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Abstract. A variety of n-groupoids (i.e. algebras with one n-ary operation f) is said to
be a primitive n-variety if it is defined by a system of identities of the following form:
f(wil,wiQ,...,;Cq;n)Zf(:I:jl,;CjQ,...,a:jn) (*)

Here we give a convenient description of free objects in primitive n-varieties, and several properties
of free objects are also established.

1. Introduction. Identities of the form (x) are called primitive n-identities,
where we take n to be a fixed positive integer, and iy, j, are positive integers.
We do not make any distinction between two equivalent identities, and that is the
reason why we assume 1 < i, j, < 2n. A set ¥ of primitive n-identities is said
to be complete if it contains every primitive n-identity which is a consequence of
Y. Everywhere in this paper we suppose that ¥ is a complete system of primitive
n-identities, and we also take n > 2, since for n = 1 the only nontrivial primitive
1-identity is f(x) = f(y), which gives rise to constant unars.

The main results obtained here are the construction of free ¥-objects with
given basis B and the following theorems, which are corollaries of the obtained
construction.

THEOREM A. A free X-object has a unique basis. [

THEOREM B. FEvery subobject of a free X-object is a free Y-object as well. O

For any identity (*) we put I = {i1,... ,in}t, J = {J1,--- sdn}-

THEOREM C. Assume that there is an identity () in ¥ such that INJ = (.
Ifk € {1,2,...,n — 1} is the largest integer such that (x) is in ¥ for I = {1} and

for every J with |J| < k, then any free X-object with rank k has a subobject with
infinite rank. O

AMS Subject Classification (1991): Primary 11 M 06



148 G. Cupona and S. Markovski

THEOREM D. For every identity (x) in X let INJ # 0 and assume that if (x)
isinX for I ={1,2,...,n}, then |J| > 2. Then every free L-object has a subobject
with infinite rank. O

THEOREM E. The word problem is solvable in any primitive n-variety. O

2. Complete sets of primitive n-identities. As we already mentioned in
section 1, we assume that in (¥) we have 1 < 4,, j, < 2n = m for each v. In such
a way the primitive n-identities can be considered as transformations of the set
M ={1,2,... ,m}, i.e. as elements of the set T = M™(= {p|p: M — M}). Next,
in this paper we will not make any distinction between the sets M™ and M™ x M™,
where M™ = {¢|¢: {1,2,... ,n} = M}. Namely, if p € M™ and ¢, pr € M™ are
defined by

eL(i) = ¢(i),  ¢r(i) = p(n+1)
for each i € {1,2,...,n}, then (pr,pr) will be considered as another notation
of .

We stress again that we suppose here and further on that ¥ denotes a complete
set of primitive n-identities, where n > 2 is a given integer. By the above agreement,
we also have that ¥ C 7.

Every subset A of 7 induces a relation ~, on M™ defined by
paY & (p¢) €A
The following completeness theorem is a consequence of a result from [2]:

PROPOSITION 2.1. A subset A of T is complete iff it satisfies the following
conditions:

(i) ~a is an equivalence relation on M™;
(ii) A is a left ideal in T, i.e. T o A C A, where : denotes the usual superposition
of transformations. O

The following property (shown in [2]) will be used in the next section:

PROPOSITION 2.2. Let &, n € ¥ be such that ker g = kernyr,, and denote by
T(&,m) the set of all elements ¢ € T which satisfy the following conditions: (L = &L
and

(@) =&k +n), n(k) =n( +n) = (@) =¢(G +n)
for every i,k,j € {1,2,...,n}. Then T(,,n) # 0 and T(¢,n) C X (and, further-
more, T oT(&,m) CX). O

Given any complete set ¥ of primitive n-identities, by X[M] we denote the
quotient set M™/~x, and if ¢ € M™, then by [p] € L[M] we denote the corre-
sponding class of equivalent elements. (Further on, we will write simply ~ instead
of NE.)

For any i € M, let i € M™ be defined by i(v) = i for each v € {1,2,...n}.
We say that ¥ is with constant if [1] = [2].
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If p € M™, then the set {©(1),...,¢(n)} is called the content of ¢, and will
be denoted by cnt(yp).

