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ON THE CONVERGENCE
OF A FACTORIZED VECTOR FINITE DIFFERENCE SCHEME

Bosko S. Jovanovié

Communicated by Gradimir Milovanovié

Abstract. We consider a factorized vector finite difference scheme for solving
multi-dimensional heat conduction equation. It can be treated as a vector version of
Peaceman—Rachford scheme. A three-level version of this scheme is used to solve the
wave equation. The stability and the convergence of these schemes are investigated.

Introduction

Different versions of alternating direction method [16], [4] are often used for
numerical solution of multi-dimensional initial-boundary value problems of mathe-
matical physics. Here we have, for example, splitting methods, composite methods,
additive schemes, factorized schemes etc. (see [14]). All these methods directly or
indirectly use the concept of vectorisation, i.e. one unknown mesh function is re-
placed by a vector mesh function.

Here we consider a factorized vector finite difference scheme proposed in [18].
We investigate the two-level and three-level versions of this scheme and prove its
unconditional stability. The convergence rate estimates are obtained for initial-
boundary value problems with generalized solutions from Sobolev spaces. Another
vector finite difference schemes are considered in [1], [2], [9], [10] and [11].

Two-level scheme

As a model problem we consider the first initial-boundary value problem
(IBVP) for the heat conduction equation

Wetutf,  (@)eQ=2x0,1)=01"x0,1),
(1) u(z, 0) = up(x), z €2,
u(z, t) =0, zel'=0N, te(0,T).
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We assume that the generalized solution of IBVP (1) belongs to the anisotropic
Sobolev space W5**/?(Q), s > 1 [13]. In this case there exists a trace ul,_y €
W3i(2) C Ly(2) for t' € [0, T]. We also assume that the solution u can be
oddly extended in space variables outside the domain (2, preserving the Sobolev
class.

Let @ be uniform mesh in 2 with step size h. Let us set w =@ N2, v =
U\w and w; = wU{z = (21,...,2,) € 7|2 =0, 0 < z; <1, j # i}.
Let 6 be uniform mesh on [0, T] with step size 7, § = 6N (0, T), 6~ = 6 U {0}
and 8% = U {T}. Let, also, ¥ be uniform mesh with step size 7 on interval
[-7/2, T —71/2] and ¥ = 9N (-7/2, T —7/2), 9~ = 9 U {—7/2}. Finally, let
Q). =wx 8 and Qu, =w x J. For a function v defined on the mesh Q. or Qp,
we introduce the divided difference operators v,,, vz, , v; and v; in the usual

manner [17]. Let us denote v = v(z, t), o =v(z, t+7) and o =v(z, t— 7).

Let H} be the set of discrete functions defined on the mesh @, which vanish
on 7. The identity operator on Hy will be denoted by I. We also denote

—Vg.z,, TEW n
Aivz{ pe and Av:ZAiv.
0, T EYy =

We introduce the following discrete inner product

(v, w), =h" Z v(z) w(z)

(A
and the norms
follo = @ 0¥ = (0 Y @) and ol = (00 3 v2@)

rEWw TEW;

1/2

For a linear, selfadjoint and nonnegative operator A on Hp with we introduce so
called “energy” seminorm
[vlla = (Ao, v)i/?.

In particular
||U||Ai = (Al U, U)clo/2 = ||Uz'i||wi .

Let us denote H, = Hj . Elements of the space H; will be denoted by
v=_~0,...,v"T, w=(w',..., w")T etc. We introduce the matrix finite-
difference operators I = diag (I, ..., I) and A = diag(A4, ..., A,). We also

define the inner product and the associated norm of vector mesh functions

(v, w) = Z(v’} we,  IVI= (v, )Y

k2
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With T;, T; and T;" we denote the Steklov averaging operators in space vari-
ables z; and time variable ¢ (see [8])

1 $i+h/2
Tzf(xat)zﬁ / f(xla"'axfia"'axnat)dxga
z;—h/2

t+7/2
Tof(a, ) =T fGast =7/ =7 [ fl@r, e on )

T Jt—7/2

Finally, C will stand for a positive generic constant, independent of h and 7.

