denotes the corresponding scalar matrix of type n X n.

The almost complex structure F' defined by (2.7) is the generalization of the
almost complex structure J defined by Ichiy6 in [3], (2.1).

PROPOSITION 2.5 The metric g determined by (1.12) is a Hermite metric
with respect to F iff its matriz in the basis B'* has the form:

A B C D
B E F G
¢C F H I]|°
D G I J

where

A=gu], B=(a+c) '@ +1)F+d (¢ +1)D]
C=Q1+d’)'abA, D=[gas] E=[gi], F=ga;]
G=(0+c)"edE, H=(1+d>)""0’4
I=(a+c) Y (dF +bD), J=(1+c)"'d’E.
THEOREM 2.1. The almost complex structures J ((2.1), (2.2)), L; i = 1,8

(2.6) and F ((2.6), (2.7)) are complex structures on E' iff the relations (1.10) are
valid.

Proof. By calculation of the Nijenhuis tensors N (52, 5%) ,..., N (%, %)

for the almost complex structures J, L; (i = 1,8) and F we obtain some linear
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combinations of the Lie brackets, which appear in (1.11). From (1.11) and Theorem
1.1 it follows that the Nijenhuis tensor for the almost complex structures J, L; (i =
1,8) and F is equal to zero iff (1.10) is satisfied. O
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