PROPOSITION 2.3. The following conditions are equivalent:
(i) X is with constant;
(ii) [i] = [3] for any i,j € M;
(iil) there exist @, 1 € M™ such that [p] = [n] and the contents of ¢ and n are
disjoint. O
If ¥ is with constant, then any element of [i] is called a X-constant; ¥ is said

to be with absolute constant if X[M] is a singleton. Denote by ¢ the element of
M™ defined by e(v) = v for each v € {1,2,... ,n}.

PROPOSITION 2.4. The following conditions are equivalent:

(i) X is with absolute constant;

(i) ¢ ~n for any o, n € M™;
(iii) there is a ¢ € M™ such that € ~ ¢ and € and ¢ have disjoint contents. O

PROPOSITION 2.5. If ¢ € M™ is not a X-constant, then there is an n € [¢]
such that cnt(n) is a subset of cut(vp) for any ¢ € [¢)].

(Then we say that 7 is a minimal member of [¢].)

Proof. Since A = {cnt(€)|€ € [p]} is a finite set, there is an 5 € [p] such that
cnt(n) is a minimal member in A. Assume that cnt(n) and cnt(n') are different
minimal members in A. Then cnt(n) N cnt(n’') # @, since ¢ is not a X-constant.
Let ¢ € cnt(n) Ncnt(n') and let j € cnt(n')\cnt(n). Define ¢ € T by ((j) = ¢ and
¢(k) =k for any k # j. Then (o (n,7') = (n,n"") € T for some 5" € M™ such that
ent(n”) = ent(n)\{5}. O

Now we define the notion of the X-content of an element ¢ € M™, denoted by
cntx (@), as follows. We put cnts (@) = 0 if ¢ is a X-constant, and cntx(¢) = cnt(n)
is ¢ is not a X-constant and 7 is a minimal member of [p]. Note that & ~ ¢ implies

cntx(€) = ents(p).

PROPOSITION 2.6. There exists a p € M™ such that cnts(p) is a singleton
iff X is without constant. O

¥ is said to be essentially k-ary iff [cnty ()| = k.

If ¥ is with constant, then the order of the constant of ¥ is said to be k iff
cnty(p) = @ for each ¢ € M™ such that |cnt(p)| < k, and k is the largest such
integer. Therefore we have:

PROPOSITION 2.7. The following statements are equivalent:
(i) X is with absolute constant;

(il) X is with constant of order n. O
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3. Y-objects. Let A be a nonempty set and let 3 be a complete set of
primitive n-identities. Define a relation ~x 4 (shortly denoted by ~4) on the set
A™(= {ala: {1,... ,n} = A}) as follows:

a~b << (I € Y)kerf = ker(a, b)

where a,b € A™ and (a,b) € A™ is defined as in the preceding section, i.e.
(a,b)(i) = a(i), (a,b)(i + n) = b(i), for each 7 € {1,2,... ,n}.

The following statement is a corollary from Proposition 1.1 (and its general-
ization as well):

PROPOSITION 3.1. (i) ~4 is an equivalence relation. (ii) Ifa~a b, cisa
transformation of A and co (a,b) = (a’,b’), then a' ~4 b'. O

Proof. We will give only a sketch of the proof, and we will use the fact that
Y is a complete set of identities. Let a,b,c € A™.

(i) Then for suitably chosen ¢ € 7 we have kerp(e,e) = ker(a,a), and also if
ker{ = ker(a,b), then ker(¢gr,&r) = ker(b,a). The transitivity follows by
using Proposition 2.2.

(ii) If ker & = ker (a,b) and co (a,b) = (a’,b’), then there is a ¢ € T such that
ker p€ = ker (a’,b’), and £ € ¥ implies @& € ¥ by Proposition 2.1. O
We denote by X[A] the quotient set A™/ ~4 and by [a] the class of equivalent

elements of a € A". (So, [a] =[b]iffa~ab.) If A=M ={1,2,... ,m}, then ~4
and ~ have the same meaning as in section 2.

Proposition 2.2-2.6 have obvious generalizations, and we make a summary
below.