We approximate the equation (1) by the following finite difference scheme
(FDS) [18]

2) [I+%(L+%I)A] [I+%(U+%I)A]vt+EAv:?, teo,

where = (f,..., )T, f=T2--T>T}f,
00 ... 00 0 I ... 1T
I 0 ...00 -
L=|1 T ... 00 uUu=|[g g I 1| and E=L+I+4+U.
S 00 ... 01
I T ... 10 00 ... 00

Notice, that for a fixed ¢ € § vectors v and f belong to the space Hj, . The initial
condition we approximate with

(3) V|eo = (T7 - Tlug, ..., TE - Tlug)"

The scheme (2-3) is a factorized vector FDS. Here the solution u of IBVP
(1) is approximated by a vector mesh function v. FDS (2-3) can be treated as a
vector version of Peacemann-Rachford method (see [16], [18], [15]).

Since the solution of IBVP (1) may be discontinuous function, the components
of the error-vector z = (2!, ..., 2")T we define by

2 =T - T2u—'.
The vector z satisfies FDS

[I+%<L+%I)A] [I+%(U+ I)A]zt+EAz=<I>, teg,

0,

1
(4) 2
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where @ = (!, ..., ¢")? and
X . r 3= Lo
o= ; (45 + 45x) + 5 ; (; Adx+ EAJ'X)
r n i—1 1 T
+7 3 (Z AjApx + 5AZ-ij) + 340
j=itl k=1
nj:(Hle)<Tj2u—Tt+u), x=ng---T3Ut-

I#£j5
For an abstract two-level FDS
(5) Bz, +Az=7,

in a Hilbert space H the following propositions hold true.

LEMMA 1. If A=A*>0 and B—0.57A >D =D* > 0 then FDS (5)
is stable and the a priori estimate

max 12l +7 3 Nl <2 (lzlolla +7 3 1¥13-1)
tefd— tefd—

holds.
Proof. Applying the inner product with 27z; to the equation (5) we get

27(B—-057A)z, %) + (A2, 2)—(Az,z)=27(T, 7).
From here, using relations
(B—057A)z, 24) > ||zel|hp  and (T, z) <0.5]|zl|p +0.5(¥[[H-,

after summation over the mesh 8, we obtain the desired a priori estimate. O

LEMMA 2. If A=A*>0, B=B* and B—0.57A >0 then FDS (5) is
stable and the a priori estimate

Z+7z|2
| <2 (lzlolbos,a +7 2 I1¥I5-)

2
max ||z _ —+ H
teat lzllg—0.5-a Ttgg_ A P

holds.
Proof. Applying the inner product with 7 (z + z) to the equation (5) we get

P i+z z+z Z+z
(B-0.57A)2,2)— (B-0.574)z, 2)+27 (A 22, 220 ) =27 (v, 227).
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From here, using the inequality

Zz+z lyyz+z)2 1 9
— )<= - _
(‘I” 2 )—2” 2 HA+2”lII||A17

after summation over the mesh #~, we obtain the desired a priori estimate. O

Applying A to (4) we obtain a FDS in the canonical form (5), where

©) B=A+057AEA+0.257°A(L+0.5I)A (U+051)A=B*>0,

A=AEA=A*>0, B-057A>A, T=A® and 0.

z|t=0 =

According to lemma 1 FDS (5)—(6), or (2-3), is absolutely stable. The a
priori estimate

max ||z + Do llzli <27 ) IR =27 Y lI12lR,

ted- tef- teg-
or, in expanded form
(M Dl =max | YA D07 Y Al <2 Y D IR,
teo+ |l 4 w , * , *
i=1 =1 tef- =1 teh—
holds.
Further
no o minfi,g)
||‘pl| 4; < (||ngijij$i wi T ”ijijzi wz) +35 ||X$j-’1_3j$k.’ik.’li w; -
2
j=1 =1 k=1

The value Uij z;0; in the node (z,t) € w; x 6§~ is a bounded linear functional of
uwe Wi *?(e), where e = [T, (zi—3h, z;+3h) x (¢, t+7) and s > 1. Moreover,
M%,z;2; vanishes on the functions of the form u = 27" --- zq» ¥, a1+ ... tan+
28 < 4. Using the Bramble-Hilbert lemma [3], [5], and the methodology proposed
in [12] and developed in [6-8], for 7 < h? (i.e. Cih* <71 < Cyh?), we obtain

< Ch3—4—n/2

3<s<5.

|n;jiﬂ,— |u|W2""’/2(e) ’

From here, by summation over the mesh w; x 8~ , it follows that

(T Z ”nijﬁsz

tef—

2 )1/2 <O fullyy s
Wi — WZ’

Q) 3<s<5.

