O-REGULARLY VARYING FUNCTIONS AND SOME ASYMPTOTIC RELATIONS

Dragan Đurčić

Communicated by Stevan Pilipović

Abstract. We prove that in the class of measurable positive functions defined on the interval $I_a = [a, +\infty)$ (a > 0), the class of functions which preserve the strong asymptotic equivalence on the set of functions $\{x: I_a \mapsto \mathbb{R}^+, x(t) \to +\infty, t \to +\infty\}$, is a class of \mathcal{O} -regularly varying functions with continuous index function. We also prove a representation theorem for functions from this class, and a morphism-theorem for some asymptotic relations.

1. Introduction and auxiliary results

Throughout this paper, we shall use the following denotations:

$$I = (0, +\infty),$$
 $I_a = [a, +\infty)$ $(a > 0),$ $F: I_a \mapsto I,$
$$K_F(t) = \lim_{x \to +\infty} \frac{F(tx)}{F(x)} \qquad (t \in I).$$

Consider arbitrary functions x, y, F which are positive on the interval I_a, F is measurable on I_a , and $x(t), y(t) \to +\infty$ as $t \to +\infty$. Consider the relation

$$(1) \hspace{1cm} x(t) \sim y(t) \hspace{0.2cm} (t \to +\infty) \implies F(x(t)) \sim F(y(t)) \hspace{0.2cm} (t \to +\infty).$$

The class of all functions F satisfying relation (1) is denoted in this paper by CRV. This abbreviation is motivated by Theorem 2, where we proved that all functions $F \in CRV$ have continuous index functions.

Definition 1. A function $F: I_a \to I$ belongs to the class ORV if it is measurable and $K_F(t) < +\infty$ for every $t \in I$.

Lemma 1. For a positive and measurable function $F: I_a \mapsto I$, the next relations are mutually equivalent:

- (a) F satisfies relation (1);
- (b) If (a_n) and (b_n) are arbitrary sequences tending to $+\infty$, then $a_n \sim b_n$ as $n \to \infty$ implies $F(a_n) \sim F(b_n)$ as $n \to \infty$;
 - (c) It holds true

$$\lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \frac{F(\lambda x)}{F(x)} = 1.$$

Proof. (a) \implies (b). Taking $x(t) = a_n$ and $y(t) = b_n$ for $n \le t < n+1$, we have

$$\lim_{n \to \infty} \frac{F(a_n)}{F(b_n)} = \lim_{t \to +\infty} \frac{F(a_{[t]})}{F(b_{[t]})} = 1.$$

(b) \Longrightarrow (c). Take any sequence $x_n > 0$ tending to $+\infty$, and any sequence $\lambda_n > 0$ tending to 1, as $n \to \infty$. Putting $a_n = \lambda_n x_n$, $b_n = x_n$ and using (b), we find

$$\lim_{n \to +\infty} \frac{F(\lambda_n x_n)}{F(x_n)} = 1,$$

whence we get (c).

(c) \Longrightarrow (a). By relation (c), we conclude that for every $\epsilon > 0$, there exist some $\Delta(\epsilon)$ and $\delta(\epsilon) > 0$ such that $|F(\lambda x)/F(x) - 1| < \epsilon$ for $x \geq \Delta(\epsilon)$ and $|1 - \lambda| \leq \delta(\epsilon)$. By assumptions from (a), we have $|x(t)/y(t) - 1| \leq \delta(\epsilon)$ if $t \geq t_1$, and $y(t) \geq \Delta(\epsilon)$ if $t \geq t_0$. Taking $t_2 = \max\{t_0, t_1\}$, we finally find $|F(x(t))/F(y(t)) - 1| < \epsilon$ for $t \geq t_2$. \square

Examples. I. If F is an arbitrary function from the class RV with index $\rho \in \mathbb{R}$, then $F(x) = x^{\rho}L(x)$ for some function $L \in SRV$ and all $x \in I_a$. By Lemma 1(c) and the Uniform convergence theorem for slowly varying functions [3], we obtain $F \in CRV$.