(1) |Z[A4]] = 1 iff one of the following cases appears: 1.1) |A| = 1; 1.2) ¥ is
with absolute constant; 1.3) |A| < k and X is with constant of order k.

(2) If a € A", then the set cnt(a) = {a(l),... ,a(n)} is called the content of
a. If ¥ is with constant and |cnt(a)| = 1, then the class of equivalent elements [a]
will be denoted by o(¢ A) and called the zero of £[A]. Then we also say that the
Y.-content of o is empty, and we denote it by cnts (o) = §; moreover, for each ¢ € o
we put cntx(c) = (0. Let b € A™. If either ¥ is without constant or [b] # o, then in
the family of sets {cnt(c)|c € [b]} there is the least member which will be denoted
by cnty[b] and called the X-content of [b]; in this case we also let cnty(c) = cnty [b]
for each ¢ € [b]. And, if d € [b] is such that cnt(d) = cntx(d), then we say that
d is a minimal member of [b]. (We note that [b] can contain distinct minimal
members.)

(3) If ¥ is with constant then |cntx[a]| > 2 for each [a] # o, but if ¥ is
without constant then |cntx(a)| = 1 for every a € A™ such that |ent(a)] = 1. If ¥
is essentially unary then |cntx(a)] = 1 for every a € A™.

(4) If A C B then the canonical mapping from X[A] into X[B] is injective,
and then we can assume that X[A] C X[B], in the following sence: if [a] € X[B]
and cnty[a] C A, then we take [a] € X[A] as well.
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An algebra (A, f) with n-ary operation f (i.e. an n-groupoid) is called a
Y-object if it satisfies all the identities belonging to X.

PROPOSITION 3.2. An n-groupoid (A, f) is a X-object iff
a~y b= f(a)= f(b)

for every a,b € A™. O

Denote by nat(~4) the natural mapping a + [a] from A™ into X[A]. Then
by Proposition 3.2 we have:

PROPOSITION 3.3. An n-groupoid (A, f) is a X-object iff there is a uniguie
mapping f:X[A] = A such that f onat(~a) = f. (Certainly, the existence of such
a mapping f implies its uniqueness. ) O

Now we have a more convenient alternative definition of a ¥-object. Namely,
if f is a mapping from X[A] into A, then the pair (4, f) is called a ¥-object with
carrier A and operation f. Futher on, by a ¥-object we will understand the kind of
structure we have just defined. Thus, for subobjects and homomorphisms we have
the following characterizations:

PROPOSITION 3.4. If A = (A, f) is a X-object and C C A, then C is a
subobject of A iff f(X[C]) C C. O

Thus, any subobject of a ¥-object is a 3-object too.

PROPOSITION 3.5. Let A = (A, f) and B = (B, g) be X-objects, and let
h: A — B be a mapping. Then h induces a unique mapping h: X[A] — X[B] such
that h o nat(~4) = nat(~pg) o h, and h is a homomorphism from A into B iff
hof=goh. O

(We note that h: A — B induces a mapping h(™): A" — B" such that [a] = [b]
in £[A] implies [A(™ (a)] = [A(™(b)] in X[B], and then h([a]) = [h(™(a)] for each
a€c A")

The notion of a partial 3-object can be defined as follows. Let A be a nonemp-
ty set, D a subset of X[A] and f a mapping from D into A. Then we say that the
triple (A, D, f) is a partial X-object. It can be easily seen that this definition is
compatible with Evans’ definition of partial algebras in a variety of algebras (see
[3], where the words “incomplete” and “a class of algebras V” are used instead of
“partial” and “a variety V). Furthermore, if (4,D, f) is a given partial ¥-object
and q a fixed element of A, then if we define g: X[A] — A by

_ f((a)), if[a] €D
) ={ e s

then (A4, g) is a X-object which is an extension of (A,D, f). Now we can apply the
well known Evans’ result [3, p. 68] “if V is a class of algebras having the property
that any incomplete V-algebra can be embedded in a V-algebra, then the word
problem can be solved for this class” to obtain the proof of Theorem E of section 1.
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4. A construction of free ¥-objects. Here we will give a construction of
free ¥-objects with basis B, where B is a given nonempty set. Let (Bp|p > 0) be
a sequence of sets defined inductively as follows:

Bo=B, B,y =B,US[B,),

and let
F(=,B) =JBylp > 0).

