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ON THE CONVERGENCE RATE ESTIMATES
FOR FINITE DIFFERENCE SCHEMES
APPROXIMATING HOMOGENEOUS INITIAL-BOUNDARY
VALUE PROBLEM FOR HYPERBOLIC EQUATION

Vladimir Jovanovié
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Abstract. Applying the interpolation theory of the function spaces, we ob-
tain a new convergence rate estimate for the weak solution of hyperbolic initial-
boundary value problem.

1. Introduction. In the case of elliptic boundary value problem, the
convergence rate estimates for finite difference schemes of the form

lu = vl < CWF|lullm, s>k,

are said to be compatible with the smoothness of data [3]. Here u denotes the
solution of the boundary value problem, v denotes the corresponding discrete ap-
proximation, h is the discretisation parameter, H® denotes the standard Sobolev
space and H ,’f is the discrete Sobolev space. The compatible estimates may also be
derived in parabolic case [4]. But in the hyperbolic case, the usual estimates are
not compatible with the smoothness of data [5]:

lu —vlle, (ary < CH* " Mullgs(q), s>k+1,

These estimates are usually obtained using the Brumble-Hilbert lemma [2].

A few years ago, Zlotnik [12] applied the interpolation theory to obtain for
the hyperbolic projection difference scheme a convergence rate estimate of the order
2(s — k)/3. Using also the interpolation theory, B.S. Jovanovi¢ derived in [6] the
convergence rate estimate of the same order for the finite difference schemes in the
case of homogeneous hyperbolic equation with constant coefficients. Here we show

AMS Subject Classification (1991): Primary 65M06



144 Vladimir Jovanovi¢

how the same estimate can be obtained in the case of homogeneous hyperbolic
equation with variable coefficients.

2. Statement of the problem Let L, = L;(0,1) (1 < g < 00) be Lebesgue
spaces of integrable functions, H* = H*(0, 1) standard Sobolev spaces, D the space
of infinitely differentiable functions with compact support in (0,1) and H{§ is the
closure of D in H®. (,) and || || denote the inner product and the norm in Ly,
respectively. Suppose a € Ly, such that

(1) a>ap>0 in (0,1) ae.

For the operator L: Hi — H~! defined by Lv = (av')’ there exist 0 < A\; < Ay <

..., limg Ay, = 00, such that Ly = Agpr (K € N); the sequence of eigenfunctions

(¢r)ken C Hp is an orthonormed topological basis of Ly (see [8]). Introduce the
o0

spaces V< (a > 0) by V@ = {v € Ly|||v||}. = Zx\gﬂi < oo}, where ¥y, = (v, )
k=1

are the Fourier coefficients of v in the basis (¢k)ken-

Consider the initial-boundary value problem for the homogeneous second-
order hyperbolic equation (IBVP) in the domain @ = (0,1) x (0,T7:

5 d d

57 =5 (@5), @HeQ
u(0,t) =u(1,t) =0 t€[0,T]

du

U(ZE,O) =u0($)7 It

(.Z‘,O) = Ul(.Z'), T e (07 1)

There is the unique weak solution of this problem for ug € V1, u; € V° (see [10],
[12]). It can be represented as the Fourier series

(2) u(@,t) =Y dpn (),
k=1
where,
~(1)
(3) ap(t) = 11560) cos (mt) + 3’“}\7 sin (mt)

(here 11560), 11561) are the Fourier coefficients of the functions wug, u;, respectively).
The relation (3) shows that the series (2) also has meaning for ¢ < 0. In such a way,
the solution of (IBVP) can be extended in ¢ on [-T, T']; this extension we shall also
denote by u. If ug € V%, uy € Vo1, it satisfies the relation

[ l
a—1 < « an
(@ s [10'/0t [yams < Clluollve + fuslly-)
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where | € Z, 0 < | < «a (see the analogous relation in [9] and the proofs of
Propositions 1.1 and 1.3 in [12]). Then, in the perfectly same way as we deduced
Theorem 3 in [9], we obtain, applying (4) that for a € C? satisfying (1), the
following assertion holds:

Ifupe V¥ uy € V21 then

d L a—1 < a a—1
(5) o ax [107u/ 0t (| < Cllluollve + Jluallye-r),

where 1 < a<4,l€ Z,0<I]<a.