- II. The function $F(x) = 2 + \sin(\log x)$ $(x \in I_a)$ belongs to the class ORV, but does not belong to the class RV. Nevertheless we have $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(F(\lambda x) / F(x) \right) = 1$. The similar is true for the function $F(x) = \exp\{\sin(2\log x)\}$ $(x \in I_a)$.
- III. If ϵ is an arbitrary bounded, measurable function on the interval I_B , then the function $F(x) = \exp \left\{ \int_B^x \frac{\epsilon(t)}{t} \, dt \right\} \ (x \in I_B)$ belongs to the class ORV, and we have the inequality $\lambda^a \leq F(\lambda x)/F(x) \leq \lambda^b \ (x \in I_B, \lambda \geq 1)$, whenever $a \leq \epsilon(t) \leq b$ $(t \in I_B)$. For any value $\lambda < 1$, we have the reverse inequalities. Hence, we have $\lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \left(F(\lambda x)/F(x) \right) = 1$, i.e. $F \in CRV$.

Remark. By a straightforward calculation, it can be easily checked that

- (a) if $F, G \in CRV$, then $F \cdot G \in CRV$;
- (b) if $F \in CRV$, then $1/F \in CRV$;
- (c) if $F,G\in CRV$, $F\circ G$ is a measurable function, and $G(x)\to +\infty$ as $x\to +\infty$, then $F\circ G\in CRV$.

Hence we conclude the class CRV is a multiplicative group, and the class $CRV^{\infty}=\{F\in CRV|\lim_{x\to+\infty}F(x)=+\infty\}$ is a groupoid with respect to the composition of functions.

IV. Let F be any function from the Matuszewska class [3]. Then for some $c \in \mathbb{R}$, and some measurable, bounded functions μ and ϵ on I, such that $\lim_{x \to \infty} \mu(x) = 0$, we have the representation

(2)
$$F(x) = \exp\left\{c + \mu(x) + \int_{1}^{x} \frac{\epsilon(t)}{t} dt\right\}.$$

From this representation, we conclude that $F \in CRV$.

V. The function $F(x)=2+\sin x$ $(x\in I)$ belongs to the class ORV, but the limit $\lim_{\substack{\lambda\to 1\\x\to +\infty}} \left(F(\lambda x)/F(x)\right)$ does not exist. Hence $F\not\in CRV$.

Lemma 2. Every function F from the class CRV defined on I_a , belongs to the class ORV.

Proof. If $F \in CRV$ and $\epsilon > 0$, then there are an $x_0 \in I_a$ and $\delta > 0$ such that $1 - \epsilon \le F(\lambda x)/F(x) \le 1 + \epsilon$ whenever $x \ge x_0, |1 - \lambda| \le \delta$. Hence $F \in ORV$. \square

Since the class CRV is a proper subclass of the class ORV, and any function $F \in ORV$ has the representation

(3)
$$F(x) = \exp\left\{\mu(x) + \int_{B}^{x} \frac{\epsilon(t)}{t} dt\right\} \qquad (x \in I_{B}),$$

for some measurable, bounded functions μ and ϵ on I_B , by the remark above and Example III, we have

(4)
$$F \in CRV \iff \lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \left(\mu(\lambda x) - \mu(x) \right) = 0.$$

Lemma 3. For a continuous function $h: I_{\log A} \to \mathbb{R}$, the next conditions are equivalent:

- (a) h is uniformly continuous on $I_{\log A}$;
- (b) $\lim_{\substack{\lambda \to 0 \\ x \to +\infty}} (h(\lambda + x) h(x)) = 0.$

Proof. (a) \Longrightarrow (b). If h is uniformly continuous on $I_{\log A}$ and $\epsilon > 0$, then there is a $\delta > 0$ such that $|h(x') - h(x'')| < \epsilon$ for arbitrary $x', x'' \in I_{\log A}$ such that $|x' - x''| \le \delta$. Thus, we have $|h(\lambda + x) - h(x)| < \epsilon$ whenever $x, \lambda + x \in I_{\log A}$, and $|\lambda| \le \delta$. Hence, for sufficiently large $x \in I_{\log A}$ and $|\lambda| \le \delta$ we have $|h(\lambda + x) - h(x)| < \epsilon$, i.e. we have (b).

