SEMI-FREDHOLM OPERATORS AND PERTURBATIONS

Snežana Živković

Communicated by Stevan Pilipović

Abstract. It is well known that the set of semi-Fredholm operators is an open semigroup in the set of all bounded linear operators on Banach spaces [3]. Perturbations theorems for semi-Fredholm operators are of great interest (see e.g. [3], [4], [6], [9], [13], [14], [15] and [20]). The main results is a general perturbation theorem for semi-Fredholm operators. Then as a corollary we get some well known results of [6] and [7].

1. Introduction and preliminaries

In this paper X and Y are complex Banach spaces, B(X,Y) (K(X,Y)) the set of all bounded (compact) linear operators from X into Y. We shall write B(X) (K(X)) instead of B(X,X) (K(X,X)).

An operator $T \in B(X,Y)$ is in $\Phi_+(X,Y)$ ($\Phi_-(X,Y)$) if the range R(T) is closed in Y and the dimension $\alpha(T)$ of the null space N(T) of T is finite (the codimension $\beta(T)$ of R(T) in Y is finite). Operators in $\Phi_+(X,Y) \cup \Phi_-(X,Y)$ are called semi-Fredholm operators. For such operators the index is defined by $i(T) = \alpha(T) - \beta(T)$. We set $\Phi(X,Y) = \Phi_+(X,Y) \cap \Phi_-(X,Y)$. The operators in $\Phi(X,Y)$ are called Fredholm operators. We shall write $\Phi_+(X)$ (resp. $\Phi_-(X)$, $\Phi(X)$) instead of $\Phi_+(X,X)$ (resp. $\Phi_-(X,X)$, $\Phi(X,X)$).

Since index is locally constant (see [3, Theorems (4.2.1), (4.2.2), (4.4.1)]) we have

LEMMA 1. Let $A, B \in \Phi_+(X,Y) \cup \Phi_-(X,Y)$ and f be a continuous map from [0,1] into B(X,Y) such that f(0)=A, f(1)=B and $f([0,1]) \subset \Phi_+(X,Y) \cup \Phi_-(X,Y)$; then i(A)=i(B).

Let U denote the closed unit ball of X. Let $T \in B(X,Y)$ and

$$m(T) = \inf\{||Tx|| : ||x|| = 1\}$$

be the $minimum \ modulus$ of T, and let

$$n(T) = \sup\{\epsilon \ge 0 : \epsilon U \subset TU\}$$

be the surjection modulus of T.

Obviously m(T) > 0 if and only if there is a number c > 0 such that $c||x|| \le ||Tx||, x \in X$, and in this case we say that operator T is a bounded below. It is well known that m(T) > 0 if and only if the null space of T is zero and the range of T is closed, and n(T) > 0 if and only if T is surjective.

Further, for $T, S \in B(X, Y)$ we have

$$m(T+S) \le m(T) + ||S||$$

and analogously

$$n(T+S) \le n(T) + ||S||.$$

It is well known that if an operator T is bounded below (surjective) and the norm of a perturbation S is smaller than m(T) (n(T)), then T+S is bounded below (surjective). Namely,

$$m(T) = m(T + S - S) \le m(T + S) + ||S|| < m(T + S) + m(T)$$

 $\Rightarrow m(T + S) > 0.$

Obviously a bounded below operator is Φ_+ and a surjective operator is Φ_- .

An operator $T \in B(X,Y)$ is strictly singular $(T \in S(X,Y))$ if, for every infinite dimensional (closed) subspace M of X, the restriction of T to M, $T|_M$, is not a homeomorphism, i.e., $m(T|_M) = 0$. An operator $T \in B(X,Y)$ is strictly cosingular $(T \in CS(X,Y))$ if, for every infinite codimensional closed subspace V of Y the composition Q_VT is not surjective, where Q_V is the quotient map from Y onto Y/V, i.e., $n(Q_VT) = 0$. It is well known that $K(X,Y) \subset S(X,Y)$ and $K(X,Y) \subset CS(X,Y)$.

Let S be a subset of a Banach space A. The perturbation class associated with S is denoted P(S) and $P(S) = \{a \in A : a + s \in S \text{ for all } s \in S\}$. The perturbation class associated with $\Phi_+(X,Y)$ (resp. $\Phi_+(X)$, $\Phi_-(X,Y)$, $\Phi_-(X)$) is denoted by $P(\Phi_+(X,Y))$ (resp. $P(\Phi_+(X))$, $P(\Phi_-(X,Y))$, $P(\Phi_-(X))$).

For
$$T \in B(X, Y)$$
, we set (see [18], [19])

$$m_e(T) = \operatorname{dist}(T, B(X, Y) \setminus \Phi_+(X, Y))$$

for the essential minimum modulus and

$$n_e(T) = \operatorname{dist}(T, B(X, Y) \setminus \Phi_-(X, Y))$$

for the essential surjection modulus.

For $T \in B(X)$, the quantities

$$s_{+}(T) = \sup\{\epsilon \ge 0 : |\lambda| < \epsilon \Longrightarrow \lambda I - T \in \Phi_{+}(X)\}$$

$$s_{-}(T) = \sup\{\epsilon \ge 0 : |\lambda| < \epsilon \Longrightarrow \lambda I - T \in \Phi_{-}(X)\}$$

are semi-Fredholm radii of the operator T (see [18], [19]).

We shall use π to denote the natural homomorphism of B(X) onto the Calkin algebra C(X) = B(X)/K(X). C(X) is itself a Banach algebra in the quotient algebra norm

$$\|\pi(T)\| = \inf\{\|T + K\| : K \in K(X)\}.$$

Let $r_e(T)$ denote spectral radius of the element $\pi(T)$ in C(X), $T \in B(X)$, i.e., $r_e(T) = \lim_{n \to \infty} (\|\pi(T^n)\|)^{\frac{1}{n}}$ and it is called *essential spectral radius* of T. Recall that $r_e(T) = \sup\{|\lambda| : \lambda I - T \notin \Phi(X)\}$ (see [3]). An operator $T \in B(X)$ is *Riesz* operator if and only if $r_e(T) = 0$ [3, Theorem 3.3.1]. Let R(X) denote the set of Riesz operators in B(X).

2. Results

If $f: B(X,Y) \mapsto [0,\infty)$, set $N(f) = \{T \in B(X,Y) : f(T) = 0\}$. The main result in this paper is the following perturbation theorem.

