A LOGIC WITH HIGHER ORDER PROBABILITIES

Zoran Ognjanović and Miodrag Rašković

Communicated by Žarko Mijajlović

Abstract. An extension of the propositional probability logic LPP given in [3] that allows higher order probabilities is introduced. The corresponding completeness and decidability theorems are proved.

1. Introduction. The propositional probabilistic logic LPP was given in [3]. LPP is a conservative extension of the classical propositional logic. Its language allows making formulas such as $P_r(A)$, with the intended meaning "the probability of A is greater or equal to r". Formulas in the scope of a probabilistic operator P_r are restricted to be propositional. In this paper we present an extension of LPP, denoted by LPP_{ext}. In this logic statements about higher order probabilities can be expressed using formulas with nested probabilistic operators. A possible-world approach is used to give semantics to probabilistic formulas of LPP_{ext}.

The first order probabilistic logic LP was also presented in [3]. LP can be extended in the same way as was done with LPP. Another probabilistic logics were given in [1, 2]. In these logics one can use linear inequalities involving probabilities. In [1, 2] the authors proved only the simple completeness theorems, while here we give the extended completeness theorem.

2. Syntax. The language of LPP_{ext} consists of propositional letters, logical connectives \land and \lor , and a probabilistic operator P_r , for each $r \in \text{Index} \subset [0,1]$, where $\{0,1\} \in \text{Index}$, and Index is finite. If $r \in \text{Index}$ and r < 1, then $r^+ = \min\{s \in \text{Index}: r < s\}$. If $r \in \text{Index}$ and r > 1, then $r^- = \max\{s \in \text{Index}: s < r\}$.

The set of LPP_{ext}-formulas is the smallest set containing propositional letters, and closed under formation rules: if A and B are formulas, then $P_r(A)$, $\neg A$ and $A \wedge B$ are formulas.

AMS Subject Classification (1991): Primary 03B80; Secondary 68T27

A preliminary version of this paper was presented at the X Seminar primenjene matematike PRIM '95, Budya 1995

3. Semantics. Definition. An LPP_{ext}-model is a triple $\langle W, \operatorname{Prob}, \pi \rangle$, where W is a set of worlds, $\pi(w)$ is a truth assignment to the propositional letters for every $w \in W$, and Prob is a probability assignment which assigns to every $w \in W$ a probability space. So, for every $w \in W$, $\operatorname{Prob}(w)$ is a triple $\langle V(w), H(w), \mu(w) \rangle$, where $V(w) \subset W$, H(w) is an algebra of subsets of V(w), and $\mu(w): H(w) \to \operatorname{Index}$ such that for every $w \in W$:

a)
$$\mu(w)(\theta) \geq 0$$
, for all θ , b) $\mu(w)(V(w)) = 1$, c) $\mu(\theta_1 \cup \theta_2) = \mu(\theta_1) + \mu(\theta_2)$, for all disjoint θ_1 and θ_2 .

As it can be seen, $\mu(w)$'s are finite additive probabilistic measures with a fixed, finite range.

Definition. Let $M = \langle W, \operatorname{Prob}, \pi \rangle$ be an arbitrary model. A satisfaction relation \models over the set of worlds and the set of formulas satisfies the following properties $(\forall w \in W)$:

- a) if p is a propositional letter, then w||-p iff $\pi(w)(p)=true$,
- b) $w \Vdash P_r(A)$ iff $\mu(w)(\{u \in V(w): u \Vdash A\}) \geq r$,
- c) $w \Vdash \neg A$ iff it is not $w \Vdash A$ and
- d) $w \Vdash A \land B$ iff $w \Vdash A$ and $w \Vdash B$.

We suppose that to every formula there is associated a well-defined probability, i.e., that formulas are satisfied by measurable sets of worlds. In the sequel [A] denotes $\{w: w \Vdash A\}$.

4. Complete Axiomatization. The axiom system $AX_{LPP_{ext}}$ involves eight axiom schemas:

$$A1. \quad A \to (B \to A)$$

$$A2. \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$A3. \quad (\neg B \to \neg A) \to (A \to B)$$

$$A4. \quad P_0(A)$$

$$A5. \quad P_s(A) \to P_r(A), \quad s \ge r$$

$$A6. \quad (P_s(A) \land P_r(B) \land P_1(\neg A \lor \neg B)) \to P_{\min(1,s+r)}(A \lor B)$$

$$A7. \quad (P_{1-s}(\neg A) \land P_{1-r}(\neg B)) \to P_{\max(0,1-(s+r))}(\neg A \land \neg B)$$

$$A8. \quad \neg P_{1-s}(\neg A) \leftrightarrow P_{s+}(A)$$

and two rules of inference (θA means that A is provable):

- R1. From θA and $\theta A \to B$ infer θB (modus ponens).
- R2. From θA infer $\theta P_1(A)$.