(We will write simply F' instead of F'(¥, B), when ¥ and B are known.) By induc-
tion on p one can easily prove that X[F] = F\B.

If u € F and if p is the least number such that u € B, then we say that p is
the hierarchy of v and write x(u) = p. It is clear that if ¥ is with constant, then

x(o) = 1.

PROPOSITION 4.1. Letu € F and let u not be a constant. Then x(u) =p+1
iff ents(u) = {v1,v2,... , v} is such that x(v;) < p for each i and x(v;) = p for
some j (i,5 € {1,2,...,k}). O

Define an operation f:¥[F] — F by f(u) = u for each u € X[F]. Then we
have:

PROPOSITION 4.2. (F, f) is a $-object generated by the set B. [

Let (C,g) be an arbitrary Y-object and let h: B — C be a mapping. Put
ho = h and suppose that h,:B, — C is a well defined mapping for each r < p
in such a way that h, is an extension of h,._1, and if r > 0, x(u) = r, then
hy(u) = goh,_,(u), where h,_;:¥[B, ;] = X[C] is defined as in Proposition 3.5.
Now define hyy1: Bpy1 — C to be the extension of hy, such that h,y1(u) = goh,(u)
for each u with x(u) = p+ 1. (Note that if x(u) = p+ 1, then u € X[B,], and thus
hy(u) € X[C] is well defined by Proposition 3.5.) In such a way we have defined a
chain of mappings (hp|p > 0), and its union h = |J(h,|p > 0) is an extension of h
and a homomorphism from (F, f) into (C, g) as well. Thus we have the following

THEOREM 4.3. If B is a nonempty set, then (F, f) is a free object with basis
B. O

The preceding construction of free Y-objects is somewhat obscure, but in
some cases it can be considerably simplified.

Ezample 4.4. If ¥ is with constant and a,b € B, then we have [a"] =
[b"] = o, where o is the zero of F. (Here, and later on, a™:4 + a for each a € A,
i € {1,...,n}.) Clearly, o € B;\B and if ¥ is with absolute constant, then
F = BU{o} and f(u) = o for each u € £[BU{o}]. Therefore, if ¥ is with absolute
constant, then every constant n-groupoid is freely generated by the set of elements
distinct from the constant (i.e. 0). We have the same result if ¥ is with constant,
of order k and |B| < k. (Moreover, if ¥ is with constant, then any one-element
groupoid can be considered as free ¥-object with empty basis.) O

Example 4.5. Assume that Y is essentially unar, i.e. for each ¢ € M™ there
isani € {1,2,...,n} such that (¢,j) € X for j = (). Then the class of X-objects
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can be viewed as the class of unars. Namely, if (G, h) is a unar and if we define a
mapping ¢g: X[G] — G by g(a) = h(a(i)), then we get a X-object (G, g), and any
Y-object can be obtained in such a manner. Moreover, (G, g) is a free S-object
with basis B iff (G, h) is a free unar with basis B. O

We note that a subunar of a finitely generated free unar is finitely generated
too, and thus Example 4.5 shows that the assumptions of Theorem D are essential.

Example 4.6. Let n = 3 and let V be a variety defined by the identities

fx,z,x) = f(z,z,y) = f(y,y,9), [f(2,9,2) = f(y,2,2) = f(z,2,9).

If B ={b}, o # b and if we put G = {0, b} and g(u,v,w) = o for each u,v,w € G,
then (G, g) is a free object in V with basis B of rank 1. Now, take B = {b,c}, b # ¢
and o € B, and define the sets B, inductively by

By =BU{o}, Bpy1 =ByU{{u,v,w}lu#v#w#u, u,v,w€ Bp}
Let H = J(Bplp > p) and let
{u,v,w}, fu#v#w#u.

o, otherwise

h(u, v, w) = {

Then H = (H, h) is a free object in V with basis B. The subset D of H, where D =
{d;|i > 0} and the elements d; are defined inductively by do = {0,b,c}, dpt1 =
{0,b,dp} is a basis of infinite rank of the subobject L of H generated by D. O