In the same manner we can estimate Xz;z,z; and 7T Xe,z;z,z.2; - From these es-
timates and the inequality (7) we get the following convergence rate estimate for
FDS (2-3):

(8) llzlls < Ch*=2 [lullye.era 3<s<5.
2

(@°
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The estimate (8) is consistent with the smoothness of the solution of IBVP
(1). Estimates of such type for IBVPs with variable coefficients are obtained in
[6-8].

Another group of convergence rate estimates can be obtained in the following
way. From (4) it follows that
T 1 -1 T 1 -1
2 = [I+§ (U+ 51) A] [I+ > (L+ 51) A] (& - EAz)

and
9) Azt:A[I+g(U+%I)A]71 [I+%(L+%I)A]71(Q—EAz).

Introducing a new “error”

z = A_l i Az Zi
=1

and considering that
EAz=(Az, ..., A2)T,

from (9), by summation of the components of vectors from the left and the right

side of equation, we get
Azg =AY —Az),

and
(10) z+Az=1v¢, tebd ; 2l =0,
where

A:Xn:Ai, zp:A*anjliw",

i=1 i=1
T _g =1 T —2 T 2

As =i (1+7 4:) 11 (r+34) (1-34)

~ . LI -1
(11) AZZ{A,—%AZ Z Aj (I+£AJ) X

j=itl

T (e (- Fa) (e fa) T

k=it+1
(1+34)" (1- 7).

|
—

A; = A (I+£A,~)_1 i

J

I
MR
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Operators A;, A; and A are selfadjoint and satisfy the following relations

OSAzSAz; _AzSAZSA’l7

I—057A= % [I-l—ﬁ (I— %Aj)z’ (I+£A,~)2] >051,
j=1

-2

0<AH<I+£A]-) <A<A.
j=1
For 7 =< h? we also have

A>aA, a = const > 0.

Applying lemmas 1 and 2 to equation (10) and its consequences
A7z 4 2= A7 and Az + A%z = Ay

we obtain the following a priori estimates
Z4 2|2 _
T z |52 <cer Z 14~ 1

sl + 3 H”zH <Cr 3 Wl

(12) 2l

(3) =l

(14) ||z||2=max||z||A+rZHAz”H #r 3 Ik <07 3 W

teo—
Further
(15) 147yl < C (Z 7l + lIxle )
(16) lllamr < C 2 (7l + e s )
(17) 1l <C 3 (e, o + sz 1)
7j=1

In such a way, the problem of deriving the convergence rate estimates for FDS
(10)—(11), or (2-3), is reduced to estimation of terms 57, x, ngj s Xzj s NMp,z, and
Xz;z; - Using the Bramble—Hilbert lemma, in the same manner as in the previous
case, from (12-17) we get

(18) ”Z”O < Ch? ”u”W;’S/Q(Q) ) 1 <s< 27
-1

(19) 2l < R lullyye o2 gy, 1<8<3,
—2

(20) lells € CH = ullyg ooy 2S5 <4
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The estimates (18-20) are also consistent with the smoothness of data.

Three-level scheme

Three-level version of the previous FDS we will consider for the case of the
first IBVP for the wave equation

8%u

W:Au"'fa (.’L‘,t)EQ:QX(O,T):(O,].)nX(O,T),
(21) u(z, 0) = up(z), % =u(z), z €,

u(z, t) =0, zel'=00n, te(0,T).

We assume that the generalized solution of IBVP (21) belongs to the Sobolev space

W3(Q), s> 2 [13]. In this case there exists a trace ul,_, € W, 1/2(.(2) C Ly(02)
for t' € [0, T]. We also assume that the solution u can be oddly extended in space
variables outside the domain (2, preserving the Sobolev class.

On the mesh (Q, we approximate IBVP (21) by the following three-level
factorized vector FDS

(22) [I+T4—2(L+%I)A] [I+%2(U+%I)A]vtg+EAv=f, ted,

where f = (f,..., )T, f=T,---T,T, f. The initial conditions we approxi-
mate by

T
(23) V|t::':_r/2 = (T1 .- -Tn (Uo F 0.57'u1), ey T1 .. -Tn (’LLo F 0.57'U1))

Similarly as in the previous case, we define the errors

2'=T---Thu—1° and set z= (2" ..., 2")".

