PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 60 (74), 1996, 1-4
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Abstract. An extension of the propositional probability logic LPP given in
[8] that allows higher order probabilities is introduced. The corresponding complete-
ness and decidability theorems are proved.

1. Introduction. The propositional probabilistic logic LPP was given in [3].
LPP is a conservative extension of the classical propositional logic. Its language
allows making formulas such as P,.(A), with the intended meaning “the probability
of A is greater or equal to r”. Formulas in the scope of a probabilistic operator P,
are restricted to be propositional. In this paper we present an extension of LPP,
denoted by LPPey. In this logic statements about higher order probabilities can
be expressed using formulas with nested probabilistic operators. A possible-world
approach is used to give semantics to probabilistic formulas of LPPeyy.

The first order probabilistic logic LP was also presented in [3]. LP can be
extended in the same way as was done with LPP. Another probabilistic logics were
given in [1, 2]. In these logics one can use linear inequalities involving probabilities.
In [1, 2] the authors proved only the simple completeness theorems, while here we
give the extended completeness theorem.

2. Syntax. The language of LPP.y consists of propositional letters, logical
connectives A and V, and a probabilistic operator P,, for each r € Index C [0, 1],
where {0,1} € Index, and Index is finite. If r € Index and r < 1, then r+ =
min{s € Index:r < s}. If 7 € Index and r > 1, then 7~ = max{s € Index: s < r}.

The set of LPPy-formulas is the smallest set containing propositional letters,
and closed under formation rules: if A and B are formulas, then P,.(A), =A and
A A B are formulas.
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3. Semantics. Definition. An LPP,-model is a triple (W, Prob, 7), where
W is a set of worlds, 7(w) is a truth assignment to the propositional letters for
every w € W, and Prob is a probability assignment which assigns to every w € W
a probability space. So, for every w € W, Prob(w) is a triple (V(w), H(w), p(w)),
where V(w) C W, H(w) is an algebra of subsets of V(w), and u(w): H(w) — Index
such that for every w € W:

a) p(w)(0) >0, for all §,  b) p(w)(V(w)) =1,
c) p(61 U 6) = p(61) + p(62), for all disjoint 61 and 6,.

As it can be seen, u(w)’s are finite additive probabilistic measures with a
fixed, finite range.

Definition. Let M = (W,Prob,7) be an arbitrary model. A satisfaction
relation = over the set of worlds and the set of formulas satisfies the following
properties (Yw € W):

a) if p is a propositional letter, then w|| — p iff w(w)(p) = true,

b) w Ik P.(4) iff p(w)({u € V(w):ulF A}) > r,

c) wlk—A iff it is not w Ik A and

d)wlt AANBiff wlk A and w I+ B.

We suppose that to every formula there is associated a well-defined probabil-

ity, i.e., that formulas are satisfied by measurable sets of worlds. In the sequel [A]
denotes {w:w I+ A}.

4. Complete Axiomatization. The axiom system AXppp, , involves
eight axiom schemas:

Al. A—(B—- A

A2. (A-(B->0C)—>((A->B)—-(A—=0))

A3. (-B - -A)— (A—- B)

A4, Py(A)

A5. Py(A) —» P.(A), s>r

A6. (P,(A) A Po(B) A PL(=AV =B)) = Prin(1,s1r)(AV B)
AT (Pi_g(=A) APi_y(=B)) = Prax(o1_(s4r)(~A A —B)
A8. —Pi_4(—A) & P+ (A)

and two rules of inference (#A means that A is provable):

R1. From 6A and §A — B infer 6B (modus ponens).

R2. From 0A infer 6P, (A).
Note that AXypp,_, is the same as the axiom system for LPP, but formulas

A and B in the axioms and rules can be arbitrary LPPey¢-formulas.
A formula A is said to be consistent with respect to AXpp,,,, if 7A is not

provable; otherwise A is inconsistent. A finite set of formulas T = {A;, 4o, ..., A}



A logic with higher order probabilities 3

is consistent if —(A4; A ... A A,) is not provable. An infinite set of formulas is
consistent if every its finite subset is consistent.

LEMMA. For every consistent set T of LPP,.,¢-formulas there is a maximal
consistent set that contains T'.

Proof. Let Ay, As, ... be an enumeration of all LPP¢-formulas. We define
a sequence G, G, ... of sets of the formulas in the following way: Gy = T', and if
GiU{A»H_l} is consistent, then Gi+1 = GiU{AH_l}; otherwise Gz’+1 = GiU{—'A»H_l}.
By the hypothesis Gy is consistent. Let us suppose that for some i > 0, the set G;
is not consistent. That means that there are formulas By, ... ,B,, and C4,...,C,
from G;_1, so that 0—(By A ... A By, A A;) and 6—(C1 A ... ACp A —A;). By the
propositional reasoning it follows that 6—(B1 A...AB, AC1 A...ACY), ie., that
G;_1 is not consistent, a contradiction. Now, it is easy to show that G = U,,G,, is
a maximal consistent set of formulas, and that T C G.