Theorem 1. Let f be a seminorm on B(X,Y), and $h:B(X,Y)\mapsto [0,\infty)$ a function such that for $A,\ B\in B(X,Y)$

(1)
$$h(A) > 0 \iff A \in \Phi_{+}(X, Y),$$

$$(2) h(A+B) \le h(A) + f(B),$$

(3)
$$K(X,Y) \subset N(f) \text{ and } f(A) \leq ||A||;$$

then:

- (a) h(A+C) = h(A) for all $C \in N(f)$;
- (b) If f(B) < h(A), then $A, A + B \in \Phi_{+}(X, Y)$ and i(A) = i(A + B);
- (c) N(f) is closed subspace of B(X,Y) and $N(f) \subset P(\Phi_{+}(X,Y))$;
- (d) If ||B|| < h(A), then $A, A + B \in \Phi_+(X, Y)$ and i(A + B) = i(A);
- (e) $m_e(A) \ge h(A)$. For $A \in B(X)$ we have
- (f) $s_+(A) \ge h(A);$
- (g) $s_{+}(A) \geq \overline{\lim}_{n \to \infty} (h(A^{n}))^{\frac{1}{n}};$
- (h) If f(A) < h(I), then $I A \in \Phi(X)$ and i(I A) = 0;
- (i) If $f(A^n) < h(I)$ for some n > 1, then $I A \in \Phi(X)$ and i(I A) = 0;
- $(j) \quad r_e(A) = \lim_{n \to \infty} (f(A^n))^{\frac{1}{n}};$

(k) If $AB - BA \in P(\Phi_+(X))$ and $r_e(B) < \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}}$, then $A, A + B \in \Phi_+(X)$ and i(A + B) = i(A).

Proof: (a) Let $C \in N(f)$. By (2) we have

$$h(A+C) \le h(A) + f(C) = h(A),$$

 $h(A) = h(A+C+(-C)) \le h(A+C) + f(-C) = h(A+C)$

and hence h(A) = h(A + C).

(b) Let f(B) < h(A) and $\lambda \in [0, 1]$. By (2) we have

$$h(A) = h(A + \lambda B + (-\lambda B)) \le h(A + \lambda B) + f(-\lambda B) = h(A + \lambda B) + \lambda f(B) < h(A + \lambda B) + h(A),$$

and hence $h(A + \lambda B) > 0$. Further, by (1) it follows that $A + \lambda B \in \Phi_+(X, Y)$ and hence $A, A + B \in \Phi_+(X, Y)$. Now by Lemma 1 we have i(A + B) = i(A).

(c) Let $A, B \in N(f)$ and $\lambda, \mu \in \mathbb{C}$. Since f is a seminorm on B(X,Y) it follows that

$$0 \le f(\lambda A + \mu B) \le f(\lambda A) + f(\mu B) = |\lambda| f(A) + |\mu| f(B) = 0 \Longrightarrow f(\lambda A + \mu B) = 0 \Longrightarrow \lambda A + \mu B \in N(f).$$

So N(f) is a subspace of B(X,Y).

Let $A_n \in N(f)$, $n \in \mathbb{N}$ and $A \in B(X,Y)$ such that $||A_n - A|| \to 0$ when $n \to \infty$. Then

$$0 \le f(A) = f(A - A_n + A_n) \le f(A - A_n) + f(A_n) = f(A - A_n) \le ||A_n - A||.$$

It follows that f(A) = 0, so $A \in N(f)$. Hence N(f) is closed.

Let $A \in \Phi_+(X,Y)$ and $B \in N(f)$. By (1) it follows that f(B) = 0 < h(A). Now by (b) we have $A + B \in \Phi_+(X,Y)$. Hence $B \in P(\Phi_+(X,Y))$, and (c) is proved.

- (d) Let ||B|| < h(A). By (3) $f(B) \le ||B||$ and this implies f(B) < h(A). Now by
- (b) we get $A, A + B \in \Phi_{+}(X, Y)$ and i(A + B) = i(A).
- (e) Since $m_e(A) = \max\{\epsilon \geq 0 : ||B|| < \epsilon \Rightarrow A + B \in \Phi_+(X, Y)\}$, (d) implies (e).
- (f) Obviously $s_{+}(A) \geq m_{e}(A)$ and hence (f) follows from (e).
- (g) It is known that $s_+(A^n) = [s_+(A)]^n$, $n \in \mathbb{N}$. Hence by (f) we have $s_+(A) = (s_+(A^n))^{\frac{1}{n}} \ge (h(A^n))^{\frac{1}{n}}$ for all $n \in \mathbb{N}$. It implies (g).
- (h) Let f(A) < h(I). Now (b) implies $I A \in \Phi_+(X)$ and i(I A) = i(I) = 0. Hence $I A \in \Phi(X)$.

(i) Let $f(A^n) < h(I)$ for some n > 1, and let $\lambda \in [0,1]$. Then $f((\lambda A)^n) = \lambda^n f(A^n) \le f(A^n) < h(I)$ and by (h) it follows that $I - (\lambda A)^n \in \Phi(X)$. Since

$$I - (\lambda A)^{n} = (I - \lambda A)(I + \lambda A + \dots + \lambda^{n-1} A^{n-1})$$

= $(I + \lambda A + \dots + \lambda^{n-1} A^{n-1})(I - \lambda A)$

by [3, Corollary 1.3.6] we have $I - \lambda A \in \Phi(X)$. Hence $I - A \in \Phi(X)$. Further, by Lemma 1 we get i(I - A) = i(I) = 0.

(j) Let $\lambda \in \mathbb{C}$ and $|\lambda| > (h(I))^{-\frac{1}{n}} (f(A^n))^{\frac{1}{n}}$ for some $n \in \mathbb{N}$. Then $h(I) > f((A/\lambda)^n)$ and by (i) it follows $I - A/\lambda \in \Phi(X)$, i.e., $\lambda I - A \in \Phi(X)$. Hence $r_e(A) \leq (h(I))^{-\frac{1}{n}} (f(A^n))^{\frac{1}{n}}$ for all $n \in \mathbb{N}$. This implies

$$r_e(A) \leq \lim_{n \to \infty} (h(I))^{-\frac{1}{n}} \underbrace{\lim_{n \to \infty}}_{n \to \infty} (f(A^n))^{\frac{1}{n}} = \underbrace{\lim_{n \to \infty}}_{n \to \infty} (f(A^n))^{\frac{1}{n}}.$$

