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GENERALIZED CONNECTION ON T(T?M)
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Abstract. The geometry of some manifolds fibered over a given manifold M
is in the first place characterized by the group of allowable coordinate transforma-

Bmil

tions. For the tangent manifold TM these are given by #i = &t (z)y? = St vt

’i’
rank [%”;,} = n, and for the total space of a vector bundle £ — M, we have

o' =o' (z), y' = M?' (2)y®, rank(M2') = m = dimension of type fiber.

In the last years R. Miron, Gh. Atanasiu and others examined the Osck M
spaces, [10], [11], [12]. Here the case k = 2 will be investigated. Instead of Osc?M
the notation 72 M will be used (Osc! M coincides with 7'M). Instead of d-connection
used in [10], [11], [12], we consider here the generalized connection and determine
its torsion tensor. As a special case the known d-connection is obtained.

1. Adapted basis in T(T?M). Let T?M be a 3n dimensional C* manifold.

A point u € T?M in the local charts (U, ¢) and (U',¢') has coordinates (2%, 4%, 2¢)

and (xi' , yi' , zi') respectively. In U NU’ the allowed coordinate transformations are
given by the equations:

., y i ozt ;1 9%f . ort

T At ) bt | L J el |
L) @ =a'@) 0)y =55y () 2 = 5yt + 5

If rank [%} = n, then the inverse transformation of (1.1) exists:

) o N 1 9%k . . Oxk .
AN W ) i 2 ] k_—-_“ % i,] i
() 2" =2(z") (b) v oz Y (c) 2 2027027 Y Y Bt~

(1.2) (a) and (1.2) (b) are obvious. To obtain (1.2) (c¢) we start from
ozt dxk

1.2 — = = 0p-

(12) Ozh ox¥ Oh
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From (1.2) it follows:

] o1 ;!
0%zt Ozk ozt O%zk  Oxd

a BAa oo i A B A e i e o = 0-
Oxhdxi dx?  Oxh Ox¥ Oxd’ O’
The multiplication of the above equation with y"y7 gives
&z’  Ozk Pk .o
1.3 Py = 2yl
(13) drhoz Y ¥ ot 9z 07 ¥ Y

If we multiply (1.1) (c) by 8z*/dz, use (1.3) and (1.4) we obtain (1.2) (c).
The identity transformation is a special case of (1.1), namely if we put 2 = z?
in (1.1) (a), then y* =y, 2" = 2 follows.

If in the local chart (U, ") the point v has coordinates (zi ,y¢ , 2% ), then
in (U"NU',¢") (1.1) are valid, if the index ¢’ is substituted by " and the indices
without ’ obtain ’. After some calculation it can be obtained, that the connection

between (zi ,y% 2" ) and (2f,y%,2') in UNU' NU" is given by (1.1) if the index
i’ is substituted by ".

From the above follows:
THEOREM 1.1. The transformations of type (1.1) form a group.
In T(T?M) the natural bases are:

— 0 0 0 — 0 o 0
(14) B—{axi,a—yi,azi} and B _{ij’ﬁ}

The bases vectors of B and B’ are connected by:

8 o' 8 oy’ 8 9z 8

ozt Oxt Ozt + Oxt dy* + ozt 9z’

 _ o' 9 9 9
(1) oyt Oyt oy Oyt 9z’

9 _ 92" 8

0zt 0zt 0zt

From (1.1) (c) it follows

o _ a9
0zt Oxt 9z

Let us introduce the notation

0 0 ; 0
( 7) 6yl ayz Hz (xﬂ y) azz
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PROPOSITION 1.1. 57 defined by (1.8) is transformed as tensor, i.e.
) ozt &
(18) dyt  Oxt dy¥

if 'H; (z,y) is transformed in the following way:
A ozt Oz’ B 6‘2.337".3/]-6_33."_
! P9zt dxi  Ozidxi” Bx¥

The proof is obtained by direct calculation.

(1.9) "

From (1.9) and (1.10) we obtain the first connection coeflicient of Berwald

type:
_ oMl _ ol oui 007 GuF %0l 9ot 0o
© OyR T Oyt dx¥ Oxi Bz¥  Dxidzh Oxt Dzt

Let us introduce the notation:

(1.10) Hil b

) 0 ; 0
(111) %:6331_/\4‘:(3:’ )—_N( r,Y, )azﬂ
PROPOSITION 1.2. # defined by (1.12) is transformed in the form:
§ 0z ¢
(1.12) Freily
if Mf (z,y) and ./\fij (z,y,2) are transformed in the following way:
Ot 9xd 922 Oz
= J R — J
(113) M= Mg 507 ~ dwaa? 527
ozt dxi 9%l Bxt
7 N/ it
No =N i 9z dzi | Dzidxi - Bzt
3.5 i 2.5 9amh
(1.14) 1 0%z hk@:c+8:c kxqi OT

T 20005h0% 7 Y 957 T dakowi? T hpgt

Remark. M? and N7 used here in [10], [11], [12] are denoted by (1)
(2)N] respectively.