EXTENDED COMPLETENESS THEOREM. A set of formulas is consistent with
respect to AXrpp,,, iff it has an LPPeyxy model.

PTOOf. (—) ) Since AXLPP

ext

is sound, a satisfiable set of formulas is consistent.

(+ ) Suppose that a set T of formulas is consistent. We construct a proba-
bilistic model so that T is satisfiable in it. This model M = (W, Prob, 7) is defined
as follows: W = {w: wis a maximal consistent set of formulas}, 7(w)(p) = true iff
p € w and Prob(w) = (W, H(w), u(w)), where H(w) is an algebra of sets of worlds
of the pattern [A], and p(w)[A] = max,{P,(A) € w}. The axioms of probability
(A4-AB) guarantee that everything is well defined.

For example, let us suppose that [A] C [B], but p(w)([4]) > p(w)([B]), i-e.,
that there is no w € W such that A A =B € w, but P.(A) € w and P,(B) € w for
some r. Since A A =B is not consistent, A — B, and P;(A — B) are theorems. So,
Pi(A - B)AP.(A)A-P,.(B) € w. It follows that ~(P; (A — B)AP.(A) A—P,(B))
is not provable. By A8 it can be rewritten as (Pi__,)(4) A Pi_;-)(=B)) —
Py+ (A A —B). But, this formula is an instance of the axiom A7, a contradiction.
Hence, u(w)’s are well defined. In a similar way we can prove that u(w)’s are finite
additive measures, and that their ranges are subsets of the set Index.

It follows that M is a LPPey-model satisfying (Vw € W)(w IF A iff A € w).
For example, let w I+ P.(A). Hence, pu(w)([4]) = max{s: P;(4) € w} > r. By
the axiom A5, the formula P.(A) € w. On the other hand, if P.(A) € w, then
max{s: P;(A) € w} = p(w)([4]) > r, and woP,.(A).

Since every w is a maximal consistent set, and 7' can be extended to a maximal
consistent set, there is a world w € W satisfying T'.

5. Decidability It is well known that there is a decision procedure to answer
whether a classical propositional formula is satisfiable. We can show that the same
holds for LPPeys.

LEMMA. If a LPPe-formula A is satisfiable, then it is satisfiable in a finite
LPP,; model.
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Proof. Suppose A holds in a world of an LPP,; model M = (W, Prob, ).
Let ®4 be the set of all subformulas of A, and let &~ be an equivalence relation over
W2, such that w ~ u iff (VB € &4)(w I+ B iff u I B). The quotient set W/ = is
finite. From every class C; we choose an element and denote it by w;. We consider
amodel M* = (W*, Prob*, n*), where W* = {w;}, 7*(w;)(p) = 7(w;)(p), for every
propositional letter, and Prob* is defined as follows: V*(w;) = {u: (v € Cy)v €
V(w;)} and H*(w;) is the power set of V*(w;). Let u be a world such that in the
model M all the formulas of ® 4, satisfied in u, are By,...,By. Then, we define
p*(wi)(u) = p(w))([B1 A ... A Bg]) = u(w;)(Cy), and for a set D € H*(w;), the
measure p* (w;)(D) = >, cp 1*(w;)(u). Since

pr) (V)= Y prw)w) = Y prw)(Cu) =1

u€V*(w;) CLeEW/r

©* is a finite additive probability measure, and M™ is an LPPe, model.

Now, every formula B € ® 4 is satisfiable in M iff it is satisfiable in M*. If
B is a propositional letter, and (M, w) Ik B, then (M, w;) I B holds for w; € C,.
Obviously, (M,w;) IF B iff (M*,w;) IF B. If B = By A Bs, (M, w) IF B, and
w; € Cy, then (M,w;) IF B iff (M, w;) IF By and (M,w;) IF B iff (M*,w;) I+ B,
and (M*,w;) I+ By iff (M*,w;) I B. The case when B = —C follows similarly.
Finally, if B = P,.(B;) and (M, w) I+ B, then (M, w;) IF B holds for w; € C,,, and

(M,w;) I+ B iff

r<pw)(Bi) = Y m(w)(Cu)= Y w"(wi)(Cy) = p* (w;)([Bi])
CyulFBy CylFB; iff (JV[*,IUi)|F B.

The model M* from the lemma has no more than 2V worlds, where NN is the
number of subformulas of the considered formula A. Since there is a finite number
of such LPP¢y-models, the following theorem holds:

THEOREM. LPPey-logic is decidable.
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