From (3) it follows that for all $T \in B(X)$ and $K \in K(X)$

$$f(T+K) \le f(T) + f(K) = f(T),$$

$$f(T) = f(T+K+(-K)) \le f(T+K) + f(-K) = f(T+K),$$

so that $f(T) = f(T + K) \le ||T + K||$. Thus

$$f(T) \le \inf\{\|T + K\| : K \in K(X)\} = \|\pi(T)\|.$$

Hence

$$r_e(A) \le \underline{\lim_{n \to \infty}} (f(A^n))^{\frac{1}{n}} \le \overline{\lim_{n \to \infty}} (f(A^n))^{\frac{1}{n}} \le \lim_{n \to \infty} (\|\pi(A^n)\|)^{\frac{1}{n}} = r_e(A),$$

and we get (j). (k) Let $AB-BA\in P(\Phi_+(X))$ and $r_e(B)<\overline{\lim_{n\to\infty}}(h(A^n))^{\frac{1}{n}}$. Let ϵ be such that $r_e(B)<\epsilon<\overline{\lim_{n\to\infty}}(h(A^n))^{\frac{1}{n}}$. By (j) we have $\lim_{n\to\infty}(f(B^n))^{\frac{1}{n}}<\epsilon<\overline{\lim_{n\to\infty}}(h(A^n))^{\frac{1}{n}}$. Hence there exists $n\in\mathbb{N}$ such that $(f(B^n))^{\frac{1}{n}}<\epsilon<(h(A^n))^{\frac{1}{n}}$, i.e., $f(B^n)< h(A^n)$. From (b) it follows $A^n-B^n\in\Phi_+(X)$. Since $P(\Phi_+(X))$ is a two sided ideal of B(X) (see [3, Lemma 5.5.5]), from $AB-BA\in P(\Phi_+(X))$ we get $A^n-B^n=C(A-B)+P$, where $C=A^{n-1}+BA^{n-2}+\cdots+B^{n-1}$ and $P\in P(\Phi_+(X))$. Thus, $C(A-B)\in\Phi_+(X)$, and by [3, Corollary 1.3.4] we get $A-B\in\Phi_+(X)$. Let us remark that from our proof, it follows that $A+\lambda B\in\Phi_+(X)$ for $0\le\lambda\le 1$. Now by Lemma 1, we have i(A+B)=i(A). \square

 $\begin{array}{ll} & Remark \ 1. \ \ Let \ us \ remark \ that \ we \ can \ get \ (g) \ as \ a \ consequence \ of \ (k). \\ & If \ \overline{\lim_{n\to\infty}} \left(h(A^n)\right)^{\frac{1}{n}} = 0, \ then \ the \ inequality \ (g) \ obviously \ holds. \ Suppose \ that \\ & \overline{\lim_{n\to\infty}} \left(h(A^n)\right)^{\frac{1}{n}} > 0. \ \ For \ \lambda \in \mathbb{C}, \ let \ |\lambda| < \overline{\lim_{n\to\infty}} \left(h(A^n)\right)^{\frac{1}{n}} \ and \ B = \lambda I. \ Then \ we \ have \\ & r_e(B) = |\lambda| < \overline{\lim_{n\to\infty}} \left(h(A^n)\right)^{\frac{1}{n}} \ and \ AB = BA. \ \ By \ (k) \ \ we \ have \ \lambda I - A \in \Phi_+(X). \\ & Therefore \ s_+(A) \geq \overline{\lim_{n\to\infty}} \left(h(A^n)\right)^{\frac{1}{n}}. \end{array}$

The next theorem is a dual part of Theorem 1. We omit the proof.

Theorem 1'. Let f be a seminorm on B(X,Y), and $h:B(X,Y)\mapsto [0,\infty)$ a function such that for $A,\ B\in B(X,Y)$

- (1) $h(A) > 0 \iff A \in \Phi_{-}(X, Y),$
- $(2) h(A+B) \le h(A) + f(B),$
- (3) $K(X,Y) \subset N(f) \text{ and } f(A) \le ||A||,$

then:

- (a) h(A+C) = h(A) for all $C \in N(f)$;
- (b) If f(B) < h(A), then $A, A + B \in \Phi_{-}(X, Y)$ and i(A) = i(A + B);
- (c) N(f) is closed subspace of B(X,Y) and $N(f) \subset P(\Phi_{-}(X,Y))$;
- (d) If ||B|| < h(A), then $A, A + B \in \Phi_{-}(X, Y)$ and i(A + B) = i(A);
- (e) $n_e(A) \ge h(A)$. For $A \in B(X)$ we have
- (f) $s_{-}(A) \geq h(A);$
- (g) $s_{-}(A) \geq \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}};$
- (h) If f(A) < h(I), then $I A \in \Phi(X)$ and i(I A) = 0;
- (i) If $f(A^n) < h(I)$ for some n > 1, then $I A \in \Phi(X)$ and i(I A) = 0;
- $(j) \quad r_e(A) = \lim_{n \to \infty} (f(A^n))^{\frac{1}{n}};$
- (k) If $AB BA \in P(\Phi_{-}(X))$ and $r_e(B) < \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}}$, then $A, A + B \in \Phi_{-}(X)$ and i(A + B) = i(A).

Set

$$\begin{split} &\Phi_+^-(X,Y) = \{T \in \Phi_+(X,Y) \, : \, i(T) \le 0\}, \\ &\Phi_-^+(X,Y) = \{T \in \Phi_-(X,Y) \, : \, i(T) \ge 0\}. \end{split}$$

We shall write $\Phi_+^-(X)$ $(\Phi_-^+(X))$ instead of $\Phi_+^-(X,X)$ $(\Phi_-^+(X,X))$ For $A \in B(X,Y)$, set

$$\begin{split} m_{\Phi_+^-}(A) &= \operatorname{dist}(A, B(X,Y) \backslash \Phi_+^-(X,Y)), \\ n_{\Phi^+}(A) &= \operatorname{dist}(A, B(X,Y) \backslash \Phi_-^+(X,Y)), \end{split}$$

and

$$\begin{split} s_+^-(A) &= \sup\{\epsilon \geq 0 \ : \ |\lambda| < \epsilon \Longrightarrow \lambda I - A \in \Phi_+^-(X)\}, \\ s_+^+(A) &= \sup\{\epsilon \geq 0 \ : \ |\lambda| < \epsilon \Longrightarrow \lambda I - A \in \Phi_+^+(X)\}. \end{split}$$

Let us remark that $m_e(A) \geq m_{\Phi_+^-}(A)$ $(n_e(A) \geq n_{\Phi_+^+}(A))$ and if $m_{\Phi_+^-}(A) > 0$ $(n_{\Phi_+^+}(A) > 0)$, then $m_e(A) = m_{\Phi_+^-}(A)$ $(n_e(A) = n_{\Phi_+^+}(A))$ (because index is locally constant). Also $s_+(A) \geq s_+^-(A)$ $(s_-(A) \geq s_+^+(A))$ and if $s_+^-(A) > 0$ $(s_-^+(A) > 0)$, then $s_+(A) = s_+^-(A)$ $(s_-(A) = s_+^+(A))$.