N7 and

(2

Proof. If we add the following equations (which follow from (1.6), (1.1) and
(1.3)):
0 _ (o) o (&2 ;0st02") &
ozt \ Ozt | Oz B+ Y 83:’ oxt | OyI’
L1 0% Pl oz' &2l ;02 0a") O
28$h6$k83§1 8.20" Bzt | 0xkrd 637" Bzt | 827"
Oz" dx¥ (02 O | 0%F 0
M — o
Mgy Byﬂ Mhaa:" Oxt (Bscj Oy’ + dr*dz1” 927" ) ’

i 027 02" 0" B
0z

h 5zi dz? dxt 929"’
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, ozt (D iy 0 g 0\ oz i
we obtain pr il (83:’" ~ Mg - N sz’) = e 327 where M, is
given by (1.14) and N} by (1.15).

The basis
6 & O

is called adapted basis for T(T?M). Its elements are transformed by (1.7), (1.9)
and (1.13).

From (1.14) and (1.15) we obtain two other connection coefficients of Berwald
type, namely

o oM, - 9zt Ozk Oz 8223 9z Oz*
i P aqd 0T _ or
(1.16) M = ozt M; kot dxk Oxi  Oxidxk Ozt OzF
' VKT gak T Tk gpd §gk 9xd Qxidxk Ozt Oz

2. The adapted basis in T*(T2M). The natural basis of T*(T2M) is
(2.1) B" = {dd,dy’, dz"},
where the following relations are valid with respect to (1.1):

ozt | . P o LA I
i i i 3.0 i
Oxt do’(b) dy PR e do’ + Oxt dy

. 1 63mi’ . h 62.Z'il ; i 62.'1,"" . ; 61.1" ;
(c) dz" = (5 dz*dzhori Y Y +8:Ui8a:jz de’ + 9% 0z’ dy’ + oxI dz.

From (2.2) (b) and (2.2) (c) it is obvious, that the transformations of dy
and dz¥ are not tensorial. If we put

(2.2) (a) da’ =

(2.3) 8y’ = dy’ + Hida’

then from (1.10) and (2.1) we get

(2.4) 6yi =
Let us introduce the notation

(2.5) 62 = dz' + M;(x,y)dyj +/\/j(a:,y,z)dxj + g;i (z,y)dx?,
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where the transformation laws of M and N} are prescribed by (1.14) and (1.15).

ProrosiTION 2.1. If Q; (z,y) has the following law of transformation (with
respect to (1.1)):

L 0r Ba . O O 0%zl o
i _ (ot el 2 k k h
(26) g] = g]/ axil 8:1;'-7 3! 6;5"“8:17] Y axil J 6$k6$hy 8.%.]1 )

then §z% defined by (2.5) satisfies the equation
, i
(2.7) 0z = —J.(Sz]

Proof. The substitution of (2.2), (1.14) and (1.15) into 02/ = dzi" +
M dy? + N7 dz? + G da? gives (2.7) if (2.6) is true.
The adapted basis of T*(T?F) is

(2.8) B* = {dz*, 8y’ 62"},

where the elements of B* defined by (2.3) and (2.5) satisfy the transformation law
prescribed by (2.2) (a), (2.4) and (2.7).

THEOREM 2.1. The bases B (1.16) and B* (2.8) of T(T?*M) and T*(T?M)
respectively are dual to each other if

(2.9) Hi(z,y) = Mi(2,y),
(2.10) Gi(z,y) = Mi(z,y) MJ(2,y)

and if B (1.6) and B* (2.1) are dual to each other.
Proof. By direct calculation using (1.8), (1.12), (2.3) and (2.5) we obtain:

J = ‘] J = J =
(dz ’6xi> 07, (dx ’Jy") 0, (dz 62") 0,
PRy B VT i 0y i i 9y
(211) <5y ,(5.7:1) H@ M@) <6y 76yi> 613 <6y )azz’> 07
i %y =gl — pMiMmE i %y — g j i 9y _ s
(62 ’63:2') Gl — MIM;, (02 ’6y"> H] + M], {0z ’azi) a7

The duality follows from (2.11) and (2.9).
PROPOSITION 2.2. G (x,y) defined by (2.10) satisfies (2.6).
Proof. Using (1.4) and (1.14), it can be proved that

(2.12) M = M oz* dz° 0w g 0al

L Y R WL WL
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From (2.12) and (2.10) after some calculation we obtain (2.6).