(b) \Longrightarrow (a). From (b) it follows that for any $\epsilon > 0$ there are x_0, λ_0 such that $|h(\lambda + x) - h(x)| < \epsilon$ whenever $x \ge x_0$ and $|\lambda| \le \lambda_0$. Hence, h is a uniformly continuous function on I_{x_0} . If $x_0 > \log A$, then h is uniformly continuous on the interval $[\log A, x_0]$, so h is uniformly continuous on $[\log A, +\infty)$. \square

COROLLARY 1. For any function F, positive and continuous on the interval I_A , the next conditions are mutually equivalent:

- (a) $F \in CRV$;
- (b) $F(x) = \exp\{h(\log x)\}\ (x \geq A)$, where the function $h(x) = \log F(e^x)$ $(x \in I_{\log A})$ is uniformly continuous on $I_{\log A}$.

Lemma 4. If $h: I_{\log A} \mapsto \mathbb{R}$ is a measurable and bounded function on $I_{\log A}$, then the next conditions are mutually equivalent:

(a) $h(x) = \mu(x) + r(x)$ ($x \in I_{\log A}$), where μ is a measurable, bounded function such that $\mu(x) \to 0$ as $x \to +\infty$, and r is bounded and uniformly continuous on $I_{\log A}$;

(b)
$$\lim_{\substack{\lambda \to 0 \\ x \to +\infty}} \left(h(\lambda + x) - h(x) \right) = 0.$$

Proof. (a) \Longrightarrow (b) is trivial.

(b) \Longrightarrow (a). For any $\delta>0$, denote $\omega_{\delta}(x)=\sup\{|h(x')-h(x)|:x,x'\in I_{\log A}\}$. Then for every $\epsilon>0$, there is an $M=M(\epsilon)$ and a $\delta_0=\delta_0(\epsilon)>0$ such that $\omega_{\delta}(x)<\epsilon$ for $x\geq M, \delta\leq \delta_0$. Next for $t\geq B\geq \log A$, there is a function $\varphi_t(x)\in C(\mathbb{R})$ such that $\sup \varphi_t(x)\subseteq (t-1/t,t+1/t), \ \varphi_t\geq 0$ on $\mathbb{R}, \ \int_{\mathbb{R}}\varphi_t(x)dx=1$ and $F(t,x)=\varphi_t(x)$ is a continuous function with respect to the variables (t,x). Then $f(t)=\int_{I_B}\varphi_t(x)h(x)dx=\int_{I_B}F(t,x)h(x)dx$ is a continuous function on $t\in I_B$. Now $\nu(t)=h(t)-f(t)$ is a measurable function on I_B , and we have

$$|\nu(t)| = |h(t) - f(t)| = \Big| \int_{I_B} \varphi_t(x) (h(x) - h(t)) \, dx \Big| \le$$

$$= \int_{I_B \cap (t-1/t, t+1/t)} \varphi_t(x) |h(x) - h(t)| \, dx \le \omega_{2/t}(t).$$

Hence we obtain $\nu(t) \to 0$ as $t \to +\infty$, and consequently $h(t) = f(t) + \nu(t)$ ($t \in I_B$). Since $\nu(t) \to 0$ as $t \to +\infty$, we find ν and consequently f satisfy condition (b). Denoting $B = \log A$, f(x) = r(x) and $\nu(x) = \mu(x)$ for $x \in I_{\log A}$, we see that both r and μ are bounded on $I_{\log A}$. By Lemma 3, we immediately get condition (a). \square

Remark. By a straightforward calculation, one can check the function

$$\varphi_t(x) = F(t,x) = \left\{ \begin{array}{cc} 0, & x \in (-\infty,t-1/2t\,] \cup [\,t+1/2t,+\infty) \\ 2\,t(1-2t\,|x-t|), & |x-t| < 1/2t \end{array} \right.$$

defined for t > B, satisfies all the conditions from Lemma 4.

2. Representation and characterization theorems for the class CRV

Theorem 1 (Representation theorem). A function F belongs to the class CRV if and only if we have

(5)
$$F(x) = \exp\left\{\tilde{\mu}(x) + r(\log x) + \int_{B}^{x} \frac{\epsilon(t)}{t} dt\right\} \qquad (x \in I_{B}),$$

where ϵ is a measurable, bounded function on some interval I_B $(B \in I)$, $\tilde{\mu}$ is a measurable, bounded function on the same interval I_B such that $\tilde{\mu}(x) \to 0$ as $x \to +\infty$, and r is a uniformly continuous, bounded function on the interval $I_{\log B}$.