Let us remark that $\Phi_+^-(X,Y)$ ($\Phi_-^+(X,Y)$) is an open subset of $\Phi_+(X,Y)$ ($\Phi_-(X,Y)$) and that $\Phi_+(X,Y)$ ($\Phi_-(X,Y)$) does not contain any boundary point of $\Phi_+^-(X,Y)$ ($\Phi_-^+(X,Y)$) (because index is locally constant). By [3, Lemma 5.5.4] it follows that $P(\Phi_+(X,Y)) \subset P(\Phi_+^-(X,Y))$ ($P(\Phi_-(X,Y)) \subset P(\Phi_+^+(X,Y))$). Rakočević proved in [10] that $P(\Phi_+(X)) = P(\Phi_+^-(X))$ ($P(\Phi_-(X)) = P(\Phi_+^+(X))$). We set the following question: does the equality $P(\Phi_+(X,Y)) = P(\Phi_+^-(X,Y))$ ($P(\Phi_-(X,Y)) = P(\Phi_+^-(X,Y))$) hold?

Analogously as Theorem 1 the following two theorems can be proved.

Theorem 2. Let f be a seminorm on B(X,Y), and $h:B(X,Y)\mapsto [0,\infty)$ a function such that for $A,\ B\in B(X,Y)$

(1)
$$h(A) > 0 \iff A \in \Phi_+^-(X, Y),$$

$$(2) h(A+B) \le h(A) + f(B),$$

(3)
$$K(X,Y) \subset N(f) \text{ and } f(A) \le ||A||,$$

then:

- (a) h(A+C) = h(A) for all $C \in N(f)$;
- (b) If f(B) < h(A), then $A, A + B \in \Phi_+(X, Y)$ and $i(A) = i(A + B) \le 0$;
- (c) N(f) is closed subspace of B(X,Y) and $N(f) \subset P(\Phi_{+}(X,Y))$;
- (d) If ||B|| < h(A), then $A, A + B \in \Phi_+(X, Y)$ and $i(A + B) = i(A) \le 0$;
- (e) $m_{\Phi_{+}^{-}}(A) \ge h(A)$. For $A \in B(X)$ we have
- (f) $s_+^-(A) \ge h(A);$
- (g) $s_+^-(A) \ge \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}};$
- (h) If f(A) < h(I), then $I A \in \Phi(X)$ and i(I A) = 0;
- (i) If $f(A^n) < h(I)$ for some n > 1, then $I A \in \Phi(X)$ and i(I A) = 0;
- $(j) \quad r_e(A) = \lim_{n \to \infty} (f(A^n))^{\frac{1}{n}};$
- (k) If $AB BA \in P(\Phi_+(X))$ and $r_e(B) < \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}}$, then $A, A + B \in \Phi_+(X)$ and $i(A + B) = i(A) \le 0$.

Theorem 2'. Let f be a seminorm on B(X,Y), and $h:B(X,Y)\mapsto [0,\infty)$ a function such that for $A,\ B\in B(X,Y)$

(1)
$$h(A) > 0 \iff A \in \Phi_{-}^{+}(X, Y),$$

$$(2) h(A+B) \le h(A) + f(B),$$

(3)
$$K(X,Y) \subset N(f) \text{ and } f(A) < ||A||,$$

then:

- (a) h(A+C) = h(A) for all $C \in N(f)$;
- (b) If f(B) < h(A), then $A, A + B \in \Phi_{-}(X,Y)$ and $i(A) = i(A + B) \ge 0$;
- (c) N(f) is closed subspace of B(X,Y) and $N(f) \subset P(\Phi_{+}(X,Y))$;
- (d) If ||B|| < h(A), then $A, A + B \in \Phi_{-}(X, Y)$ and $i(A + B) = i(A) \ge 0$;
- $(e) \quad n_{\Phi_{-}^{+}}(A) \ge h(A).$

For $A \in B(X)$ we have

- (f) $s_{-}^{+}(A) \geq h(A);$
- (g) $s_{-}^{+}(A) \geq \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}};$
- (h) If f(A) < h(I), then $I A \in \Phi(X)$ and i(I A) = 0;
- (i) If $f(A^n) < h(I)$ for some n > 1, then $I A \in \Phi(X)$ and i(I A) = 0;
- (j) $r_e(A) = \lim_{n \to \infty} (f(A^n))^{\frac{1}{n}};$
- (k) If $AB BA \in P(\Phi_{-}(X))$ and $r_e(B) < \overline{\lim}_{n \to \infty} (h(A^n))^{\frac{1}{n}}$, then $A, A + B \in \Phi_{-}(X)$ and $i(A + B) = i(A) \ge 0$.

Now we shall list several examples of known functions, which satisfy the conditions of Theorem 1, Theorem 1', Theorem 2 or Theorem 2'.

Examples. 1. For $A \in B(X,Y)$ set

$$||A||_C = \inf\{||A + K|| : K \in K(X, Y)\},$$

$$m_C(A) = \sup\{m(A + K) : K \in K(X, Y)\} \quad (\text{ see } [8])$$

$$n_C(A) = \sup\{n(A + K) : K \in K(X, Y)\}.$$

The functions $\|\cdot\|_C$ and m_C ($\|\cdot\|_C$ and n_C) satisfy the conditions of Theorem 2 (Theorem 2') (see [17]).

- **2.** The functions $\|\cdot\|_C$ and m_e ($\|\cdot\|_C$ and n_e) satisfy the conditions of Theorem 1 (Theorem 1') (see [19, Proposition 1]).
- 3. If Ω is a nonempty subset of X, then the Hausdorff measure of noncompactness of Ω , is denoted by $q(\Omega)$, and $q(\Omega)=\inf\{\epsilon>0:\Omega \text{ has a finite }\epsilon\text{-net in }X\}$. For $A\in B(X,Y)$ the Hausdorff measure of noncompactness of A, denoted by $\|A\|_q$, is defined by

$$||A||_q = \inf\{k \geq 0 : q_Y(A\Omega) \leq kq_X(\Omega), \Omega \subset X \text{ is bounded.}\}$$

It is easy to see that

$$||A||_q = \sup\{q_Y(A\Omega) : \Omega \subset X, q_X(\Omega) = 1\}.$$

$$m_q(A) = \inf\{q_Y(A\Omega) : \Omega \subset X, q_X(\Omega) = 1\}.$$

The functions $\|\cdot\|_q$ and m_q satisfy the conditions of Theorem 1 (see [7, Theorem 4.10], [1, p. 73] or [11, Posledica 2.12.12]). Fainstein [4] proved that

$$||A||_q = \inf\{||Q_N A|| : N \text{ finite-dimensional subspace of } Y\},$$

where Q_N is the quotient map from Y into Y/N.