Remark. It is important that the bases B and B* be dual to each other,
because if they are not, then the contraction of tensors doesn’t result tensors. If B
and B" ((1.6) and (2.1)) are dual to each other, it doesn’t follow that B and B
are dual.

Now we have:

THEOREM 2.2. The bases B(M,N) = { R } and B*(M,N) =

Szt 3yt Bzt
{dz,6y%,82%}, where their elements are given by

6 _ 290 i0 _zi9 0 _ 0 0
(2.13) Szt Oxi oyl Tt oz’ Syt T Byl PPk

syt = dy' + Mida’, 62" =dz' + Myl + Nda’

are adapted basis for T(T>M) and T*(T?>M) respectively, dual to each other, and
they satisfy the low of transformation:

§ ozt 5 85 oy & 8 982 8

(2.14) dxt gxz ozt oyt gy’ dy? 0zt gz’ 827"
i_ o= i Oyt i_ 02" oy
dx' = D7 dz’, 6y’ = a7 Syt , 02" = 927 02" .

It must be noted that there exist as many adapted bases as many functions
Ml(z,y) and N} (z,y,z) can be found, satisfying (1.14) and (1.15) respectively.
If we denote by Ty, Ty,, Ty, the subspaces of T(T2M) spanned by {%},
{52{}7 {Bizf}’ and by T, Ty, Ty, the subspaces of T*(T?M) spanned by {dz'},
{0y*}, {02} respectively, then

TIT*M)=Tyg & Ty, ®Ty,, T*T°M)=T} Ty, &Ty,.

For the further examinations it is useful to introduce different kinds of indices.
Indices i, j, h, k,l = 1,n will be used in Ty and T}, a,b,c,d,e, f =n+1,2n in Ty,
and Ty, , p,q,7,8,t = 2n+ 1,3n in Ty, and Ty, . The Greek letters as indices will
take values from 1 to 3n. Using this notation the adapted bases have the form:

6 & 0 )
-J - 2 Y\ _ * J b 5,41 — (58
(215) B - {63}” 5:‘/0'7 6Zp} {501}7 B {d.Z' 75y 752 } {6 }7
where
S0 a0 5 _ 0 0
(2.16) dxt Ot ¢t oyb L 9z97  Sye  Oye ®Hz9’

Sy® = dy® + Mida', 829 = dz" + M26y" + Nda'.
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Ifi = a (mod n) and j = b= ¢ (mod n), then M? = M? = M4, NT = N7/,
in (2.16).
Some tensor field T' expressed in the bases B and B* ((2.15)) has the form:

6:1;1 .w ®6z...

0
b ...
® dy oz"

The components of the tensor T', with respect to the coordinate transforma-
tions (1.1) are transformed in the following way:

! et e i ox’ dxl  dy¥ Byt 9z" 0z

@ T

K —_— . e e —_— i — s s
cofeboso oxrt Oxi' 8ya 6yb’ 0z 0z

For some vector field X € T(T?M) and some 1-form w € T*(T?M) we have:

;0 ) 4]
x=xi2 1 xe % 1 x» L _ xe4,,
(2.17) ozt dye + OzP

w = w;ida? + wpdy® + w027 = wgd”.

With respect to (1.1) the coordinates of X and w transform in the following way:

7 ! ’

xt = xi9% oy = xe % xr 927
ox? oy® 0zP

o da) oy 9z
Wit =Wig WV _wa7 Wy = Weg

because for i = a = p (mod n) we have:

oz _ oy _ az¥

3. Generalized covariant derivatives. The generalized connection in
Lagrange and Hamilton spaces was studied among others in [2]-[6]. In T(T%M)
it is introduced in the following way. Let V : T(T?M) x T(T*M) — T(T*M) (x
is the Descartes product) be a linear connection, such that V : (X,Y) - VxY €
T(T?M), VX,Y € T(T?M). The operator V is called generalized connection.
It is called d-connection if VxY is in Ty, Ty, or Ty, if Y is in Ty, Ty, or Tv,,
respectively, VX € T(T2M). It has been studied by many authors, mostly romanian
geometers.