Example 4.7. There exist exactly 6 nonequivalent primitive 2-identities:
TY = xY, TY = YT, TY = TT, TY = Yy, zx = yy, vy = zw. (Here a usual notation
of identities is used.) One can form 7 primitive 2-varieties, 6 of them being defined
by a single identity of the above ones, and V = Var({zy = yz,zz = yy}). In the
variety V we can describe a free object with nonempty basis B by F' = |J(Bp|p >
0), where By = B, By = BU {o} U {{u,v}|u,v € B,u # v}, o ¢ B, and
Bpi1 = BpU {{u,v}u,v € Bp,u # v} when p>1. O

5. Some properties of free Y-objects. Here we will give proofs of Theo-
rems A, B, C' and D of section 1. Although one can prove these theorems by using
an induction on hierarchy, we will rather use the ideas involved in [1].

Assume that G = (G, g) is a ¥-object. An element a € G is said to be prime
in G if a # g([b]) for any [b] € X[G]. If ¥ is with constant, then each element of
G is said to be an improper divisor of the zero o € X[G]. If ¢ € G is nonzero and
nonprime element, then there is a [b] € X[G] such that ¢ = g([b]), and let a be a
minimal member of [b]. Then each element d € cnt(a) = cntx[a] is called a proper
divisor of ¢. A sequence (finite or infinite) of elements a1, as,... of G is said to be
a divisor chain in G iff for every ¢ > 1 a; is a proper divisor of a;_1.
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Now we have another characterization of free ¥-objects:

THEOREM 5.1. A X¥-object H = (H, h) is a free X-object with a nonempty

basis B C H iff the following conditions hold:

(i) B is the set of prime elements in H.

(ii) If ¢ € H 1is nonprime, then there is a unique [b] € X[B] such that ¢ = h([b]).
(iii) Ewvery diwisor chain in H is finite.

Proof. Tt is clear that (F, f) satisfies (i), (ii) and (iii).

Conversely, if H satisfies (i), (ii) and (iii), then it is easy to show by induction
on hierarchy that there is an isomorphism g: (F, f) — (H, h) such that g(b) = b for
eachbe B. O B

Now, Theorem A is a direct consequence of Theorem 5.1, for the set of prime
elements of a free ¥-object is its unique basis. (We should emphasize here that we
do not need Theorem 5.1 to prove Theorem A, since it follows directly from the
definition of primitive n-identities.)

Assume that G is a subobject of (F, f). The set of prime elements in G
(considered as a ¥-object) is empty only if ¥ is with zero and G = {0}, and then
G is free with an empty basis. If the set C of prime elements in G is nonempty,
then C' is a basis of G, since conditions (ii) and (iii) of Theorem 5.1 are hereditary.
This completes the proof of Theorem B.

Now, let ¥ be with constant of order k¥ < m, and let B = {a;,a2,...,ar}.
Then B; = B U {o} and cnts(ajas...aro" %) = {a;,as,...,a;,0}. Consid-
er the subset C = {c1,c2,...,Cp,...} of F, where ¢; = [a1...ap0o™ %], cpy1 =

[ay ... akcg*’“]. Let @ be the subobject of (F, f) generated by C. Clearly, C is the
set of prime elements in Q. (Namely, ¢, is a divisor of ¢p1 in F, but this does
not hold in Q.) This completes the proof of Theorem C, since the conditions for ¥
stated in Theorem C show that X is with constant of order k.

It remains to show Theorem D. First we note that the assumption in this
Theorem can be expressed by |cnty (e)| = k > 2. Take ¢ to be a minimal member
in [¢], and ¢ € cntx(p). Let B be a nonempty set, b € B and define a sequence
a1,02,...,a, by a1 = b, aj31 = [a}] for 0 < ¢ < n, and an infinite sequence
€1,€2y.++ yCpy--. DY €1 = ap, Cpy1 = [A1G2...Q;—1CpQit1 - .. ay). Then a; # a; for
i # j and ¢, # ¢s for r # s. This implies that C' = {¢,|r > 1} is an infinite basis of
the subobject @ of (F, f) generated by C.
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