3. Discretisation. Lower estimate. Let &, be a uniform mesh on [0, 1]

0
with the stepsize h = 1/n, wy, = @, N (0,1) and w;, = w;, U{0}. We set H(w) to be
the space of all functions defined on @y vanishing at 0 and 1. Introduce the finite
differences in z:

vy = (v(@ +h)—v(z))/h,  vs = (v(z)—v(z - h))/h
We define the following discrete norms

ol = (0 3 @) ol = (1 Y v2(@)

TEWH TEW

lolley = (ol + va )2,

1/2

0 0
The operator Lp: H(w) — H(w) defined by

Lyv = { —1l(avy)s + (avz)e], T € wp

0, z € {0,1}

0
is positive on H (w) and satisfies the inequalities
(6) clvslln < llvllzn) < Cllvelln:

Let @, be a uniform mesh on [—7/2,T| with the stepsize 7 = T'/(m — 1/2),

wr =w,N(0,T), and w; = w, U{—7/2} (see [6]). Let us introduce the following
notations:

v=o(t), d=v(t+7), v=ov(t—7), v =0v((j—1/2)7)
5= (0+9)/2, w=(-v)/r, v=(—0)r

For functions defined on & x @, we define the norms

1/q
lollevrg) = max (., Ollag - and lollz, oy = (7 3 IoC,00E)

Cwy tEw,
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One can easily deduce

0
LEMMA 1. For v € H(w) the inequality ||v||(14+0.25:2(0—1/4)L,) < Cl|v[[n holds
if one of the following two conditions is satisfied:

(i) If o > 1/4, then 7/h < C, where C is an arbitrary constant;
(ii) If o <1/4, then 7/h < 4, /ul_—ii‘ic—g for an so € (0,1), where ¢1 is a constant
depending only on the function a. O
Let S, and S; denote the Steklov smoothing operators in z and #:

z+h/2 t+7/2

1 1
Sef@t) = [ Jeods S =1 [ s

z—h/2 t—7/2

For the approximation of (IBVP) we shall use a weighted finite difference
scheme (FDS) (see [7]):

v = —Lp(c0+ (1 — 20)v + 00),
v(0,t) = v(1,t) =0, tew,

0 _ T @2 1_ T o2

v = ug — 2Szu1, v = ug + 2Szul

Let 2z = u — v denote the error of the approximation.

Suppose ug € V!, u; € VO, a € C? satisfying (1) and that one of conditions in
Lemma 1 holds. Then applying the a priori estimate for FDS (see [7]) one obtains

(7) N(v) < CN(W°),
where N*(w) = [[welltry0.05:2(5—1/4)0,) T 1@][{r,)- Using Lemma 1, we have
(8) ||U?||(I+O.25T(a—1/4)Lh) < C”U?”h = C”SgUl”h < Cllua|

(the last inequality in (8) follows from the Cauchy-Schwartz inequality). The in-
equality (6) yields

1224y = llwollzn) < Cll(uo)alln < Clluoll

(for the last inequality see [6]). From this, using equivalency of the norms in H*
and V! (see [9]), we obtain

182y < Clluollys.
The estimates (7), (8) and the last inequality yield

(9) max 19ll(z,) < Clluollvr + [lulvo)-
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Further, thanks to (5) (for [ =0, @ = 1), we obtain
lallz,y < Cll@)alln < C oax l0u/dx|| < C([luollvr + [lusllyvo),

whence,

(10) max [[ullz,) < C(lluollyr + [luallve).
Wr

Finally, from (7), (9), (10) follows the lower estimate

(11) Izllc, () < Cllluollve + [lusllve).