We shall not make that restriction on V here. In the following we shall use
the abbreviations: 6 = 525, 6, = #, O =3%,0.= %, O = 5%
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Definition 3.1. The generalized connection V is defined by

V5,05 = E}in + F50. + Fj,0,, V5,00 = B} 6p + F 6.+ F,; 0,
Vs,0q = Fl0k + F50. + El:0r, V5,05 =CF.0k +Cfd. + CJ0r,

(3.1) V4,06 = Cf0k + Ciobc + Cyu0r, V5,0, = Cl o0k + C e+ C, 10r,
Veo,0; = L0k + Lf 6. + L] ,0r, Va,00 = Li¥,0, + Ly 0c + Ly 0y,
Ve,0g = L} ,0k + LS 6.+ L, ,0r.

The d-connection is defined if in (3.1) all terms on the right-hand side vanish,
except the underlined ones.

For the vector field X defined by (2.17) we have
Vs, (X96; + X0 + X70,)
= (0;X9)8; + XIV5,6; + (0; X°)6 + XV 5,8 + (6:X9)0, + XV 5,0,
=0 X"+ FE XTI+ Bl XY+ R X960+ (06X + F X7 + FS X + F5X7)6.+
(06: X"+ F; X7 + F; X" + F; X0,

From the above equation it follows

(3.2) Vs, X = X0 + X (6. + X[0,,

where

(3.3) X =6X"+F5 X+ R5 X"+ F5 X9, ze{kcr}
or shorter

(3.4) X =06X"+F X% ze{kcr}

The summation over « is the sum of summations over j, b and ¢ as is written in
(3.3). The sign [i is the covariant derivative in direction of the basis vector d;.

The covariant derivative of X in the direction of d, has the form:

(3.5) Vs, X = X¥|,6k + X¢|abe + X740,

where

(3.6) X?|a = 0,X7 + CF X7 + X"+ CF X", we{kcr},
or shorter

(3.7) X%, = 6,X° +CF X"
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The covariant derivative of the vector field X in the direction of §, is given

by

(3.8) Vo, X = X*||p6k + X°|p6c + X7 [|0,

where

(3.9) X7l =0, X"+ L7, X7+ L7, X"+ L7, X9,z €{k,c,r},

or abbreviated
(3.10) X®||, = 8,X% + LZ X
In (3.7) and (3.10) the summation over « is the sum of summations over j, b and
g (as in (3.4)).

THEOREM 3.1. If X and Y are vector fields in T(T>M), V the generalized
connection defined by (3.1), then the following equation is valid:
(3.11) VyX = (XY + X*,Y* + X*||,Y?) 6

+ (XGYP 4 XY + XY P)oe + (XY 4+ X[,V + X7|,Y )8,

Proof. The proof follows from (3.2)—(3.10) and the bilinearity of V.

The equation (3.11) can be written in the abbreviated form as follows

(3.12) VyX = XY 76,
(3.13) X% =83X*+ .2 X".

Ifp=i,then ' =F;if B=aqa,then ' =C;if f =pthen I = L.

THEOREM 3.2. All covariant derivatives X;, X%|a, X[, (@ =k, or a =
c or a = r) from (3.11) are transformed as tensors with respect to (1.1) if all
connection coefficients from (3.1) are transformed as tensors, except the following,
which have the form

gk _ g O 0ok da  0%M ook

it = Ve GaF Bz | Ozidzi OxF

» ot Ayt Ayt 9%y ay°

3.14 RS =Ff o o 2t o £
(3.14) bi YU gxi dyb Oy * dzidyt dy°
Fr —pr %ﬁl 929 92" 2" 92"

ai V4 V900 920 927 | Oxi0zd Oz

The proof is obtained by direct calculation.
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Remark. From (2.17) it follows that F}% = F,% = F,; if k = ¢=r (mod n),
g (mod n). The connection coefficients ”Hji B> Mz.jk and i]}c defined by

j = =
(1.11), (1.17) and (1.18) respectively, satisfy the transformation laws prescribed by
(3.14).

b

4. The torsion tensor of the generalized connection. The torsion
tensor T'(X,Y) is defined in the usual way by:

T(X,Y)=VxY - VyX — [X,Y].

THEOREM 4.1. The torsion tensor for the generalized connection has the form
T(X,Y) =Tk, + TS, + T78,, where
T =THY X'+ THY/ X" + T/ Y/ X¢
+ LAY X+ TR Y xe + T v X
+TEYPX + ThYPX + TF vPX,
E _ mk k E _ vk k E _ 71k 2
sz’ —sz' _Fij7 ij —Cjb_Fbj7 qu _qu_FqP
Tbkz' = Fbkz' - Cikb, Tbka = Cbka - Cakb: Tbkq = Lbkq - quba
E _ pk k E _ ok k E _ 1k k
Tpi - Fpi _Lip’ pr _Cpb _pr’ qu _qu _Lqp’
T =TS5YIX + T5YVIX + TS YIXT + TSV X+ T,5YV X+
T, Y X" + T,V X' + T,5Y X" + T,5,YX",
chi = chi - cm] - Kicja acb = Cacb - Cbcm chi = Fqcz' - Licq7
5=C5%—F5+tK5, T,5.=L,—-C5% T,5=C%—-Ly,
T, = F5 — C% — K%, chr = chr - rcja chr = chr - Lchi
T =T, Y/ X'+ T, YIX' + T/ Y/ X"+ T, Y X' + T, Y* X+
T, Y'X9+ T YPX + T\ YPXP + T, YPX 9