Set (see [4] and [20])

$$n_q(A) = \sup\{n(Q_N A) : N \text{ finite-dimensional subspace of } Y\}.$$

The functions $\|\cdot\|_q$ and n_q satisfy the conditions of Theorem 1' (see [20, Theorem 4.1]).

Let us remark that Theorem 4 in [6] follows from Theorem 1 (Theorem 1').

4. For $A \in B(X,Y)$ set

$$||A||_{\mu} = \inf\{||A|_L|| : L \text{ subspace of } X, \text{ codim } L < \infty\},$$

and

$$m_{\mu}(A) = \sup\{m(A|_L) : L \text{ subspace of } X, \text{ codim } L < \infty\}.$$

We conclude that the functions $\|\cdot\|_{\mu}$ and m_{μ} satisfy the conditions of Theorem 1 (see [7] and [13, Lemma 2.13]). Hence Theorem 6.1 in [7] follows from Theorem 1.

5. Let $l_{\infty}(X)$ be the Banach space obtained from the space of all bounded sequences $x = (x_n)$ in X by imposing term-by-term linear combination and the supremum norm $||x|| = \sup_n ||x_n||$. Let m(X) stand for the closed subspace

$$\{(x_n) \in l_{\infty}(X) : \{x_n : n \in \mathbb{N}\} \text{ relatively compact in } X\}$$

of $l_{\infty}(X)$. Let X^+ denote the quotient $l_{\infty}/m(X)$. Then $A \in B(X,Y)$ induces an operator $A^+: X^+ \mapsto Y^+$, $(x_n) + m(X) \mapsto (Ax_n) + m(Y)$, $(x_n) \in l_{\infty}(X)$. The function $A \mapsto \|A^+\|$ is a measure of noncompactness, i.e., it is a seminorm on B(X,Y) such that $\|A^+\| = 0 \iff A \in K(X,Y)$ (see [1] and [2]).

The functions $A \mapsto ||A^+||$ and $A \mapsto m(A^+)$ $(A \mapsto ||A^+||)$ and $A \mapsto n(A^+)$ satisfy the conditions of Theorem 1 (Theorem 1') (see [2, Theorem 2] and [5, Theorem 3.4]).

6. For $A \in B(X,Y)$ set

$$G_M(A) = \inf_{N \subset M} ||A|_N ||, \quad G(A) = G_X(A), \quad \Delta_M(A) = \sup_{N \subset M} G_N(A), \quad \Delta(A) = \Delta_X(A),$$

where M, N denotes infinite dimensional subspaces of X

We conclude that the function Δ and G satisfy the conditions of Theorem 1 (see [13]).

Weis [16] introduced for $A \in B(X,Y)$ the following functions

$$K_V(A) = \inf_{W \supset V} \|Q_W A\|, \quad K(A) = K_{\{0\}}(A),$$

 $\nabla_V(A) = \sup_{W \supset V} K_W(A), \quad \nabla(A) = \nabla_{\{0\}}(A),$

where V, W denote closed infinite codimensional subspaces of Y (we use the notations from [20]). It is not difficult to show that the functions ∇ and K satisfy the conditions of Theorem 1'.

Schechter [13] proved that $\Delta(A) \leq ||A||_{\mu}$, and similarly it can be proved that $\nabla(A) \leq ||A||_q$, $A \in B(X,Y)$. Therefore, the functions $||\cdot||_{\mu}$ and G ($||\cdot||_q$ and K) satisfy the conditions of Theorem 1 (Theorem 1').

7. For $A \in B(X, Y)$ set (see [9] and [10])

$$t_M(A) = \inf_{N \subset M} ||A|_N||_q, \qquad t(A) = t_X(A),$$

 $g_M(A) = \sup_{N \subset M} t_N(A), \qquad g(A) = g_X(A),$

where M, N denote infinite dimensional subspaces of X.

We conclude that the functions g and t satisfy the conditions of Theorem 1.

Remark 2. From the proof of Theorem 1 it is clear that if we replace the condition (2) of Theorem 1 ((2) of Theorem 1') by a weaker condition:

(2') If
$$f(B) < h(A)$$
, then $A + B \in \Phi_{+}(X, Y)$

$$((2') \text{ If } f(B) < h(A), \text{ then } A + B \in \Phi_{-}(X, Y)),$$

then we can prove the assertions (c)–(k) of Theorem 1 (Theorem 1'). Zemánek [20] considered the following functions

$$u(A) = \sup\{m(A|_W) : W \text{ is closed subspace of } X \text{ with } \dim W = \infty\},\$$

 $v(A) = \sup\{n(Q_V A) : V \text{ is closed subspace of } Y \text{ with } \operatorname{codim} V = \infty\}.$

From the definition of strictly singular and strictly cosingular operators it is obvious that u(A) = 0 if and only if $A \in S(X, Y)$, and v(A) = 0 if and only if $A \in CS(X, Y)$. Zemánek denoted the quantities m_{μ} and n_q with B and M, respectively and proved: If $T, S \in B(X, Y)$ and v(S) < M(T), then T + S is a Φ_- -operator, and if u(S) < B(T), then T + S is a Φ_+ -operator. Now it is clear that the functions u and u0 and u1 satisfy the conditions (1), (2') and (3) of Theorem 1 (Theorem 1').

The quantities m_C , m_q , m_μ , $m(\cdot^+)$, m_e , G, t, Δ' , g' may be considered as substitutes for the minimum modulus of an operator and n_C , n_q , $n(\cdot^+)$, n_e , K, ∇' as substitutes for the surjection modulus. Also we can say that measures of non-compactness $\|\cdot\|_C$, $\|\cdot\|_q$, $\|\cdot\|_\mu$, $\|\cdot^+\|$ generalize norm. Further, the quantities

 Δ , g, u and ∇ , v generalize measures of noncompactness in the same way as strictly singular and strictly cosingular operators generalize compact operators.