Proof. By relation (4), a function $F \in CRV$ if and only if

$$\lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \left(\mu_1(\log \lambda + \log x) - \mu_1(\log x) \right) = 0,$$

where $\mu_1(\log x) = \mu(x)$ $(x \in I_B)$, thus $\mu_1(x) = \mu(e^x)$ $(x \in I_{\log B})$. Using the substitution $\log \lambda = k$, $\log x = t$, the limit above can be written in the form

$$\lim_{\substack{k\to 0\\t\to +\infty}} \left(\mu_1(k+t) - \mu_1(t)\right) = 0.$$

By Lemma 4, the previous condition is satisfied if and only if the measurable and bounded function $\mu_1(x) = \mu(e^x)$ can be written as $\mu_1(x) = \overline{\mu}(x) + r(x)$ on $I_{\log B}$, where $\overline{\mu}$ and r are bounded, $\overline{\mu}$ is measurable, $\overline{\mu}(x) \to 0$ as $x \to +\infty$, and r is uniformly continuous on $I_{\log B}$. Here we can obviously use $\mu(x) = \mu_1(\log x) = \overline{\mu}(\log x) + r(\log x)$ for $x \in I_B$ and $\overline{\mu}(\log x) = \tilde{\mu}(x)$ for $x \in I_B$. \square

THEOREM 2 (Characterization theorem). A function F belongs to the class CRV if and only if the index function $K_F(\lambda)$ is continuous in $\lambda \in I$.

Proof. Assume $F \in CRV$. Then for every $\epsilon > 0$, there are a $\delta > 0$ and $\Delta > 0$ so that

$$1 - \epsilon < \frac{F(\lambda x)}{F(x)} < 1 + \epsilon,$$

if $x \ge \Delta$ and $|1 - \lambda| \le \delta$. Hence we get $1 - \epsilon < K_F(\lambda) < 1 + \epsilon$ if $|1 - \lambda| \le \delta$, thus $\lim_{\lambda \to 1} K_F(\lambda) = 1$. By a result from [2], it follows the function $K_F(\lambda)$ is continuous on I.

Next assume $F \in ORV$ and the function $K_F(\lambda)$ is continuous on I. By a result from [2], we then have

$$\lim_{u \to +\infty} \sup_{\lambda \in T} \left(\sup_{x > u} \frac{F(\lambda x)}{F(x)} - K_F(\lambda) \right) = 0,$$

for any compact $T \subseteq I$. Hence, for any $\epsilon > 0$, there are a $u_0 > 0$ and a p > 1 such that $F(\lambda x)/F(x) \le K_F(\lambda) + \epsilon$ whenever $x \ge u_0$ and $1/p \le \lambda \le p$. Consequently, $\overline{\lim_{\lambda \to 1, x \to +\infty}} \left(F(\lambda x)/F(x) \right) \le 1 + \epsilon$. If we put $y = \lambda x$ and $\mu \lambda = 1$, we obtain $F(y)/F(\mu y) \le K_F(1/\mu) + \epsilon$ whenever $1/p \le \mu \le p$ and $y \ge pu_0$. Consequently, we obtain $\overline{\lim_{\mu \to 1, y \to +\infty}} \left(F(y)/F(\mu y) \right) \le 1 + \epsilon$. Hence we get

$$\frac{1}{1+\epsilon} \le \lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \frac{F(\lambda x)}{F(x)} \le \lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \frac{F(\lambda x)}{F(x)} \le 1+\epsilon,$$

and consequently $\lim_{\substack{\lambda \to 1 \\ x \to +\infty}} (F(\lambda x)/F(x)) = 1$. This means that $F \in CRV$. \square

Corollary 2. If F is a measurable, positive function on the interval I_a , then the following is true:

(a)
$$\overline{\lim}_{\lambda \to 1} \overline{\lim}_{x \to +\infty} \frac{F(\lambda x)}{F(x)} = 1 \implies \lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \frac{F(\lambda x)}{F(x)} = 1;$$

(b)
$$\lim_{\substack{\lambda \to 1 \\ x \to +\infty}} \frac{F(\lambda x)}{F(x)} = 1 \implies \lim_{\lambda \to p} \overline{\lim_{x \to +\infty}} \frac{F(\lambda x)}{F(x)} = K_F(p), \ p > 0$$
$$(K_F(1) = 1).$$

For implication (a), one can consult [2].