(A T I T [ — T T I [ — T I
T =F" - F5 K", T1T/,=CY—-F;+K/, T,,=Ly,—C/,

T T T T T T T T T T T
T, =L/, - F;+ K/, T, =F; -C"%—K, T,),=C)y— Ly,
T I T T T T I T T T T
Tba_cba_ ab ab Tpi_Fpi_Lip_K’ip7 TPQ_LPQ_LQP'

Proof. The proof is obtained by direct calculation using (3.12), (3.13) and
the relations:

[X, Y] =[X(Y7) = Y(X7)]&; + [X (V") = Y(X")]dp+
[X(Y7) - Y(X)]8, + A+ B+C + D,

where

A= X'YI(5;6; — 6;0;), B=(XY®—YiX")(8:05 — 50;)
C = (XY =YX (60, — 8,6:), D =X"Y"(6,85 — 640,)-
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Using (2.16) we obtain:

A=XYI(K50. + K, ;0,) = XY (K S50. + K['0,),
where

K =6M;—6MS, K7 =K, + MiKS K, =8N —8NT.
B = (Xin - YiXb)(Kicb‘sc + K0y,
K% =M, Ky = F;b + MK, firb = 6 N{ — i Mj.
O = (XY - ViXOK;,8,, K, =2
- ( - ) iqYr iq — 921 .

D =XY’K",8,, KI,=06M"—5,M:.

Remark. As M = M(z,y), in all above formulae 8, M = 0.

5. Special cases. As mentioned in Definition 3.1 the special connection V
(the so called d-connection) is obtained, if in (3.1) only the underlined terms are
left. More precisely:

Definition 5.1 The d-connection V is defined by:

Vs 0; = F¥6p, Veo,00 = F50., Vs,0,=F,;0r
(51) vdadj = C"jkaak’ vda(Sb = C_’bca(sc, vgaaq = _qTaar
Vo,0; = LF0k, Vo,00 =Ly, Vo,0p=LJ,0:

From (5.1) the following property of d-connection is obvious:
vX Ty = Tw, vX :TV1 _>TV17 vX : TV2 _>TV2

for any vector field X from T(T?M).

THEOREM 5.1. If X and Y are vector fields in T(T>M) expressed in the basis
B (2.15), then

VxY =YX+ VF X+ YFXP) 5 + (VX + Y[ X + Y|, XP)5,
+(YIX 4+ Y, X9+ Y"|,XP)d,,
Y8 =Y+ F5YY, Yolo=0.Y" + 0 YY, Yo, =8,Y" + L)Y,

|é

where either x =k, y=j,orz=c,y=b,orx=r,y=q.

THEOREM 5.2. The connection coefficients C¥,, C%,, C,, LF,, Lf, and

f/qrp with respect to (1.1) are transformed as tensors. The transformation laws for



Pk

J?
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F,° and F_’qri are given by (3.14) if in these formulae the connection coefficients

are overlined.

THEOREM 5.3. The torsion tensor T(X,Y) of d-connection V has the form

T(X,Y) =Tks + T, +T"0,, where

TF=T)YIX'+ TAYIX' + TN Y ' X) + TH Y X+ T veXd,

TC
TT

and

(5.2)

(5.2)

—_

10.

=T5YIX + TSYIXY + T,V X9 + T, VX8 + T,)5 VP X + T,5Y XY,
=T YIX + T, YO X + T YIXT+ T, VX9
+ T, Y X9+ T YIXP + T YP X1

7jk% = iji - F‘zl;7 jkb = —Tbkj = éjkba

o =15 =Lf, i = K5

bC] = _TJC = Fbcj - Kgcb’ acb acb - Cbca’

7bcr = _Trcb = I’bcm Tqrj = _Tqu = quj - KJTQ’
_qu = _Tbrq = _qrb’ Tqu = ‘EPT(I - ‘Eqrp’

_jTi = _Kirj7 Tbra = _Karb'

It is easy to see, that all components of the torsion tensor T' which appear in
with respect to (1.1) transform as tensors.
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