Let us introduce the following functions for $T \in B(X,Y)$:

$$||T||_{P\Phi_{+}} = \inf\{||T - B|| : B \in P(\Phi_{+}(X, Y))\},$$

$$||T||_{P\Phi_{-}} = \inf\{||T - B|| : B \in P(\Phi_{-}(X, Y))\}.$$

Clearly $\|\cdot\|_{P\Phi_+}$ ($\|\cdot\|_{P\Phi_-}$) is seminorm on B(X,Y) with property $\|T\|_{P\Phi_+} \leq \|T\|$ ($\|T\|_{P\Phi_-} \leq \|T\|$), $T \in B(X,Y)$. Since $P(\Phi_+(X,Y))$ ($P(\Phi_-(X,Y))$) is a closed set [3, Lemma 5.5.3] the function $\|\cdot\|_{P\Phi_+}$ ($\|\cdot\|_{P\Phi_-}$) disappears on $P(\Phi_+(X,Y))$ ($P(\Phi_-(X,Y))$). Since $K(X,Y) \subset P(\Phi_+(X,Y))$ ($P(\Phi_-(X,Y))$) [3, Corollary 1.3.7] we conclude that the functions $\|\cdot\|_{P\Phi_+}$ ($\|\cdot\|_{P\Phi_-}$) satisfy the condition (3) of Theorem 1 (Theorem 1').

Lemma 2. Let $T \in B(X,Y)$. Then

(a)
$$m_e(T) = m_e(T+A), \text{ for } A \in P(\Phi_+(X,Y)),$$

(b)
$$n_e(T) = n_e(T+A), \text{ for } A \in P(\Phi_-(X,Y)).$$

Proof. (a) Let $A \in P(\Phi_+(X,Y))$. Since $P(\Phi_+(X,Y))$ is a linear subspace of B(X,Y) (see [3, Lemma 5.5.3]) it follows that $-A \in P(\Phi_+(X,Y))$. It implies that $B \in \Phi_+(X,Y)$ if and only if $B + A \in \Phi_+(X,Y)$, i.e., $B \in B(X,Y) \setminus \Phi_+(X,Y)$ if and only if $B \in -A + B(X,Y) \setminus \Phi_+(X,Y)$. Hence

$$m_{e}(T) = \inf\{\|T - B\| : B \in B(X, Y) \setminus \Phi_{+}(X, Y)\}$$

$$= \inf\{\|T - (-A + C)\| : C \in B(X, Y) \setminus \Phi_{+}(X, Y)\}$$

$$= \inf\{\|(T + A) - C\| : C \in B(X, Y) \setminus \Phi_{+}(X, Y)\}$$

$$= m_{e}(T + A).$$

(b) can be proved analogously. \square

Lemma 3. Let $T, S \in B(X,Y)$. Then

(a)
$$m_e(T+S) \le m_e(T) + ||S||_{P\Phi_+}$$

(b)
$$n_e(T+S) \le n_e(T) + ||S||_{P\Phi_-}$$

Proof. Recall that

(4)
$$m_e(A+B) \le m_e(A) + ||B||, A, B \in B(X,Y).$$

For each $A \in P(\Phi_+(X,Y))$, by Lemma 2 (a) and (4) we have

$$m_e(T+S) = m_e(T+S+A) < m_e(T) + ||S+A||,$$

hence

$$m_e(T+S) \le m_e(T) + \inf\{\|S+A\| : A \in P(\Phi_+(X,Y))\} = m_e(T) + \|S\|_{P\Phi_+}.$$

(b) can be proved analogously. \Box

We conclude that the functions $\|\cdot\|_{P\Phi_+}$ and m_e ($\|\cdot\|_{P\Phi_-}$ and n_e) satisfy the conditions of Theorem 1 (Theorem 1').

Let us introduce the following functions for $A \in B(X,Y)$:

$$||A||_S = \inf\{||A + C|| : C \in S(X, Y)\},$$

$$||A||_{CS} = \inf\{||A + C|| : C \in CS(X, Y)\},$$

and

$$m_S(A) = \sup\{m(A+C) : C \in S(X,Y)\},\$$

 $n_{CS}(A) = \sup\{n(A+C) : C \in CS(X,Y)\}.$

It is clear that

(5)
$$m_S(A+P) = m(A) \quad \text{for } P \in S(X,Y),$$
$$n_{CS}(A+P) = n_{CS}(A) \quad \text{for } P \in CS(X,Y).$$

Lemma 4. Let $A, B \in B(X,Y)$. Then

(a)
$$m_S(A+B) \le m_S(A) + ||B||_S$$
,

(b)
$$n_{CS}(A+B) < n_{CS}(A) + ||B||_{CS}$$
.

Proof. For each $C \in S(X,Y)$ we have

$$m(T + S + C) \le m(T + C) + ||S||.$$

It implies that

$$\sup\{m(T+S+C): C \in S(X,Y)\} \le \sup\{m(T+C): C \in S(X,Y)\} + \|S\|,$$

i.e.,

(6)
$$m_S(A+B) \le m_S(A) + ||B||.$$

Now as in the proof of Lemma 3, (a) follows from (5) and (6).

(b) can be proved analogously. \Box

LEMMA 5. For $A \in B(X,Y)$

(a)
$$m_S(A) > 0 \iff A \in \Phi_+^-(X, Y),$$

(b)
$$n_{CS}(A) > 0 \iff A \in \Phi_{-}^{+}(X, Y).$$

Proof. (a) (\Longrightarrow) Let $m_S(A) > 0$. This implies that there is $C \in S(X,Y)$ such that m(A+C) > 0. Hence $A+C \in \Phi_+(X,Y)$ and $i(A+C) \leq 0$. Since $S(X,Y) \subset P(\Phi_+(X,Y))$, then $\lambda C \in P(\Phi_+(X,Y))$ for $\lambda \in [0,1]$ and we get $A+\lambda C \in \Phi_+(X,Y)$. It implies that $A \in \Phi_+(X,Y)$, and from Lemma 1 it follows that $i(A) = i(A+C) \leq 0$. Thus $A \in \Phi_+^-(X,Y)$.

 (\Leftarrow) Assume $A \in \Phi_+^-(X,Y)$. Obviously $m_S(A) \geq m_C(A)$. Since (see [17])

$$m_C(A) > 0 \iff A \in \Phi_+^-(X, Y),$$

it follows that $m_S(A) > 0$.

(b) can be proved analogously. \Box

Now we see that the functions $\|\cdot\|_S$ and m_S ($\|\cdot\|_{CS}$ and n_{CS}) satisfy the conditions of Theorem 2 (Theorem 2').