COROLLARY 3. If F is any continuous positive function on the interval I_A , then the following conditions are equivalent:

(a)
$$\overline{\lim}_{\lambda \to 1} \overline{\lim}_{x \to +\infty} \frac{F(\lambda x)}{F(x)} = 1;$$

(b) The function $h(x) = \log F(e^x)$ is uniformly continuous on the interval $I_{\log A}$.

COROLLARY 4. Every function from the Matuszewska class ERV has the continuous index function $K_F(\lambda)$ on the interval I.

By the next example, we prove that $ERV \subseteq CRV$.

Example VI. Notice that the function $F(x) = \exp(|\sin(\log x)|)^{1/2}$ has the following properties:

- (a) $F: I \mapsto I; \quad F(1) = 1;$
- (b) For arbitrary $s, t \in I$,

$$F(st) = \exp(|\sin(\log s + \log t)|)^{1/2} \le \exp(|\sin\log s| + |\sin\log t|)^{1/2} \le \exp((\sin\log s))^{1/2} + (|\sin\log t|)^{1/2}) = F(s) \cdot F(t).$$

(c) If
$$p = e^{2\pi} > 1$$
, then $F(pt) = \exp(|\sin(\log t + 2\pi)|)^{1/2} = F(t)$.

Hence, by a result from [2], we have $\overline{\lim}_{x\to+\infty} \left(F(\lambda x)/F(x)\right) = F(\lambda)$ for every $\lambda \in I$, which gives $F \in CRV$. On the other side, assuming $F \in ERV$, we find a real number c such that $\overline{\lim}_{x\to+\infty} \left(F(\lambda x)/F(x)\right) = K_F(\lambda) \le \lambda^c \ (\lambda \ge 1)$, that is $\left(\log K_F(\lambda)\right)/(\log \lambda) \le c$, for every $\lambda > 1$. Then

$$\frac{\log K_F(\lambda)}{\log \lambda} = \frac{\log F(\lambda)}{\log \lambda} = \frac{(|\sin(\log \lambda)|)^{1/2}}{\log \lambda} \le c$$

for all λ close to 1. But since

$$\lim_{\lambda \to 1+} \frac{(|\sin\log\lambda|)^{1/2}}{\log\lambda} = \lim_{\lambda \to 1+} \frac{1}{(\log\lambda)^{1/2}} = +\infty,$$

we get the contradiction. This proves that $F \notin ERV$. \square

Since

$$SRV \subseteq RV \subseteq ERV \subseteq CRV \subseteq ORV$$
.

using the corresponding representation theorems for classes ERV, CRV and ORV, we get the following conclusion: If ϵ is a bounded, measurable function on the interval I_B , and

$$F(x) = \exp\left\{\nu(x) + \int_{B}^{x} \frac{\epsilon(t)}{t} dt\right\} \qquad (x \in I_{B}),$$

then $F(x) \in ORV$ if and only if ν is a measurable and bounded function on I_B , while $F(x) \in CRV$ if and only if $\nu(x) = r(\log x) + \mu(x)$ ($x \in I_B$) where $r \circ \log$, μ are bounded on I_B , r is uniformly continuous on $I_{\log B}$, μ is measurable on I_B , and $\mu(x) \to 0$ as $x \to +\infty$. We also recall that $F(x) \in ERV$ if and only if $\nu(x) = c + \mu(x)$ ($x \in I_B$), where $c \in \mathbb{R}$ and μ is a measurable and bounded on I_B such that $\mu(x) \to 0$ as $x \to +\infty$.

3. Morphism theorem

Let $H = \{x | x : I_a \mapsto I\}$, $H_1 = \{x \in H | x(t) \to +\infty, t \to +\infty\}$. If \simeq denotes the asymptotic similarity of functions, and ρ_1, ρ_2 are arbitrary relations from the set $\{\sim, \simeq, \approx\}$, then let Hom $((H_1, \rho_1); (H, \rho_2))$ be the set of all measurable functions $F: I_a \mapsto I$ such that

$$x(t) \rho_1 y(t) \quad (t \to +\infty) \implies F(x(t)) \rho_2 F(y(t)) \quad (t \to +\infty)$$

for any two functions $x, y \in H_1$.