Note that $AX_{LPP_{ext}}$ is the same as the axiom system for LPP, but formulas A and B in the axioms and rules can be arbitrary LPP_{ext}-formulas.

A formula A is said to be consistent with respect to $AX_{LPP_{ext}}$, if $\neg A$ is not provable; otherwise A is inconsistent. A finite set of formulas $T = \{A_1, A_2, \ldots, A_n\}$

is consistent if $\neg(A_1 \land \ldots \land A_n)$ is not provable. An infinite set of formulas is consistent if every its finite subset is consistent.

Lemma. For every consistent set T of LPP_{ext} -formulas there is a maximal consistent set that contains T.

Proof. Let A_1,A_2,\ldots be an enumeration of all LPP_{ext}-formulas. We define a sequence G_0,G_1,\ldots of sets of the formulas in the following way: $G_0=T$, and if $G_i\cup\{A_{i+1}\}$ is consistent, then $G_{i+1}=G_i\cup\{A_{i+1}\}$; otherwise $G_{i+1}=G_i\cup\{\neg A_{i+1}\}$. By the hypothesis G_0 is consistent. Let us suppose that for some i>0, the set G_i is not consistent. That means that there are formulas B_1,\ldots,B_m and C_1,\ldots,C_n from G_{i-1} , so that $\theta\neg(B_1\wedge\ldots\wedge B_m\wedge A_i)$ and $\theta\neg(C_1\wedge\ldots\wedge C_n\wedge\neg A_i)$. By the propositional reasoning it follows that $\theta\neg(B_1\wedge\ldots\wedge B_m\wedge C_1\wedge\ldots\wedge C_n)$, i.e., that G_{i-1} is not consistent, a contradiction. Now, it is easy to show that $G=\cup_n G_n$ is a maximal consistent set of formulas, and that $T\subset G$.

Extended Completeness Theorem. A set of formulas is consistent with respect to $AX_{LPP_{ext}}$ iff it has an LPP_{ext} model.

Proof. (\rightarrow) Since $AX_{LPP_{ext}}$ is sound, a satisfiable set of formulas is consistent.

 (\leftarrow) Suppose that a set T of formulas is consistent. We construct a probabilistic model so that T is satisfiable in it. This model $M=\langle W,\operatorname{Prob},\pi\rangle$ is defined as follows: $W=\{w\colon w\text{ is a maximal consistent set of formulas}\}$, $\pi(w)(p)=\operatorname{true}$ iff $p\in w$ and $\operatorname{Prob}(w)=(W,H(w),\mu(w))$, where H(w) is an algebra of sets of worlds of the pattern [A], and $\mu(w)[A]=\max_r\{P_r(A)\in w\}$. The axioms of probability (A4-A8) guarantee that everything is well defined.

For example, let us suppose that $[A] \subset [B]$, but $\mu(w)([A]) > \mu(w)([B])$, i.e., that there is no $w \in W$ such that $A \land \neg B \in w$, but $P_r(A) \in w$ and $P_r(B) \in w$ for some r. Since $A \land \neg B$ is not consistent, $A \to B$, and $P_1(A \to B)$ are theorems. So, $P_1(A \to B) \land P_r(A) \land \neg P_r(B) \in w$. It follows that $\neg(P_1(A \to B) \land P_r(A) \land \neg P_r(B))$ is not provable. By A8 it can be rewritten as $(P_{1-(1-r)}(A) \land P_{1-(r-)}(\neg B)) \to P_{0+}(A \land \neg B)$. But, this formula is an instance of the axiom A7, a contradiction. Hence, $\mu(w)$'s are well defined. In a similar way we can prove that $\mu(w)$'s are finite additive measures, and that their ranges are subsets of the set Index.

It follows that M is a LPP_{ext}-model satisfying $(\forall w \in W)(w \Vdash A \text{ iff } A \in w)$. For example, let $w \Vdash P_r(A)$. Hence, $\mu(w)([A]) = \max\{s: P_s(A) \in w\} \geq r$. By the axiom A5, the formula $P_r(A) \in w$. On the other hand, if $P_r(A) \in w$, then $\max\{s: P_s(A) \in w\} = \mu(w)([A]) \geq r$, and $w\theta P_r(A)$.

Since every w is a maximal consistent set, and T can be extended to a maximal consistent set, there is a world $w \in W$ satisfying T.