Let us introduce the following functions for $T \in B(X, Y)$:

$$m_{P\Phi_+}(T) = \sup\{m(T+C) : C \in P(\Phi_+(X,Y))\},$$

$$n_{P\Phi_-}(T) = \sup\{n(T+C) : C \in P(\Phi_-(X,Y))\}.$$

Similarly as above we get

$$m_{P\Phi_+}(T) > 0 \iff T \in \Phi_+^-(X, Y),$$

 $n_{P\Phi_-}(T) > 0 \iff T \in \Phi^+(X, Y).$

and

$$m_{P\Phi_+}(T+S) \le m_{P\Phi_+}(T) + ||S||_{P\Phi_+},$$

 $n_{P\Phi_-}(T+S) \le n_{P\Phi_-}(T) + ||S||_{P\Phi_-} \quad T, \ S \in B(X,Y).$

Thus, the functions $\|\cdot\|_{P\Phi_+}$ and $m_{P\Phi_+}$ ($\|\cdot\|_{P\Phi_-}$ and $n_{P\Phi_-}$) satisfy the conditions of Theorem 2 (Theorem 2').

Since the sets $\Phi_{+}^{-}(X,Y)$ and $\Phi_{-}^{+}(X,Y)$ are open, for $A \in B(X,Y)$ we have

$$\begin{split} m_{\Phi_+^-}(A) > 0 &\iff A \in \Phi_+^-(X,Y), \\ n_{\Phi^+}(A) > 0 &\iff A \in \Phi_-^+(X,Y). \end{split}$$

Set

$$\begin{split} \|A\|_{P\Phi_+^-} &= \inf\{\|A+C\| \,:\, C\in P(\Phi_+^-(X,Y))\},\\ \|A\|_{P\Phi^+} &= \inf\{\|A+C\| \,:\, C\in P(\Phi_-^+(X,Y))\}. \end{split}$$

Using the same metod as in Lemma 2 and Lemma 3, we conclude

$$\begin{split} & m_{\Phi_+^-}(A+B) \leq m_{\Phi_+^-}(A) + \|B\|_{P\Phi_+^-}, \\ & n_{\Phi_+^+}(A+B) \leq n_{\Phi_+^+}(A) + \|B\|_{P\Phi_+^+}. \end{split}$$

Now we see that the functions $\|\cdot\|_{P\Phi_+^-}$ and $m_{\Phi_+^-}$ ($\|\cdot\|_{P\Phi_+^-}$ and $n_{\Phi_+^+}$) satisfy the conditions of Theorem 2 (Theorem 2').

For $A \in B(X)$ recall that

(7)
$$s_{+}(A) = \lim_{n \to \infty} (m_{e}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (m_{q}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (m_{\mu}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (m(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (t(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (t(A^{n}))^{\frac{1}{n}}$$

and

(8)
$$s_{-}(A) = \lim_{n \to \infty} (n_e(A^n))^{\frac{1}{n}} = \lim_{n \to \infty} (n_q(A^n))^{\frac{1}{n}} = \lim_{n \to \infty} (n((A^n)^+))^{\frac{1}{n}} = \lim_{n \to \infty} (K(A^n))^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} (K(A^n))^{\frac{1}{n}}$$

(see [19], [4], [15], [20], [19]). Set (see [20])

$$m_{\infty}(A) = \sup\{m(A+F) : \dim R(F) < \infty\},$$

$$n_{\infty}(A) = \sup\{n(A+F) : \dim R(F) < \infty\}.$$

From the inequalities

$$m_{\infty}(A) \le m_C(A) \le m_S(A) \le m_{P\Phi_+}(A) \le m_{\Phi_+^-}(A),$$

 $n_{\infty}(A) \le n_C(A) \le n_{CS}(A) \le n_{P\Phi_-}(A) \le n_{\Phi^+}(A),$

Theorem 2 (g), Theorem 2' (g) and by [20, Theorem 8.3] we get

$$\begin{split} s_+^-(A) &= \lim_{n \to \infty} (m_\infty(A^n))^{\frac{1}{n}} = \lim_{n \to \infty} (m_C(A^n))^{\frac{1}{n}} = \lim_{n \to \infty} (m_S(A^n))^{\frac{1}{n}} \\ &= \lim_{n \to \infty} (m_{P\Phi_+}(A^n))^{\frac{1}{n}} = \lim_{n \to \infty} (m_{\Phi_+^-}(A^n))^{\frac{1}{n}}, \end{split}$$

and

$$s_{-}^{+}(A) = \lim_{n \to \infty} (n_{\infty}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (n_{C}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (n_{CS}(A^{n}))^{\frac{1}{n}}$$
$$= \lim_{n \to \infty} (n_{P\Phi_{-}}(A^{n}))^{\frac{1}{n}} = \lim_{n \to \infty} (n_{\Phi_{-}^{+}}(A^{n}))^{\frac{1}{n}}.$$

By Theorem 1(k), Theorem 1'(k), (7) and (8) we get:

COROLLARY 1. Let $A, B \in B(X)$.

- (a) If $AB BA \in P(\Phi_{+}(X))$ and $r_{e}(B) < s_{+}(A)$, then $A, A + B \in \Phi_{+}(X)$ and i(A + B) = i(A).
- (b) If $AB BA \in P(\Phi_{-}(X))$ and $r_{e}(B) < s_{-}(A)$, then $A, A + B \in \Phi_{-}(X)$ and i(A + B) = i(A).

COROLLARY 2. Let $A \in B(X)$ and $B \in R(X)$.

- (a) If $A \in \Phi_+(X)$ and $AB BA \in P(\Phi_+(X))$, then $A + B \in \Phi_+(X)$ and i(A) = i(A + B).
- (b) If $A \in \Phi_{-}(X)$ and $AB BA \in P(\Phi_{-}(X))$, then $A + B \in \Phi_{-}(X)$ and i(A) = i(A + B).

Proof. From Corollary 1. \square

We are grtefull to the referee for pointing out that Zemaánek's result [21, Theorem 4] is related to our results.

THEOREM 3. (Zemánek) Let $\omega(T) = \{\lambda \in \mathbb{C} : \lambda I - T \notin \Phi_+(X) \cup \Phi_-(X)\}$. There exists a non-negative function $\chi(\cdot)$ defined on all bounded linear operators on X and having the following properties:

- (1) $|\chi(T) \chi(S)| \le ||T S||$ for all operators T, S;
- (2) $\chi(T+C) = \chi(T)$ for every T and every compact operator C;
- (3) $\omega(T) = \{\lambda \in \mathbb{C} : \chi(T \lambda) = 0\};$
- (4) for every point λ_0 in \mathbb{C} we have $\operatorname{dist}(\lambda_0,\omega(T)) = \lim_{n\to\infty} [\chi((T-\lambda_0)^n)]^{1/n}$.