Theorem 3. Let $F: I_a \mapsto I$ be a measurable function. Then:

- (a) $F \in ORV \implies F \in Hom((H_1, \times); (H, \times));$
- (b) $F \in \text{Hom}((H_1, \sim); (H, \asymp)) \implies F \in ORV;$
- (c) $F \in CRV \implies F \in Hom((H_1, \sim); (H, \sim));$
- (d) $F \in \text{Hom}((H_1, \sim); (H, \simeq)) \implies F \in CRV;$
- (e) $F \in RV \iff F \in \text{Hom}((H_1, \simeq); (H, \simeq));$
- (f) $F \in SRV \implies F \in \text{Hom}((H_1, \times); (H, \sim));$
- (g) $F \in \text{Hom}((H_1, \times); (H, \simeq)) \implies F \in SRV;$
- (h) $F \in \text{Hom}((H_1, \simeq); (H, \sim)) \implies F \in SRV.$

Proof. (a) If a function $F \in ORV$, then using some results from [1] we have $\overline{\lim}_{x \to +\infty} \sup_{\lambda \in K} \left(F(\lambda x) / F(x) \right) < +\infty$ for any compact interval $K \subseteq I$. Hence, for any functions $x,y \in H_1$ such that $x(t) \approx y(t)$ as $t \to +\infty$, there is an M>0 such that

$$\frac{F(x(t))}{F(y(t))} = \frac{F\left(\frac{x(t)}{y(t)}y(t)\right)}{F(y(t))} \le M < +\infty \qquad (t \ge t_0).$$

Similarly, since $\varliminf_{x\to+\infty} \left(F(\lambda x)/F(x)\right)>0$ holds uniformly in $\lambda\in K,$ we find

$$\frac{F(x(t))}{F(y(t))} = \frac{F\left(\frac{x(t)}{y(t)}y(t)\right)}{F(y(t))} \ge m > 0,$$

for some m > 0 and all $t \ge t_0$. Consequently, $F \in \text{Hom}((H_1, \times); (H, \times))$.

- (b) If $F \in \text{Hom}((H_1, \sim); (H, \approx))$, then similarly as in Lemmas 1 and 2 we obtain $F \in ORV$.
 - (c) If $F \in CRV$, then by Theorem 2 we have $F \in \text{Hom } ((H_1, \sim), (H, \sim))$.
- (d) Assume $F \in \operatorname{Hom} \left((H_1, \sim); (H, \simeq) \right)$. Then for arbitrary functions $x, y \in H_1$ such that $x(t) \sim y(t)$ as $t \to +\infty$ we have $F(x(t)) \simeq F(y(t))$ as $t \to +\infty$. Taking two arbitrary sequences $(a'_n), (b'_n)$ tending to $+\infty$ as $n \to \infty$, such that $a'_n \sim b'_n$ as $n \to \infty$, we have $\lim_{n \to \infty} \left(F(a'_n) / F(b'_n) \right) = c'$. Taking any other sequences $(a''_n), (b''_n)$ with the similar properties, we get $\lim_{n \to \infty} \left(F(a''_n) / F(b''_n) \right) = c''$. If a_n is the general term of the sequence $a'_1, a''_1, a'_2, a''_2, \ldots$, and b_n is the general term of the sequence $b'_1, b''_1, b'_2, b''_2, \ldots$, then we obviously have $\lim_{n \to \infty} \left(F(a_n) / F(b_n) \right) = c$. Hence we get c = c' = c'' = 1, thus $F \in CRV$.
- (e) If $F \in RV$, then there is a function $L \in SRV$ and a number $\rho \in \mathbb{R}$ such that $F(t) = L(t) t^{\rho}$ for all $t \in I_a$. If x, y are arbitrary functions from the class H_1 such that $x(t)/y(t) \to c > 0$ as $t \to +\infty$, then

$$\lim_{t\to +\infty} \frac{F(x(t))}{F(y(t))} = \lim_{t\to +\infty} \left(\frac{x(t)}{y(t)}\right)^\rho \cdot \lim_{t\to +\infty} \frac{L\left(\frac{x(t)}{y(t)}\,y(t)\right)}{L(y(t))} = c^\rho,$$

which means that $F \in \text{Hom}((H_1, \simeq); (H, \simeq))$. Here we used the Uniform convergence theorem for slowly varying functions.