4. Upper estimate. In this section we suppose that ug € V*, u; € V3,
a € C? satisfying (1) and that one of the conditions in Lemma 1 holds. Then
the inequality (5) implies 8%u/0t?,8%/0z* € H?(Q). Thus, applying the embed-
ding theorem H2(Q) C C(Q) (see [11]) we conclude that 6%u/0t%,0%u/0z? are
continuous. The error z is the solution of the following finite difference scheme:

zg=—Lp(c2+ (1 —-20)2+02)+ 9,
2(0,t) = 2(1,t) = 0, tew,

T T T T
2 =u (m, —5) —uo(z) + 553“1’ 2l =w (m, 5) —uo(z) — §S§u1,

where 1 = ugz + Lp(0t + (1 — 20)u + o). The application of the a priori estimate
to z yields

1
(12) N(z) < C(N(=°) + %H@bllm,f(h,h)),
where ¢ = 1 if (i) in Lemma 1 is satisfied or ¢ = s¢ if (ii) is satisfied. Let us first
estimate N (2°). Decompose the first term in N(2°):

PETICS ETIC

-
T/2 5
1
= T / a—?(w,n)dn —ui(z) +ui(x) — 52111 = g1(z) + g2(x).
—7/2
From
1 o ) i o8
u u u
g1(z) = - / a(w,n)dn - a(ﬂfao) == / /(C—n)ﬁ(w,odcdn,
—T/2 —7/2 0
T/2 n z+h

o= [ [ [ €-m i asican

-7/2 0 =
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we have
lg1lln < Cll(g1)zlln
w-‘rh r/2 t )
(13) lh 3w j(‘6t36 0| dcara) ]
e w —7/2 0
4
<cr temax 8(23330
Further, the equality
ot+h s
p0) =ur(o) = S2us = o [ [ (€= oyt (deas
z—h T

and the equivalence of the norms in H? and V2 imply

(14) llgalln < CR?[luf|| < CR?||usllv=.

Then Lemma 1, together with (13), (5), (14) yields

(15) 8012 o 3y) S €O+ 7)ol + uslly).

For
’ 20 = % (u (m, g) +u (x,—;)) —up(z) =10 (m,g) — u(z,0),
(

where 4(z,t) = (u(z,t) + u(z, —t))/2, the identity

T/2 ¢ 6 R
’LL
——(z, {)d(dt,
#= [ [ a0
holds. Hence,
0%
=0 < < 2 YO
1%l < CllE)alln < OT* max || 255
) 8%u 2
SO x| aeag || < O (lwollve +luallve)-

From (15) and the last estimate one obtains
(16) N(2%) < C(h* + 7°)(|luollvs + lluslvs).
To estimate 1, we shall rewrite it in the following manner:

¢ =ugz+ Lyu+or’Lyug = a+ B+,

1/2



On the convergence rate estimates for finite difference scheme ... 149

where )
o“u
= Uy — o2 ’

Obviously, a = a3 + ag, where

B=—Lu+ Lyu, ~=o01’Lyug.

0%u 0%u  O0%u
But,
0%u 0%u
) 2 @2
ai(z,t) = S 52 S2Si £
LT s—al\ (, _IC—t) B*u(,0)
s—x - u
= — —o (1) (- ’
T Teo(o- 577 (-165)
z—h © t—7
wherefrom,
lei(-8)lln < Ch? ma Ol
. S | e
1R = te[-T,T] || Ot2022 ||’
and consequently, referring to (5), we obtain
(17) letllz, ,(Lop) < Ch2(lluollve + [lurllys).

The term as can be represented in the form

z+h s t+7

ot T Tt (-5 (- K1) 26

z—h x© t—T7

LT s—al\ (,_ In—t 9u(s.0
s—x n— u(s,
- = _ I ) I Y (T
o= / //(C n)( A ) ( - ) o dCdnds,
z—ht—7 t
whence,
0*u 8*u
<Ch? _gu_ 2 gu
lollzs - zam) <€ ter[IlaT),(T] ot20x? ter[riai’},(T] ott |’

and therefore

laall, ;o) < C* +72)(luollve + llurllvs).
From (17) and the last estimate we obtain

(18) lallLy e < C* +7%)(luollvs + [lurllvs).