Let us recall that Zemánek noted that the each of the four functions

$$\begin{split} \chi_1(T) &= \max\{G(T), K(T)\}, \\ \chi_2(T) &= \max\{B(T), M(T)\}, \\ \chi_3(T) &= \max\{m_\infty(T), n_\infty(T)\}, \\ \chi_4(T) &= \max\{m_e(T), n_e(T)\}, \\ \chi_5(T) &= \max\{m(T^+), n(T^+)\}, \end{split}$$

satisfies Theorem 3. Let us remark that the following functions also satisfy this theorem:

$$\begin{split} \chi_6(T) &= \max\{m_C(T), n_C(T)\}, \\ \chi_7(T) &= \max\{m_S(T), n_S(T)\}, \\ \chi_8(T) &= \max\{m_{P\Phi_+}(T), n_{P\Phi_-}(T)\}, \\ \chi_9(T) &= \max\{m_{\Phi_-^+}(T), n_{\Phi_-^+}(T)\}. \end{split}$$

3. Abstract case

Now, we show that some of the results above can be put in an abstract form, i.e., in general Banach algebra. Let \mathcal{A} be a complex Banach algebra with identy 1, \mathcal{K} two sided proper closed ideal, π the canonical homomorphism from \mathcal{A} onto \mathcal{A}/\mathcal{K} , and G the group of invertibles in \mathcal{A}/\mathcal{K} . We write Φ to denote the semigroup $\pi^{-1}(G)$ and $P(\Phi)$ to denote the perturbation class associated with Φ . An (abstract) index consist of a homomorphism i of the semigroup Φ into the additive group \mathbb{Z} of integers such that

- (a) i(x) = 0 for all invertible elements x in A
- (b) i(1+k) = 0 for all k in K.

It follows from the above definition that $i(x+k)=i(x), \ (x\in\Phi,\ k\in\mathcal{K})$ and that if $x\in\Phi$, then there exists $\epsilon>0$ such that for each $y\in\mathcal{A}$ with $||x-y||<\epsilon$ we have $y\in\Phi$ and i(y)=i(x) (see [2]).

For $x \in \mathcal{A}$ define:

$$||x||_{P\Phi} = \inf\{||x+y|| : y \in P(\Phi)\},$$

$$m_{\Phi}(x) = \operatorname{dist}(x, \mathcal{A} \setminus \Phi).$$

Let $r_e(x)$ be the spectral radius of the element $\pi(x)$ in the algebra \mathcal{A}/\mathcal{K} , i.e., $r_e(x) = \sup\{|\lambda| : \lambda - x \notin \Phi\}.$

Set $r_{\Phi}(x) = \inf\{|\lambda| : \lambda - x \notin \Phi\}$. It is easy to see that $r_{\Phi}(x) = \sup\{\epsilon \geq 0 : |\lambda| < \epsilon \Longrightarrow \lambda - x \in \Phi\}$.

Now using the same method as above we conclude that

Theorem 4. Let $x, y \in A$, then

- (a) $m_{\Phi}(x) = m_{\Phi}(x+z)$ for $z \in P(\Phi)$;
- (b) $m_{\Phi}(x+y) \leq m_{\Phi}(x) + ||y||_{P\Phi};$
- (c) If $||y||_{P\Phi} < m_{\Phi}(x)$, then $x, y \in \Phi$ and i(x + y) = i(x);
- (d) $r_{\Phi}(x) > m_{\Phi}(x)$;
- (e) $r_{\Phi}(x) \geq \overline{\lim}_{n \to \infty} (m_{\Phi}(x^n))^{\frac{1}{n}};$
- (f) If $||x||_{P\Phi} < m_{\Phi}(1)$, then $1 x \in \Phi$ and i(1 x) = 0;
- (g) If $||x^n||_{P\Phi} < m_{\Phi}(1)$ for some $n \in \mathbb{N}$, then $1 x \in \Phi$ and i(1 x) = 0;
- (h) $r_e(x) = \lim_{n \to \infty} (\|x^n\|_{P\Phi})^{\frac{1}{n}} \text{ for } x \in \mathcal{A};$
- (i) If $xy yx \in P(\Phi)$ and $r_e(y) < \overline{\lim}_{n \to \infty} (m_{\Phi}(x^n))^{\frac{1}{n}}$, then $x, x + y \in \Phi$ and i(x + y) = i(x).

Acknowledgements. I am grateful to Professor Vladimir Rakočević and Dragan Đorđević for helpful conversations and also to the referee for helpful comments and suggestions concerning the paper.

References

- 2. J. J. Buoni, R. E. Harte and A. W. Wickstead, *Upper and lower Fredholm spectra*, Proc. Amer. Math. Soc. 66 (1977), 309–314.
- S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974.
- 4. A. S. Fainstein, On measures of noncompactness of linear operators and analogous of the minimum modulus for semi-Fredholm operators, Spektral'naja Teorija Operatorov i Prilož. Baku 6 (1985), 182–195 (Russian).
- K.-H. Föster and E.-O. Liebetrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44.
- I. T. Gohberg, L. S. Goldenstein and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uch. Zap. Kishinevsk. Un-ta 29 (1957), pp. 29-36 (russian).
- A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26.
- V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 33 (1981), 389-391.
- 9. V. Rakočević, Measures of non-stric-singularity of operators, Mat. Vesnik 35 (1983), 79-82.
- 10. V. Rakočević, *Esencijalni spektar i Banachove algebre*, Doktorska disertacija, Univererzitet u Beogradu, Prirodno –matematički fakultet, 1984.
- 11. V. Rakočević, Funkcionalna analiza, Naučna knjiga, Beograd, 1994.
- B. N. Sadovskii, Limit-comact and condensing operators, Russian Math. Surveys 27 (1972), 85–155.
- M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071.
- M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988), 175-190
- 15. H.-O. Tylli, On the asymptotic behaviour of some quantities related to semifredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348.
- L. Weis, Über strikt singuläre und strikt cosinguläre Operatoren in Banachräumen, Dissertation, Bonn, 1974.
- 17. B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.
- 18. J. Zemánek, Geometric interpretation of the essential minimum modulus, in: Invariant Subspaces and Other Topics (Timisoara/Herculane, 1981), Operator Theory: Adv. Appl. 6, Birkhäuser, Basel 1982, 225–227.
- J. Zemánek, The Semi-Fredholm Radius of a linear Operator, Bull. Polon. Acad. Sci. Math. 32 (1984), 67-76.
- J. Zemánek, Geometric characteristics of semi-Fredholm operators and asymptotic behaviour, Studia Math. 80 (1984), 219–234.
- J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62.

Grupa za matematiku Filozofski fakultet Ćirila i Metodija 2 18000 Niš Jugoslavija (Received 08 03 1996)