Conversely, suppose $F\in {\rm Hom}\; \bigl((H_1,\simeq);(H,\simeq)\bigr),\; \lambda>0,\; x\in H_1 \mbox{ and } y=\lambda x.$ Then

$$\lim_{t\to +\infty} \frac{F(y(t))}{F(x(t))} = \lim_{t\to +\infty} \frac{F(\lambda\,x(t))}{F(x(t))} = d(\lambda) < +\infty.$$

Using the characterization theorem for functions from the class RV, we have $d(\lambda) = \lambda^{\rho}$ for some $\rho \in \mathbb{R}$, which gives $F \in RV$.

(f) If $F \in SRV$, then by the Uniform convergence theorem for slowly varying functions, we obtain $F \in \text{Hom}((H_1, \times); (H, \sim))$.

- (g) Let $F \in \operatorname{Hom} \big((H_1, \asymp); (H, \simeq) \big)$. Then for arbitrary sequences (a'_n) , (b'_n) such that $a'_n, b'_n \to +\infty$ and $a'_n \asymp b'_n$, we have $\lim_{n \to +\infty} \big(F(a'_n)/F(b'_n) \big) = c'$. For any other sequences $(a''_n), (b''_n)$ with the similar properties, we obtain $\lim_{n \to \infty} \big(F(a''_n)/F(b''_n) \big) = c''$. Denoting the general term of the sequence $a'_1, a''_1 a'_2, a''_2, \ldots$ by a_n , and the general term of the sequence $b'_1, b''_1, b'_2, b''_2, \ldots$ by b_n , we have $a_n \asymp b_n$ as $n \to \infty$, whence $\lim_{n \to \infty} \big(F(a_n)/F(b_n) \big) = c$. Hence we get c = c' = c'' = 1. If next (a_n) is an arbitrary sequence such that $a_n \to +\infty$ as $n \to \infty$, $\lambda > 0$ and $b_n = \lambda a_n$, then we get $\lim_{n \to \infty} \big(F(\lambda a_n)/F(a_n) \big) = 1$. This means that $F \in SRV$.
- (h) Finally, assume $F \in \text{Hom}((H_1, \simeq); (H, \sim)), x \in H_1 \text{ and } y = \lambda x \text{ for some } \lambda > 0$. Then obviously

$$\lim_{t \to +\infty} \frac{F(y(t))}{F(x(t))} = \lim_{t \to +\infty} \frac{F(\lambda x(t))}{F(x(t))} = 1,$$

which means that $F \in SRV$. \square

COROLLARY 5. Let $F: I_a \mapsto I$ be a measurable function. Then:

- (a) $F \in ORV \implies F \in \operatorname{Hom}((H_1, \simeq); (H, \asymp)) \cap \operatorname{Hom}((H_1, \sim); (H, \asymp));$
- (b) $F \in \text{Hom}\left((H_1, \asymp); (H, \asymp)\right) \cup \text{Hom}\left((H_1, \simeq); (H, \asymp)\right) \implies F \in ORV;$
- (c) $F \in CRV \implies F \in \text{Hom}((H_1, \sim); (H, \simeq));$
- (d) $F \in \text{Hom}((H_1, \sim); (H, \sim)) \implies F \in CRV;$
- (e) $F \in SRV \implies F \in \text{Hom}((H_1, \times); (H, \simeq)) \cap \text{Hom}((H_1, \infty); (H, \sim));$
- (f) $F \in \text{Hom} ((H_1, \times); (H, \sim)) \implies F \in SRV.$

Remark. The proposition " $F \in ORV$ if and only if $F \in Hom((H_1, \simeq); (H, \approx))$ " is closely related to the definition of the class ORV, which have been introduced by V. Avakumović 1935.

Acknowledgement. The author is very grateful to D. Aranđelović, M. Pavlović and M. Arsenović for their help in preparation of this paper.

References

- S. Aljančić, D. Aranđelović, O-regularly varying functions, Publ. Inst. Math. (Beograd) 22(36) (1977), 5-22.
- [2] D. Arandelović, O-regularly variation and uniform convergence, Publ. Inst. Math. (Beograd) 48(62) (1990), 25-40.
- [3] N.H. Bingham, C.M. Goldie, J.L. Teugels, "Regular Variation", Cambridge Univ. Press, Cambridge, 1987.
- [4] D. Đurčić, Karamata's theory and theorems of Tauberian type, (Master thesis, in Serbian), Faculty of Science, Beograd, 1995.

Matematički fakultet Studentski trg 16 11001 Beograd, p.p. 550 Yugoslavia (Received 06 09 1996)