5. Decidability It is well known that there is a decision procedure to answer whether a classical propositional formula is satisfiable. We can show that the same holds for $LPP_{\rm ext}$.

Lemma. If a LPP $_{\rm ext}$ -formula A is satisfiable, then it is satisfiable in a finite LPP $_{\rm ext}$ model.

Proof. Suppose A holds in a world of an LPP_{ext} model $M = \langle W, \operatorname{Prob}, \pi \rangle$. Let Φ_A be the set of all subformulas of A, and let \approx be an equivalence relation over W^2 , such that $w \approx u$ iff $(\forall B \in \Phi_A)(w \Vdash B)$ iff $u \Vdash B$. The quotient set $W/\approx i$ is finite. From every class C_i we choose an element and denote it by w_i . We consider a model $M^* = \langle W^*, \operatorname{Prob}^*, \pi^* \rangle$, where $W^* = \{w_i\}$, $\pi^*(w_i)(p) = \pi(w_i)(p)$, for every propositional letter, and Prob* is defined as follows: $V^*(w_i) = \{u: (\exists v \in C_u)v \in V(w_i)\}$ and $H^*(w_i)$ is the power set of $V^*(w_i)$. Let u be a world such that in the model M all the formulas of Φ_A , satisfied in u, are B_1, \ldots, B_k . Then, we define $\mu^*(w_i)(u) = \mu(w_i)([B_1 \wedge \ldots \wedge B_k]) = \mu(w_i)(C_u)$, and for a set $D \in H^*(w_i)$, the measure $\mu^*(w_i)(D) = \sum_{u \in D} \mu^*(w_i)(u)$. Since

$$\mu^*(w_i)(V^*(w_i)) = \sum_{u \in V^*(w_i)} \mu^*(w_i)(u) = \sum_{C_u \in W/\approx} \mu^*(w_i)(C_u) = 1$$

 μ^* is a finite additive probability measure, and M^* is an LPP_{ext} model.

Now, every formula $B \in \Phi_A$ is satisfiable in M iff it is satisfiable in M^* . If B is a propositional letter, and $\langle M, w \rangle \Vdash B$, then $\langle M, w_i \rangle \Vdash B$ holds for $w_i \in C_w$. Obviously, $\langle M, w_i \rangle \Vdash B$ iff $\langle M^*, w_i \rangle \Vdash B$. If $B = B_1 \wedge B_2$, $\langle M, w \rangle \Vdash B$, and $w_i \in C_w$, then $\langle M, w_i \rangle \Vdash B$ iff $\langle M, w_i \rangle \Vdash B_1$ and $\langle M, w_i \rangle \Vdash B_2$ iff $\langle M^*, w_i \rangle \Vdash B_1$ and $\langle M^*, w_i \rangle \Vdash B_2$ iff $\langle M^*, w_i \rangle \Vdash B$. The case when $B = \neg C$ follows similarly. Finally, if $B = P_r(B_1)$ and $\langle M, w \rangle \Vdash B$, then $\langle M, w_i \rangle \Vdash B$ holds for $w_i \in C_w$, and

$$\langle M, w_i \rangle \Vdash B$$
 iff

$$r \leq \mu(w_i)([B_1]) = \sum_{C_u \Vdash B_1} \mu(w_i)(C_u) = \sum_{C_u \Vdash B_1} \mu^*(w_i)(C_u) = \mu^*(w_i)([B_1])$$
 iff $\langle M^*, w_i \rangle \Vdash B$.

The model M^* from the lemma has no more than 2^N worlds, where N is the number of subformulas of the considered formula A. Since there is a finite number of such LPP_{ext}-models, the following theorem holds:

THEOREM. LPP_{ext}-logic is decidable.

REFERENCES

- 1. R. Fagin, J. Halpern, and N. Megiddo, A logic for reasoning about probabilities, Information and Computation 87 (1990), 78-128
- R. Fagin, J. Halpern, Reasoning about knowledge and probability, J. Assoc. Comput. Mach. 41 (1994), 340-367
- M. Rašković, Classical logic with some probability operators, Publ. Inst. Math. (Beograd) (N.S.)
 53(67) (1993), 1-3

Zoran Ognjanović Matematički institut Kneza Mihaila 35 11001 Beograd, p.p. 367 Yugoslavia zorano@mi.sanu.ac.yu Miodrag Rašković Prirodno-matematički fakultet Radoja Domanovića 12 34000 Kragujevac Yugoslavia miodragr@mi.sanu.ac.yu (Received 08 12 1995)