150 Vladimir Jovanovi¢

Decompose 3 in the following way: 8 = (81 + B2 + B3 + (4, where,

0%u Ou 1
/31261(@—%5), B2 =a (%—§(Um+um)>,

B3 = %(a'—az)(uz—w); Ba = % (a'—%(%+az)> Uz

Combining the estimate max |a(z)| < C and the fact that

z€[0,1]
8%u t)
— — Ugg — 7d ds,
Oz Y h//§ &
z—h
one obtains
< 2 4 4
(19) 181l 1) < OB max [19%u/0a|

Using the relation

z+h s
ou 1 _ 1 (&a)
%—E(Uz%—uf)—ﬁ//(f—s) 923 déds,

z—h T

and the estimate m[aoai |a'(z)| < C we have
e

< 2 3 3 .
(20) 1Bell ey < CH® | muae 0%/ 00|

Applying Taylor’s formula, one has

la'(z) — a;| < h max |a"(z)| < Ch.
z€[0,1]

This estimate and the obvious relation u, — uz = huzz = hS2(8%u/0z?), imply
1) 8ol o) < O o [[0%0/0”|
From Taylor’s formula it follows that
1
la'(z) — ~(as + az)| < Ch® max |a"(z)| < Ch®.
2 z€[0,1]

From this, taking into account that

__1/
T
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we obtain

< Ch? .
(22) 1Ballzs 22y < OB mia [10u/0]

Then (19)—(22), thanks to (5), yield
(23) 1Bz, (22,0) < CH*(luollya + lluallye).

Representing the term + in the form
2

o
Y= _T(azuztf + azUzr + 2aU457),

we easily obtain, using preceding techniques, that

M L1 s 22y < CT*(llollvs + luallys).

The last estimate together with (18), (23) yields
191121 . (2n) < C(B* + 7)((luollva + llulv=).

From this estimate, (16) and (12) it follows that N(z) < C(h% + 72)(|Juo||ve +
[|u1]|v3), whence the upper estimate

(24) IZllc, 2y < C(h+1)*(lwollvs + lluallve).

5. Interpolation. Now we are going to apply the interpolation theory to our
problem. Let {A1, A2} and {Bj, B2} be two interpolation pairs (see [1]). Then, if L
is a continuous linear operator from A; + A, into By + Bs such that its restrictions
L:A; — By and L: Ay — B, are bounded, the inequality

(25) ||L||(A1,A2)9,q—>(B1,Bz)s,q < ”L”}éi;iBl ||L||Z2—>B27

holds for 0 < 8 < 1, 1 < ¢ < oo, where (A1, A2)g,, denotes the interpolation space
obtained by the K-method of real interpolation (see [1]).

THEOREM. Suppose a € C® satisfying (1), u is the weak solution of (IBVP), v
is the corresponding discrete approximation and let one of the conditions in Lemma
1 is satisfied. Then for the error z = u — v the following estimates hold:

@) N2lle, ) < Ch+ 1) DB ((lugllve + [Jutllys-1), 1<s <4,

(@) N|2lle, ayy < C(h+7)*" DB ((luollms +[Jurllgre—1), 1< s <4, s# integer+
1/2,

Proof. (i) Let 2(°) denote the error in the case when u; = 0 and 2(V) in
the case ug = 0. Define the linear operators Ry, Ry by Roug = 29, Ryuy = 2.
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From (11) and (24) it follows that R is a bounded linear operator from V! into
D = C.(H}) and from V* into D. Of course, the corresponding conclusion also
holds for R;. Therefore, the interpolation inequality (25) yields

(26) 1Roll(v4,v1y0n0 < [IRolla?, plIRolIY: s
(27) 1R ll(ve,voy, 00 < IR, plIR G0 s
Applying the interpolation relation (V& ,VP)y, = VA=0e408 o > 3 > 0 (see
Proposition 4 in [9]), we have (V4,V1)go = V4739 and (V3,V0)y, = V3730,

Setting 4 — 30 = s, from (11), (24), (26)—(27) one obtains

129N, a1y < Ch+7)*C D3 uglly-  and

(28)
1Z21W e, 2y < O+ 72D luallyoms.

Using 7z = 29 + 2(1) we finally obtain the desired estimate.
(if) The continuous injection H§ C V¥, 1 < s < 4, s # integer +1/2 (see [9])
applied in (28) implies the estimate (ii). O
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