Vector z satisfies FDS

(24) [”%(I”L%I)A] 1+ (U+%
(

I)A] 2;+EAz=0, ted,
Tl p=b, 05+

i)'tzf‘r/2 = d )

where ® = (¢!, ..., "), b=(8,...,8)T, d=(6,...,8)T and
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) n ) T2 -1 j-—1 1
gOzngrZ(nurA,-gHZ[ (ZAkAj<+§A§g)
j=1

j=1 k=1

n i—1
Y (T AkAj<+%A,-A,-c)+§A§<],

j=i+l k=1
8%u
§ =TT (ua =T 57 )
; 0%u
=TTy (T} =—5 — Uz, z,
n 1 n( taz.? uzjz]);

2

r
¢ =TT Toug,
ou Ou
=TT Tt — — —
6 1 n( tat 6t)t:07
§ =05Ty Ty (e _pyp—2 ulymg+ uliryy) -

For a three-level FDS
(25) CZt{-i-AZ:‘I’,

in a Hilbert space H the following assertion holds true.

LEMMA 3. If A=A*>0 and C—-0.2572A > D = D* > 0 then FDS
(25) is stable and the a priori estimate

max N(z) SN(@)|__,+7 > [1¥lo-,
ted

holds, where
9 zZ+Z|>2
N*(z) = ||ZtHc_0.25r2A + H 2 HA'

Proof. Applying the inner product with Z — z = 7 (2z; + zz) to the equation
(25) we get
N%(z) — N*(z) =7 (U, z; + z7) .
From here, using the inequalities

(2,2 +2z7) < [|¥]lp-: ([lzellp + llzllp) < [¥]lp-1 [N(2) + N (2)],

dividing by N(z) + N(z) and summing over the mesh 1, we obtain the desired a
priori estimate. [
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Applying A to (24) we obtain a FDS in the canonical form (25), where
2 4
C=A+ ZAEA+1—6A(L+O.51)A (U+050)A=C*>0,
A=AEA=A*>0, C—-02572A>A and T=A%.

Applying lemma 3 we obtain the a priori estimate

(26) max N(z) < N@)|_ )+ Y (][5
ted
Further
2 zZ+ 7|2 2 Z+ Z 2
Nz(z) = Hzt”cfo.2572A 2 lla > ”zt”A + HA 2 HE

0 N Rk
=S+ 3 A =
i=1 i=1

N*(2)|,__, ), = [bll& o252 a + [Idl[a

zé (Ilﬂl %1,.+%H%A,-ﬂ+ i Ajﬂ”l) +Hi/1i5
= j=i+1 P

ol = ol = (3 113,)

Replacing these in (26), in the case when h and 7 are of the same order (r < h),
we get
w,-) :

To derive the convergence rate estimate we need to estimate the terms cp;i ,
Bz; 1 03,z - Using the Bramble-Hilbert lemma, similarly as in the previous cases,
for 7 < h, we get from (27)

2
g
w

en  maxlek<C ) (18l + 13w

PN (28

ted

(28) max |12l < OW* 7 lullws ), 3<s<5.

Similarly as in the case of two-level FDS, denoting

n
zZ = A71 Z Az Zi s
i=1
from (24) we get a FDS in the form

th+AZ:1/), t€19,

29 A
(29) tlhe o p =B 054D,y =0,
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where ) )
A:Z:ZIAZ, qp:A*ll:ZlA“p@,
A= A <I+%2Az)72 E (I+§AJ)72 (I_fA,)2,
i = {Az— A j;l A (I+%2AJ)71><
<L () (-5 a5 )"
s ) () (- 5)

0<A; <A, - <A <Ay,

1 o 72 2 T2
== - — >

1-02572 4 2[+,-1:[1(I SA,) I+8A,) ] 051
n 7_2 _9

0<AH(I+§AJ> <A<A

j=1

For 7 < h we have
A>aA, a =const > 0.

Using these relations and lemma 3 one obtains the a priori estimate

max [|z]]1 = max (||zt|| + Hz+zH )1/2

<o (I8l + Zj Jou + X3 ).

tey i=1

(30)

Similarly, applying operator A*~! (k =2, 3,...) to equation (29) and repeating
z+2 |

the same procedure, we get
. 2 \1/2
max ||z||x = max (Hztnz + H )
ted ted Akt 2 llax

C (IBlLas—s + (18] 4o +7 3° D efllae—s) -

ted i=1

(31)
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In such a way, estimating the right-hand side terms in (30) and (31) using

Bramble—Hilbert lemma, in the same manner as in the previous cases, we obtain
the following convergence rate estimate for the FDS (29), or (22-23)

10

11

12

13
14
15

16

17
18

< O ps k1 s 1<s< : =1,2,....
max [zl S R flulwsiq)s  k+1Ss<k+3; k=12
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